
Journal of Software Engineering and Applications, 2012, 5, 855-863
http://dx.doi.org/10.4236/jsea.2012.511099 Published Online November 2012 (http://www.SciRP.org/journal/jsea)

855

Performance Study of a Distributed Web Server: An
Analytical Approach*

Sarah Tasneem1, Reda Ammar2

1Math and Computer Science, Eastern Connecticut State University, Willimantic, USA; 2Computer Science and Engineering, Uni-
versity of Connecticut, Storrs, USA.
Email: tasneems@easternct.edu

Received July 18th, 2012; revised August 16th, 2012; accepted August 25th, 2012

ABSTRACT

With the rapid expansion of the Internet, Web servers have played a major role in accessing the enormous mass of Web
pages to find the information needed by the user. Despite the exponential growth of the WWW, a very negligible
amount of research has been conducted in web server performance analysis with a view to improve the time a Web
server takes to connect, receive, and analyze a request sent by the client and then sending the answer back to client. In
this paper, we propose a multi-layer analytical approach to study the web server performance. A simple client-server
model is used to represent the WWW server in order to demonstrate how to apply the proposed approach. We deve-
loped a systematic, analytical methodology to quantify the communication delay and queuing overhead in a distributed
web server system. The approach uses the Computation Structure Model to derive server processing time required to
process a request sent from a client and queueing model to analyze the communication between the clients and the
server.

Keywords: Web Server; CSM; Performance Modeling; Performance Analysis; Distributed Systems; Queueing Model

1. Introduction

With the rapid expansion of the “World Wide Web” and
our increasing reliance on the information and services
provided by it, indicates that the services must be offered
with superior performance to retain the current users and
attract new ones. For example online banking, stock ex-
change, remote surgery, bill payment must be secure,
efficient and fast enough to be widely accepted. An es-
sential component of WWW is the Web server which is a
large computer and a program responsible to serve the
HTTP requests from the clients. The most common form
of client is a Web browser. The server responds to the
multiple clients by sending Web pages such as HTML
documents and linked objects (images, videos, etc.). One
of the vital aspects of the Internet business is the per-
formance issue of the Web server.

However, for such a system to function efficiently and
cost-effectively requires that the system development be
based upon careful performance analysis, because slow-
ness can have far reaching consequences and implica-
tions in the Internet-computing. The millions of users
surfing the Internet, are unwilling to spend more than
few seconds waiting for a Web page to be displayed. The
number of requests met per second by a Web server is

one of the major metrics to be considered to a high per-
formance Web server system. Because the content of the
Web is fluid and sites change frequently, keeping up to
date information is challenging [1-3]. In the design of a
high performance Web server system the challenge is to
keep response-time to a minimum and the generated data
as up to date as possible by providing more frequent up-
dates. Response time is calculated from the moment the
server receives the request until the client starts receiving
the answer back from the server. The shorter the re-
sponse-time is the better the performance. Despite the
popularity of the Web servers, a very negligible number
of performance analysis has been done. In this paper, we
have reported a partial result of a continuing research
which addresses the challenging issue of quantifying the
response-time and finally identifying the bottlenecks due
to communication and queuing overhead in a distributed
Web server system. To keep the response time to a mi-
nimum, first, we need to identify the major components
of it which is accomplished by applying a systematic,
analytical methodology called, Computation System Mo-
del (CSM).

In this paper, to analyze the performance of a web-
server system, we have modeled a single server with
multiple clients as shown in Figure 1. This is a simple *Partially funded by CSU-AAUP Summer Research Grant 2011-2012.

Copyright © 2012 SciRes. JSEA

Performance Study of a Distributed Web Server: An Analytical Approach 856

Comm.
Queue

Comm
Queue

Comm.
Queue

S
E
R
V
E
R

 1

 i

 2

clients clients

Waiting
Queue

1

i

 2

Figure 1. A single server and multiple clients model.

model for the WWW server. Our goal is to show apply-
ing our proposed analysis methodology to predict quan-
titative metrics describing the server performance. Study-
ing a full WWW server is beyond the scope of this paper.
The proposed performance analysis is divided into two
parts: we used: 1) CSM (Computational Structure Model)
to calculate the processing time cost of server processes;
and 2) queueing model to study the network architecture,
which includes the server’s request handling model. We
will analyze the request handling within the server, as
well as the communication between the server and the
client, etc. At the system level we are interested in de-
termining the time it takes for the server to connect, re-
ceive, and analyze a request sent by the client and then
sending the answer back to it.

The present paper developed a systematic, analytical
methodology to quantify the communication delay and
queuing overhead in a distributed web server system.

The CSM derived equations will be used to determine
the performance bottleneck which lies in the system ar-
chitecture.

The paper is organized as follows: In Chapter 2, we
discuss the related research. In Chapter 3, we describe
the main components of the system architecture. In Cha-
pter 4, we derive the equations to compute the processing
time cost (without the communication time) of a request,
only, using CSM analysis. In Chapter 5, we derive the
response-time equations which include both the process-
ing time as well as the time for communication between
the server and the clients. In Chapter 6, we conclude.

2. Related Research

CSM: There are three principal methods for computer
performance evaluation and analysis: direct measurement,
simulation and analytic modeling. Direct measurement is
the most accurate of the methods, but requires the system
to be implemented first in order to collect specific per-
formance information. Besides, the motivation of per-
formance engineering is to find the performance bottle-
neck at the design phrase, so one can avoid an efficient
design at the earliest time. Simulations are prototypes of
the real system that provide a fairly accurate performance

measurement, but are often time consuming and difficult
to construct. Analytic modeling which exercises tech-
niques such as queueing networks [1,4], Markov models
[4], Perti-nets, state charts and CSM [5-9], is the least
expensive because hardware and software do not need to
be implemented. It also provides insight into the variable
dependencies and interactions that are difficult to deter-
mine using other methods. In the present paper we have
used the CSM analysis in which during the design phase,
one builds a mathematical model to describe the system
behavior. Then the performance model equations are
derived as a function of different design parameters. The
advantage of this model not only lies on the fact that it
gives an insight of the software system but also it pro-
vides plenty of details. However, the mathematics in-
volved may be complex. Ammar et al. [10] makes use of
user model to derive the software optimization. In sepa-
rate papers Ammar et al. [5] and Qin et al. [11] present
techniques for deriving the time cost of parallel computa-
tions.

Webserver: With the increased popularity of Web
servers, recently Web server performance modeling and
analysis has become an active area of research. To the
best of our knowledge there is little to no published work
that presents a comprehensive analysis of performance
for Web server systems. Below we briefly review the
previous work on the performance analysis of Web
server.

Heidemann et al. [12] present analytical performance
models to characterize the interaction of HTTP with seve-
ral transport protocol layers. Slothouber [13] and Vander
Mei et al. [14] both uses queueing model for Web server
performance. The later presents an end-to-end queueing
model for the performance to study the impact of client
workload characteristics, as well as communication pro-
tocols and interconnect topologies. Menasce [15] pro-
vides a classification of Web server software architec-
tures and studies the pool size behavior using queuing
networks approach. Kamra et al. [16] present a theoreti-
cal approach to control overload of a 3-tiered Web sites.
Liu et al. [17] use a multi-station queuing center to
model each of the 3-tiered Web services architecture
including the Web, application and database servers.
Kant et al. [18] describe a queuing network model based
on detailed measurements of a multiprocessor system
with static Web workload. Interested readers may refer to
Trivedi [19] and Lipsky [4] for further detail about
queueing model and its application. Lipsky expresses a
systematic approach using queueing models which in-
volves advance mathematics. Wells et al. [20], Gaeta et
al. [21], Gvozdanovic et al. [22], Scarpa et al. [23] uses
Petri net models for the performance analysis of various
features of Web servers. Gokhale et al. [24] propose an
analysis methodology based on the Stochastic Reward

Copyright © 2012 SciRes. JSEA

Performance Study of a Distributed Web Server: An Analytical Approach 857

Net (SRN) modeling paradigm to quantify the perfor-
mance and the reliability tradeoffs in the process-based
and the thread-based Web server software architectures.
Kohavi and Parekh [25] offer several useful practical
recommendations to improve e-commerce Web sites.
Kaaniche et al. [26] illustrates a hierarchical modeling
framework to evaluate the availability as well as de-
pendability of an Internet based travel agency. There are
also some efforts which consider availability/depend-
ability analysis of a Web server. Merzbacher et al. [27]
first present experimentally measured availability results
for selected Web sites and services, then propose a new
metric for availability.

Hu et al. [28] measure and analyze the behavior of the
popular Apache Web [3] server on both a uniprocessor
system and a 4-CPU SMP Symmetric Multi-Processor
system running the IBM AIX operating system. Their
discovery shows that on an average, Apache spends about
20% - 25%, 35% - 50%, and 25% - 40% of the total CPU
time, on user code, kernel system calls and interrupt handl-
ing, respectively. For systems with small RAM size, the
Web server performance is limited to the disk bandwidth.
For systems with reasonably large RAM size, the TCP/IP
stack and the network interrupt handler are the major
performance bottlenecks. They also suggest new per-
formance improvement metric of the Apache Web server.
First generation Web crawlers of Google (developed at
Stanford), the most popular search engine were imple-
mented in python and distributed in a LAN or WAN re-
porting to a centralized analysis server that performed all
the indexing functionality on the data collected. The
hardware given at the time, three Google crawlers were
able to collect an average of about 48.5 pages per second
while the Indexer was just fast enough to finish analyzing
the data before new crawler results arrived [2]. With the
development of modern high speed hardware the per-
formance bottleneck of Web crawler system has shifted
from hardware processing power to communication net-
work latency and speeds. Crawlers of Mercator [2], an-
other popular search engine, are similar to Google’s, ex-
cept that they are implemented in Java, instead of Python.
In principle, first they fetch a URL from a shared server
called the “frontier”, which is then fetched and processed.
By distributing the work in hundreds of worker threads in
each of the five or more machines, Mercator achieved an
impressive crawler page rate of 112 pages per second. By
using two processors per machine running at 533 MHz
and 2 GB RAM, the bottleneck shifted from processing
power to network speed and latency, which in this small
setup already averaged at 1682 KB/s. Also, at this point,
the DNS lookups became more and more frequent, so
local DNS caches were implemented.

UbiCrawler is another Web crawler that incorporates
meaningful performance improvements [1] over the past

two cases described where the spiders were always con-
trolled by a central instance that coordinated the crawling
process. In UbiCrawler’s case, the network line speed
was the limit later on. There are several limiting factors
such as, communication network delay, to the perfor-
mance and scalability of complex systems like Ubi-
Crawler yet to be addressed.

A limited amount of research has been done in per-
formance analysis of Web server, and to the best of our
knowledge this is the first approach in applying hierar-
chical CSM modeling technique.

3. System Description

Figure 2 depicts the main functions of the server and the
client which are the two major components of the system
architecture.

3.1. Server Architecture

A prototype of the server application, which respond to
the different requests sent by the client is developed us-
ing C language. If the client sends a regular GET mes-
sage, then the response will be based upon whether the
requested file is found in the current directory or not. If
yes, the response message contains the status line
“HTTP/1.1 200 OK” and the requested file will be in-
cluded in the message body. If the requested file is not
found, then a response message contains the status line
“HTTP/1.1 404 Not Found” and an empty body will be
sent. If the client sends a conditional GET message, then
the response will be based on whether the requested file
has been modified since the specified date or not. If

TCP 3-way handshake

Data (request)

Data (request) read()

close()

client

server

bind()

socket()

close()

write()

read()

accept()

listen()

connect()

socket()

write()

Figure 2. Flow diagram for client-server architecture.

Copyright © 2012 SciRes. JSEA

Performance Study of a Distributed Web Server: An Analytical Approach 858

modified then the message contains the status line
“HTTP/1.1 OK” and the requested file is included in the
message body. Otherwise, a response message contains
the status line “HTTP/1.1 304 Not Modified” and an
empty body will be sent. If the client sends a HEAD
message, then the response will be based upon whether
the requested file is found in the current directory or not.
If yes, the response message contains the status line
“HTTP/1.1 200 OK” and an empty body will be sent. If
the requested file is not found, then a response message
contains the status line “HTTP/1.1 404 Not Found” and
an empty body will be sent.

The main functions of the server as shown in Figure 2
are illustrated below:

1) socket(): The function socket described as int
socket(int domain, int type, int protocol), acts as the in-
terface between the application and the transport layer.
The domain should be set to PF_INET. The type argu-
ment tells the kernel what kind of socket is this:
SOCK_STREAM or SOCK_DGRAM, and set protocol
to ’0’ to have socket() choose the correct protocol based
on the type.

2) bind(): This function comes after creating the socket
to associate this socket with a port number on the local
machine. The port number is used by the kernel to match
an incoming packet to a certain process’s socket descrip-
tor.int bind (int sockfd, struct sockaddr *myaddr, int
addrlen); sockfd is the socket file descriptor returned by
socket(). myaddr is a pointer to a struct sockaddr which
contains information about the address, namely, port and
IP address. addrlen can be set to sizeof *myaddr or
sizeof(struct sockaddr).

3) listen(): The process is done in two steps: first lis-
ten(), then accept().int listen(int sockfd, int backlog);
sockfd is the usual socket file descriptor from the socket()
system call. backlog is the number of connections al-
lowed on the incoming queue. Incoming connections are
going to wait in this queue until accept() and this is the
limit on how many can queue up. The limit is about 20
for most systems. Usually, listen() returns −1 and sets
errno on error. Well, bind() needs to be called before
listen() or the kernel will have one listen on a random
port.

4) accept(): The accept() call will try to connect() to
the machine on a port that one is listen()ing on. Their
connection will be queued up waiting to be accept()ed.
One calls accept() and tell it to get the pending connec-
tion. It will return a brand new socket file descriptor to
use for this single connection. Suddenly there will be two
socket file descriptors, the original one is still listening
on the port and the newly created one is finally ready to
send() and recv().int accept(int sockfd, struct sockaddr
*addr, socklen t *addrlen); sockfd is the listen()ing
socket descriptor. addr will usually be a pointer to a local

struct sockaddr_in. This is where the information about
the incoming connection will go and then one can deter-
mine which host is calling from which port. addrlen is a
local integer variable that should be set to sizeof *addr or
sizeof(struct sockaddr in) before its address is passed to
accept(). accept() will not put more than that many bytes
into addr. If it puts fewer in, it will change the value of
addrlen to reflect that.

5) recv() and send(): These functions are used to re-
ceive requests from the client and send a response back
according to the specified request. The send() call:int
send(int sockfd, const void *msg, int len, int flags);
sockfd is the socket descriptor one intends to send data to
(it’s the one returned by socket()) , msg is a pointer to the
data to be sent, and len is the length of that data in bytes.
Just set flags to 0. The recv() call is similar to send() in
many respects: int recv(int sockfd, void *buf, int len, un-
signed int flags); sockfd is the socket descriptor to read
from, buf is the buffer to read the information into, len is
the maximum length of the buffer, and flags can again be
set to 0. recv() returns the number of bytes actually read
into the buffer, or −1 on error (with errno set, accord-
ingly).

6) close(): This function will be used to close the
socket connection just simply by writing close(sockfd).

3.2. Client Architecture

A persistent TCP connection will be used to connect a
client process to the server. The client application will
request a Web page from a Web server by using a com-
mand line including an URL with either of the two dif-
ferent options: “-h” and “-d”. The “-h” option will re-
quest a Web page from the Web server using the HEAD
command, which sends only the header lines without the
object, whereas the “-d” option will request a Web page
from the Web server using the GET command, which
sends only the object file if it has been modified accord-
ing to a given date. If no option is included, the server
will send the requested object. Then the program will be
able to write the response into an output text file. The
functions of the client are omitted here, as the present
paper is dealing with the server performance.

4. The CSM of the System

The proposed method is based on a-priori performance
model called Computation Structure Model (CSM) [11]
which describes the detailed time-execution behavior of
computations. A CSM is a set of two directed graphs: the
Data Flow Graph (DFG) and the Control Flow Graph
(CFG). These two graphs, together, model the time and
space requirements of a computation. The DFG is used to
model the storage requirements of a computation, and the
CFG is the representation of the execution paths of a

Copyright © 2012 SciRes. JSEA

Performance Study of a Distributed Web Server: An Analytical Approach 859

computation. The focus of the paper is on the execution
time behavior, so we will not consider the DFG any fur-
ther.

The CFG is a directed graph that can be used to model
any computation (task). The CFG shows the way in
which different subtasks fit together in a task. It is a
common tool for modeling the control flow of a compu-
tation, and is used to organize the calculation of compu-
tation execution time (the time a program will take to
complete). The CFG consists of nodes (elements) that
represent action in the computation that consume time,
and edges that depict how the thread of execution reaches
these nodes. Each node is given a time cost (a single value
or a distribution) and each edge a control flow count.

The control flow through an element is defined as the
number of times that the element is activated, on the ave-
rage, for each execution of the computation represented
by the CFG.

Time equivalent CFG transformation steps: A me-
thod is described in [11] that provides a set of transfor-
mation steps which can be used to transform a given
CFG, composed of elements and control flows, into a
simpler, time equivalent CFG. The transformations steps
are termed as time equivalent transformation steps, be-
cause, two CFG segments representing the “before” and
“after” of a proposed transformation step have equivalent
execution time distribution. Rules are defined to make
sure that the execution time probability distribution of
the two CFGs will be identical.

Probability distribution of execution time: Applying
these ideas in an orderly algorithmic manner, one can
obtain the overall distribution of execution time of a
computation with the following form:

1 2 3

1 2 3

, , , ,

, , , ,

N

N

T t t t t

P p p p p

A task will take any one of time with associated
probability to execute.

it

i

Next, we describe the Computation Structural Model
of the present system. The CSM uses Control Flow
Graphs (CFG), and Spanning Trees to model the flow of
a system mathematically [5,11], which is then used to
derive the cost expression of the system.

p

4.1. Server Control Flow Graph

The software (counts over 500 lines of C/C++ code) de-
veloped to represent the server is simplified into the CFG
as shown in Figure 3. The CFG shows only the groups
of continuous lines of code in a single node, as long as
there is no probabilistic factor, meaning a loop or an
if-else conditional statement within the groups. After
performing the initialization part which is depicted as init,
the program proceeds to an infinite loop, where it keeps

fork

start

end

init

 while

 If
Accept = -1

light Ops

clean up
unneeded
resources

child process
to serve client

Figure 3. Main server control flow graph.

listening to any new incoming connections. Once a new
connection is established, the main process first performs
a few light weight operations, for example logging the
time of the incoming connection etc. A child process is
then created to serve the request. While the child process
is serving the request, the main process continues in par-
allel to clean up the unneeded resources, for example
open ports, go back to listen to new connections, etc.
Each child process start with a few initialization opera-
tions, then proceed to analyze the server request, clean up
and terminate.

4.2. Spanning Tree and Mathematical Model

In order to derive a mathematical model for the system,
we first need to derive a spanning tree from the CFG and
then use it to derive the cost expression. Figure 4 shows
the spanning tree that corresponds to the main server
system. With the spanning tree, we can use the flow ba-
lance equation: input output from Kirchhoff
law to derive the cost expression. This normalizes the
network flow and assures that the sum of the input flows
would be equal to the sum of the output flows. We usual-
ly added a virtual link (edge) between the end node and
the start node. However, this program does not have an
end node for the main process. In order to find the cost of
one cycle, we will place a cut along link (edge) e7, where
we will place an end node at the end of the link and place
the virtual link (e0) between the end and the start node.
Using this approach, we end up with the following inde-
pendent variables e0, and e4, and the following depen-
dent variables:

Copyright © 2012 SciRes. JSEA

Performance Study of a Distributed Web Server: An Analytical Approach 860

e2

e1

e4 e7

e3

e5

e8

e6

S

P1

C4

C2

C1

C5

C3

Figure 4. Main server spanning tree CFG.

0 1

2 0 1

3 4

5 3 4

6 5 8 7

1

1

1

1

1

e e

e e e

e e

e e e

e e e e

Using the above flow, the cost expression can be writ-
ten as:

1 1 2 4 2 3 3 5 4 6 1 8 5

1 2 3 4 5 1 4 2 3

s

s

t e c e e c e c e c e p e c

t c c c c c p e c c

 (1)

Note st , is the processing time of a request sent by a
client to the server as mentioned in Section 5.
where and is the cost of fork. 4 0.1e 1

Using this approach, we have derived the equations for
the complete system.

p

4.3. Client Process

The client part has six CFGs: five child functions, namely:
request, parse, command, address and message, in total
and one main function. We have calculated the execution
time contributions from each of the functions separately
in detail (which is omitted due to space limitation), using
CSM technique, as shown in Section 4 for the main
server function.

5. Client-Server Communication

First, we illustrate the sequence of communication be-
tween the server and the client. The client initiates the
communication with the server by requesting a resource
(Web pages). All communication goes through the server
main process which listens to incoming requests con-
tinuously. Once a request is received, the main process
creates a child process to serve the request and the com-
munication channel is therefore passed to the child proc-
ess. The parent process has nothing to do with this par-
ticular client anymore. With this approach, each client
will be served by a dedicated child process which termi-
nates after serving its client. No child process will serve
more than one client at a time.

This is a model with multiple sources and multiple
communication channels. Where N is the maximum
number of child processes that are allowed to run simul-
taneously at a given time. Therefore the system to ana-
lyze is an M/M/N/N, assuming that the arrival and depar-
ture rates follow Poisson process. Clients make connec-
tion to the server through a communication port (chan-
nel). All communication goes through the Network In-
terface Card (NIC) of the machine running the Web
server application. Although the NIC might buffer
(queue) data received from clients before feeding it to the
server application, but for the purpose of this analysis
and the sake of simplicity, we will not consider this
queue.

The average response time of a request , expressed
as

rT

r cT T Ts (2)

where, c is the communication time between the
server and the clients, and

T

sT is the time to process the
request.

Here we drive equations to compute sT and cT , re-
spectively. First, we derive sT , the processing time of a
request from any arbitrary client j. We assume a single
processor server model. Requests from all of the j clients
form a single processing queue, our objective is to evaluate

sT as a function of different parameters.
Let s be the utilization factor for the processing

queue. We assume that the utilization factor for both the
processing and communication queues add up to 1.

Therefore,

1s cjj
 (3)

From Little’s law, we have

sL T (4)

where, is the average length of the processing queue. L
 is the average arrival rate into the processing queue,
and

Copyright © 2012 SciRes. JSEA

Performance Study of a Distributed Web Server: An Analytical Approach 861

s sT t w (5)

where, st is the mean processing time (Equation (1))
and is the average waiting time in the queue. w

Note, st can be derived using CSM technique as
mentioned in Section 4.2 (Equation (1)).

Let j be the average request arrival rate from client
j into the server, then

1

j

j (6)

For an M/M/1 queue L can be expressed as

1
s

s

L

 and s st

We have,
1

s
s

s

T

Therefore,

1

1 1
s s

s
s s

t t
T

 (7)

Once the request has been processed the answer is re-
turned back from the server to the client. Here we assume
one Comm. Queue for each of the j clients.

Now, we calculate communication time between the
server and each of the clients (as modeled in Figure 4 by
Comm. Queue) first. Let cj cj , and cjt t be the ave-
rage service time, average arrival rate, and average utili-
zation factor for channel of the Comm. Queue
(Figure 4), respectively.

thj

1 1 1 2 2 2cj j j nj n np p p (8)

1 1 1
1

n n n
cj c j cnj

cj cj

pp
t t

t (9)

where, i i is the rate from client i and is the ijp

fraction going into channel . j cij

m
t

R
 m. and R are

the average message size and the average communication
channel capacity, respectively. By definition cj cj cjt .
The total communication time, can be written as: cT

1 1
1 1

c c cn
c c c

c c c

T t t t
 cn (10)

The average service time is calculated by taking in
consideration the flow rate of each class of users (clients)

1
1

n
s s

s s

t t
 smt (11)

The average total execution time is:

1
s

s
s

t
T

 (12)

6. Utilizing the Analytical Model during
Web Server Design Phase

The derived equations above describe the performance
(the average response time) of the web server as a func-
tion of the used architecture (the Cs values in Equation (1)
and the link capacity R for each class of users), the statis-
tical properties of each class of users (the flow rate, the
message size m, etc.) and the algorithm of handling dif-
ferent users’ requests (flow rate in Equation (1)). The
designer can utilize the analytical equations in two dif-
ferent ways:

1) Compare different architectures for the same design
and a given set of clients’ classes.

a) Each architecture is represented by a set of opera-
tions’ execution time Cs and links’ capacities.

b) For each architecture, evaluate the average response
time for the given design and the properties of clients’
classes.

c) It is also possible to evaluate the average response
time as a function of the system workload (the total input
flow) and repeat it for each architecture.

2) Compare different designs for the same architecture
and a given set of clients’ classes.

a) Each design is represented by the flows in equation
#1. The given architecture provides the Cs values and the
Rs values.

b) Evaluate the average response time for each design
given the statistical properties of clients’ classes (input
flows, message sizes).

c) Repeat the process for each design alternative and
study the system behavior with different workloads.

It is also possible to make the study for different de-
sign alternatives using a given set of architectures.

The goal is to find the best design-architecture combi-
nation that minimizes the average response time. Fur-
thermore, the design can write the equations in a spread-
sheet. This gives him a tool to study the effect of differ-
ent design parameters to the objective function (the av-
erage response time in this case).

7. Conclusion

In this paper, we have reported a partial result of a con-
tinuing research which addresses the challenging issue of
quantifying the response-time of a web-server system.
We have modeled a web server with multiple clients and
worked through the steps of deriving the performance
equations to process a request, by utilizing Hierarchical
Computation Structure Model (CSM). Moreover, queue-
ing model analysis has been used to derive equations for
communication between server and clients. The equa-
tions derived from the CSM and the queueing models
offer far more insights in the processing time cost of a
request made by a client to a server, than a simple com-

Copyright © 2012 SciRes. JSEA

Performance Study of a Distributed Web Server: An Analytical Approach 862

plexity analysis expression could provide. For instance,
the expression from complexity analysis would reveal the
polynomial running time of the system as a whole in
terms of big O notations which can give a high level idea
of the system timing in general. However, by applying
CSM, we developed a detailed mathematical cost expres-
sion for the request processing time from which one can
identify the bottleneck in the system and suggests further
improvements. The analytical model can also be utilized
to select the best design-architecture combination for the
web server that minimizes the average response time.

REFERENCES
[1] P. Boldi, B. Codenotti, M. Santini and S. Vigna, “Ubi-

crawler: A Scalable Fully Distributed Web Crawler,”
Software-Practice & Experience, Vol. 34, No. 8, 2004, pp.
711-726. doi:10.1002/spe.587

[2] M. Najork and A. Heydon, “High-Performance Web
Crawling,” In: J. M. Abello, P. M. Pardalos and M. G. C.
Resende, Eds., Handbook of Massive Data Sets, Kluwer
Academic Press, Dordrecht/Boston/London, 2002.

[3] Apache Software Foundation, “Apache HTTP Server
Project.” http://httpd.apache.org/

[4] L. Lipsky, “Queueing Theory: A Linear Algebraic Ap-
proach (LAQT),” Macmillan Publishing Company, New
York, 1992.

[5] R. A. Ammar and B. Qin, “An Approach to Derive Time
Costs of Sequential Computations,” Journal of Systems
and Software, Vol. 11, No. 3, 1990, pp. 173-180.

[6] T. L. Booth, “Performance Optimization of Software
Systems Processing Information Sequences Modeled by
Probabilistic Languages,” IEEE Transactions on Software
Engineering, Vol. 5, No. 1, 1979, pp. 31-44.
doi:10.1109/TSE.1979.226496

[7] B. M. MacKay and H. A. Sholl, “Communication Alter-
natives for a Distributed Real-Time System,” Proceed-
ings of the ISCA Computer Applications in Industry and
Engineering Conference, Honolulu, November 1995.

[8] H. A. Sholl and T. L. Booth, “Software Performance
Modeling Using Computation Structures,” IEEE Transac-
tions on Software Engineering, Vol. 1, No. 4, 1975, pp.
414-420. doi:10.1109/TSE.1975.6312874

[9] R. Ammar, “Hierarchical Performance Modeling and
Analysis of Distributed Software,” In: S. Rajasekaran and
J. H. Reif, Eds., Handbook of Parallel Computing: Mod-
els, Algorithms, and Applications, Chapman & Hall/CRC
Press, London.

[10] R. A. Ammar and T. L. Booth, “Software Optimization
Using User Models,” IEEE Transactions on Systems,
Man, Cybernetics, Vol. 18, No. 4, 1988, pp. 552-560.
doi:10.1109/21.17373

[11] B. Qin, H. A. Sholl and R. A. Ammar, “Micro Time Cost
Analysis of Parallel Computations,” IEEE Transactions
on Computers, Vol. 40, No. 5, 1991, pp. 613-628.
doi:10.1109/12.88485

[12] J. Heidemann, K. Obraczka and J. Touch, “Modeling the

Performance of HTTP over Several Transport Protocols,”
IEEE/ACM Transactions on Networking, Vol. 5, No. 5,
1997, pp. 616-630. doi:10.1109/90.649564

[13] L. Slothouber, “A Model of Web Server Performance,”
Proceedings of the 5th International World Wide Web
Conference, 1996.

[14] R. D. Van der Mei, R. Hariharan and P. Reeser,” Web
Server Performance Modeling, “Telecommunication Sys-
tems, Vol. 16, No. 3-4, 2001, pp. 361-378.
doi:10.1023/A:1016667027983

[15] D. Menasce, “Web Server Software Architecture,” IEEE
Internet Computing, Vol. 7, No. 6, 2003, pp. 78-81.
doi:10.1109/MIC.2003.1250588

[16] A. Kamra, V. Misra and E. Nahum, “Controlling the Per-
formance of 3-Tiered Web Sites: Modeling, Design and
Implementation,” Proceedings of the Joint International Con-
ference on Measurement and Modeling of Computer Systems,
June 2004, pp. 414-415.

[17] X. Liu, J. Heo and L. Sha, “Modeling 3-Tiered Web Ap-
plications,” 13th IEEE International Symposium on Mod-
eling, Analysis and Simulation of Computer Telecommu-
nications Systems (MASCOTS’05), 2005, pp. 307-310.

[18] K. Kant and C. R. M. Sundaram, “ A Server Performance
Model for Static Web Workloads,” IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS’00), 2000, pp. 201-206.

[19] K. S. Trivedi, “Probability and Statistics with Reliability,
Queuing, and Computer Science Applications,” John Wi-
ley and Sons, Chichester, 2001.

[20] L. Wells, S. Christensen, L. M. Kristensen and K. H.
Mortensen, “Simulation Based Performance Analysis of
Web Servers,” Proceedings of 9th International Work-
shop on Petri Nets and Performance Models, 2001, pp.
59-68. doi:10.1109/PNPM.2001.953356

[21] R. Gaeta, M. Gribaudo, D. Manini and M. Sereno, “A
GSPN Model for the Analysis of DNS-Based Redirection
in Distributed Web Systems,” Proceedings of 12th An-
nual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications
Systems (MASCOTS’04), 2004, pp. 39-48.

[22] D. Gvozdanovic, D. Simic, U. Vizek, M. Matijasevic, K.
P. Valavanis and D. Huljenic, “Petri Net Based Modeling
of Application Layer Traffic Characteristics,” EURO-
CON’01, 2001, pp. 424-427.

[23] M. Scarpa, A. Puliafito, M. Villari and A. Zaia., “A Model-
ing Technique for the Performance Analysis of Web
Searching Applications,” IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 16, No. 11, 2004, pp.
1339-1356. doi:10.1109/TKDE.2004.65

[24] S. S. Gokhale, P. J. Vandal and J. Lu, “Performance and
Availability Analysis of Web Server Software Architec-
ture,” Proceedings of 12th IEEE International Symposium
on Pacific Rim Dependable Computing (PRDC’06), 2006,
pp. 351-358. doi:10.1109/PRDC.2006.50

[25] R. Kohavi and R. Parekh, “Ten Supplementary Analyses
to Improve E-Commerce Web Sites,” Proceedings of the
5th WEBKDD Workshop (WEBKDD’03), 2003, pp. 29-
36.

[26] M. Kaaniche, K. Kanoun and M. Martinello, “A User-

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1002/spe.587
http://dx.doi.org/10.1109/TSE.1979.226496
http://dx.doi.org/10.1109/TSE.1975.6312874
http://dx.doi.org/10.1109/21.17373
http://dx.doi.org/10.1109/12.88485
http://dx.doi.org/10.1109/90.649564
http://dx.doi.org/10.1023/A:1016667027983
http://dx.doi.org/10.1109/MIC.2003.1250588
http://dx.doi.org/10.1109/PNPM.2001.953356
http://dx.doi.org/10.1109/TKDE.2004.65
http://dx.doi.org/10.1109/PRDC.2006.50

Performance Study of a Distributed Web Server: An Analytical Approach

Copyright © 2012 SciRes. JSEA

863

Perceived Availability Evaluation of a Web Based Travel
Agency,” Proceedings of the 2003 International Confer-
ence on Dependable Systems and Networks (DSN’03),
22-25 June 2003, pp. 709-718.
doi:10.1109/DSN.2003.1209986

[27] M. Merzbacher and D. Patterson, “Measuring End User
Availability on the Web: Practical Experience,” Proceed-
ings of the 2002 International Conference on Dependable

Systems and Networks (DSN’02), 2002, pp. 473-477.

[28] Y. Hu, A. Nanda and Q. Yang, “Measurement, Analysis
and Performance Improvement of the Apache Web
Server,” IEEE International Performance, Computing
and Communications Conference (IPCCC’99), 1999, pp.
261-267.

