
J. Software Engineering & Applications, 2010, 3, 1125-1130
doi:10.4236/jsea.2010.312131 Published Online December 2010 (http://www.scirp.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Weighted Multi-Skill Resources Project
Scheduling

Fawaz S. Al-Anzi, Khaled Al-Zamel, Ali Allahverdi

College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait
Email: Fawaz.Alanzi@ku.edu.kw, Alzamelk@eng.kuniv.edu.kw, allahverdi@kuc01.kuniv.edu.kw

Received October 13th, 2010; revised November 12th, 2010; accepted November 16th, 2010.

ABSTRACT

In this paper, we present an extension of the classical Resource Constrained Project Scheduling Problem (RCPSP). We
present a new type of resource constraints in which staff members are involved. We present a new model where staff
members can have several skills with different proficiency, i.e., a staff member is able to perform more than one kind of
activity as well as the time need is complete the task assign depends on the staff individual skill. We call this model the
Weighted-Multi-Skill Project Scheduling Problem (WMSPSP). In our model, an activity has specific skill requirements
that must be satisfied. To solve this problem, we propose a lower bound that uses a linear programming scheme for the
RCPSP.

Keywords: Weighted, Multi-Skill, Software, Project Scheduling, Lower Bound

1. Introduction

The Resource Constrained Project Scheduling Problem
(RCPSP) is a general scheduling problem [1]. It consists
of a set of activities and a set of renewable resources.
Each resource is available in a given constant amount.
Each activity has duration and requires a constant
amount of resource to be processed. Preemption is not
allowed. Activities are related by two sets of constraints:
temporal constraints modeled through precedence con-
straints and resource constraints that state that for each
time period and for each resource, the total demand can-
not exceed the resource capacity. The objective consi-
dered here is the minimization of the makespan (total
duration) of the project. This problem is NP-hard.

Most work about RCPSP considers static problems in
which activities are known in advance and constraints
are fixed. However, every schedule is subject to unex-
pected events (consider for example a new activity to
schedule, or a resource failure—e.g. machine break-
down).When such a situation arises, a new solution, tak-
ing these events into account, is needed in a preferably
short time. Two classical methods used to solve such
problems are: re-computing a new schedule from scratch
each time an event occurs (a quite time consuming tech-
nique) and constructing a partial schedule and complet-
ing it progressively as time goes by (like in on-line sche-

duling problems—this is not compatible with planning
purposes).Constraint Satisfaction Problems (CSP) are
also increasingly used for solving scheduling problems.

The classical resource-constrained project scheduling
problem (RCPSP) continues to be an active area of re-
search attracting in recent years increasing interest from
researchers and practitioners in the search for better solu-
tion procedures [2].

The RCPSP may be stated as follows. A project con-
sists of a set of activities  1, ,V n  where each activ-
ity has to be processed without preemption. The dummy
activities 1 and n represent the beginning and the end of
the project. The duration of an activity j is denoted by dj
where 1 0nd d  . There are K renewable resource
types. The availability of each resource type k in each
time period is Rk units, 1, ,k K  . Each activity j re-
quires rjk units of resource k during each period of its du-
ration where 1 0, 1, ,k nkr r k K    . All parameters are
assumed to be non-negative integer valued. There are
precedence relations of the finish-start type with a zero
parameter value (i.e., FS = 0) defined between the activi-
ties.  i jS P is the set of successors (predecessors) of
activity j. It is assumed that 1 , 2, , ,iP j n   and

, 1, , 1.jn S j n   The objective of the RCPSP is to
find a schedule S of the activities, i.e., a set of starting
times  1 2, , nS S S where 1 0S  and the precedence

Weighted Multi-Skill Resources Project Scheduling

Copyright © 2010 SciRes. JSEA

1126

and resource-constraints are satisfied, in such a way that
the schedule length   nT S s is minimized.

In this paper, we present an extension of the classical
Resource Constrained Project Scheduling Problem
(RCPSP). We present a new type of resource constraints
in which staff members are involved. We present a new
model where staff members can have several skills with
different proficiency, i.e., a staff member is able to per-
form more than one kind of activity as well as the time
need is complete the task assign depends on the staff
individual skill. We call this model the Weighted-Multi-
Skill Project Scheduling Problem (WMSPSP). In our
model, an activity has specific skill requirements that
must be satisfied. To solve this problem we propose a
lower bound that uses a linear programming scheme
proposed for the RCPSP.

It is common in software engineering project to have
several staff that can do several skills. The proficiency of
every individual in each skill may vary. In this paper we
present a Weighted-Multi-Skills Project Scheduling
Problem (WMSPSP). This problem mixes both the Mul-
ti-Skill Project Scheduling Problem MSPSP [3], and the
Multi-Purpose Machine model [4-6].MSPSP is a form of
a Resource Constraint Project Scheduling (RCPSP) that
uses the project description and adds new resource con-
straints inspired by the Multi-Purpose Machine model
[3,7,8].For instance let us consider that resources are
staff members having more than one skill, and that each
activity needs a “given amount” of skill to be performed.
Thus scheduling an activity at time t, requires matching
its skill requirements with the skills of the staff members
that are available at t. Our goal is to minimize the overall
project, duration, i.e., min (Cmax).

The rest of the paper is divided into 5 sections. Section
2 is a formal presentation of the Weighted-Multi-Skill
Project Scheduling Problem. Section 3 presents a case
study of why the Weighted-Multi-Skill Project Schedul-
ing Problem is different form classical Resource Con-
strained Project Scheduling Problem. Section 4 develops
the lower bound of the problem. Finally, Section 5
presents the conclusions.

2. Weighted-Multi Skill Scheduling Problem

Figures 1((a),(b)) present a 4-activities and 4-members
example with a feasible solution. Table 1(a) gives the
processing times of activities along with their skill re-
quirements. Table 1(b) describes staff members in terms
of skills as it used to be given by MSPSP models. Figure
1(a) presents the precedence constraints between activi-
ties. Figure 1(c) shows a feasible solution.

The WMSPSP differs from MSPSP that Table 2(b) is
modified to reflect that proficiency of a staff in certain
skill in contrast with a plain binary value of Yes or No.

This can be very true in real life situation especially with
the escalating need of software engineering skills needs
in the market place. Staff can have different experience
and production rate using new emerging technologies
and CASE tools. Notice that due to the different skills in
the new model, a poor skilled person P1 will need twice
the time as normal skilled P2 to finish a similar task of
the type of Webmaster

In this example, one can see that activity A3 cannot
start at time 2, because it requires 2 programmers, while
the available staff members at this time cannot meet this

Figure 1 (a). Precedence constraints.

 A1-DB A4-DB

 A3-Prog A1-Web

 A3-Prog A2-Prog

 A4-Prog A2-Web

P1

P2

P3

P4

Figure 1 (b). Staff allocation time chart according to Wei-
ghted-Multi-Skill scheduling problem (WMSPSP).

Table 1 (a). Activity definition.

 A1 A2 A3 A4
Processing time 2 5 3 3

Programmer - 1 2 1
DB Designer 1 - - 1
Webmaster 1 1 - -

Table 1 (b). Classical MSPSP person definition.

 P1 P2 P3 P4

Programmer - Yes Yes Yes

DB Designer Yes - - -

Webmaster Yes Yes - Yes

A A

S P

AA

Weighted Multi-Skill Resources Project Scheduling

Copyright © 2010 SciRes. JSEA

1127

Table 1 (c). Proposed WMSPSP person definition.

 P1 P2 P3 P4

Programmer - 1.0 1.0 0.7

DB Designer 1.0 - - -

Webmaster 0.5 1.0 - 0.7

P1

P2

P3

P4

P5

P6

P7

 A1-DB A4-DB

 A1-Web

 A4-Prog A2-Prog

 A2-Web

A3-Prog

 A3-Prog

Figure 1 (c). Staff allocation time chart according to
Weighted-Multi-Skill scheduling problem (WMSPSP) for
Table 1(b).

skill requirement (P1 is not a programmer).

This model is an extension of the classical RCPSP: if
we assume that all members only have one skill with
equal proficiency, we get classical resource constraints.
This model can also be seen as a specific case of the
Multi-Mode RCPSP [9]. The main reason to justify this
new model is the huge number of modes (more than two
hundred feasible modes for a medium size project) that
would be necessary instance, consider activity A2 of the
example presented in Tables 1(a), 1(b) and 1(c). This
activity requires a Programmer (who can be P2, P3, P4)
and a Webmaster (who can be P1, P2, P4). If we use a
Multi Mode model in which persons are considered as
resources, there are six valid modes for A3: {(P1, P2), (P2,
P4), (P3, P1), (P3, P2), (P3, P4)}. In the WMSPSP the
processing time for the activity depends on the resource
assignments change from a mode to another. Therefore, a
decision maker that has to build a schedule should select
the best modes for the project.

Let us present WMSPSP notations:
  1, , nA A : the set of activities to be processed

without preemption.
 Ti: the processing time of Ai.
  , ,G V E d : the precedence graph in which there

is a node (i) associated to each activity Ai. A start-
ing dummy activity (s) and an ending dummy ac-
tivity (p) are added.  ,i j E if there is a prece-
dence constraints between Ai and Aj, in that case dij
which is the valuation of  ,i j E , is equal to Pi.

  1, , KS S : the set of skills.
  1, , MP P : set of staff members.
 , 0m kS  if person Pm has the skill Sk and 0, other-

wise,  1, , 0mkk
m M S   indicates that

a person has at least one skill.
 bi,k: the number of normal skill persons with the

skill Sk, needed to perform activity Ai,
 ri: the release date of Ai is the longest path in G

from the starting dummy activity (s) to the end of
node (i).

 qi: the tail of Ai is the longest path in G from the
end of node (i) to the ending dummy activity (p),
minus the processing time of Ai.

After this presentation of the Multi-Skill Project Sche-
duling Problem, we present a lower bound for this prob-
lem.

3. A Case Study

We will use the same example used in this paper but with
different skill matrices for single and multi skill cases to
show that solutions will yield different strategies or op-
timal schedule in each of the two cases.

Back to the activities definition table which shows
constrains whether the required time or the skills needed
to finish each activity.

The following table is the original table which has
seven skills as total so Table 2(b) will be equivalent to
Table 1(b) regarding the available resources.

The following table shows the weight of the skill for
each person and applying the same concept to Table 2(b),
we will get Table 1(c).

Table 2 (a). Activity definition for MSPSP.

 A1 A2 A3 A4
Processing time 2 5 3 3

Programmer - 1 2 1

DB Designer 1 - - 1

Webmaster 1 1 - -

Table 2 (b). Classical MSPSP person definition.

 P1 P2 P3 P4 P5 P6 P7

Programmer - Yes Yes Yes

DB Designer Yes - - -

Webmaster Yes - Yes Yes

Weighted Multi-Skill Resources Project Scheduling

Copyright © 2010 SciRes. JSEA

1128

Table 2 (c). Proposed WMSPSP Person Definition.

 P1 P2 P3 P4 P5 P6 P7

Programmer - 1.0 1.0 0.5

DB Designer 1.0 - - -

Webmaster 1.0 - 0.7 1.0

Notice that one of the available resources is not being

utilized at all and we face another if we put the total cost
in our consideration.

4. A Lower Bound for WMSPSP

In the resource constrained project scheduling problem
(RCPSP), non-preemptive activities requiring renewable
resources, and subject to precedence constraints, have to
be scheduled in order to minimize the makespan. RCPSP
has been proved to be NP-hard. Thus a large amount of
work has been devoted to the computation of lower
bounds (LBs). Some of them are based on linear pro-
gramming. Others relax the non-preemption constraint
and associate a variable with each subset of activities that
can be processed simultaneously without violating either
resource or precedence constraints. So they take into
account explicitly the resource requirements of activities.
Consequently the linear program can be very large, but it
can be tackled, either by column generation, or by solv-
ing heuristically a relaxation to a weighted node packing
problem. Other bounds are based on the cumulative
scheduling problem (CuSP), which is an extension of the
m-machine problem where the resource requirements of
activities can be larger than 1. A CuSP is obtained by
choosing a resource and relaxing the constraints due to
other resources.

The method used nowadays [10] to generate instances
is a random procedure that guaranties that a specific cha-
racteristic has a specified value, so it is possible to gen-
erate several random instances diverse in the considered
characteristics. This method does not give any clue about
the optimal solution. Because the RCPSP is a NP-hard
problem, there is no algorithm available today to calcu-
late the optimal solution, unless the instance is small
enough or is easy enough to solve. Having optimal solu-
tions can be useful also for the study of the complexity of
the instances. Without the optimal solution any indicator
of the complexity of the instance will be inexact. There is
no method for RCPSP that allows the generation of an
instance with known optimal solution, for any instance
size, and applicable in any network.

In [11], several approximation algorithms for the
RCPSP are compared in the same machines, with equal
time limits and an instance set including large instances.
A priority rule is based on ranking the activities accord-
ing to a criterion, and then building a schedule by giving

priority to activities with a higher ranking over the activ-
ities with a lower ranking, but without violating prece-
dence and resource restrictions. It is a simple technique
for obtaining solutions, since the only thing required is to
calculate a value for each activity.

The best result of the priority rules will be the first
Upper Bound and the start point for the approximation
algorithms, and only the improve made over this value
will count for the performance of the algorithm in our
new performance indicator. The priority rules used are:
Latest Start Time (LST);

Latest Finish Time (LFT); Shortest Processing Time
(SPT); Greatest Rank Positional Weight (GRPW); Most
Total Successors (MTS); Most Total Successors Pro-
cessing Time (MTSPT). The first two rules use the latest
start and finish time calculated in the CPM, and the logic
is the same, schedule first the activities that must start
immediately or the project will be delayed.

The use of Lower Bound is also important, because an
approximated algorithm only know that it has an optimal
solution when it obtains a solution with equal value of
the Lower Bound. Having a good Lower Bound avoids
losing time searching for a better solution when the op-
timal solution was already found.

A simple instance is an instance that the optimal value
can be obtained with only a simple priority rule. The
implementation of the test is simple, calculates the Low-
er and Upper Bounds, and if they are equal, then the in-
stance is simple. Next all the simple problems found in
the instance set should be removed.

A good performance indicator is essential to interpret
the results. Normally the mean percentage over the Up-
per or Lower Bound is used. If the optimal value is
available, it is normally used, but for large instances
normally there is no known optimal value. The problem
with these indicators is that a meta-heuristic that does
nothing, is classified, and there is no notion of the worst
value that can be archived. Suppose that all meta-
heuristics results are between 10 and 11 for an instance
problem, and in other instance the meta-heuristics are all
between 10 and 15. The result will penalise for the worst
meta-heuristic in the first instance 10% ((11-10)/10), and
in the second instance 50% ((15-10)/10). We think that
all instances must value the same. The proposed perfor-
mance indicator assigns the same weight to each prob-
lem, and does not consider problems where all algo-
rithms archive the same result. The indicator formula is
the following:

     
1

Performance 1 /
N

i i i i
i

N R V R UB


  

In this formula Ri is the value of the starting solution
(initial Upper Bound), Vi is the value of the solution ob-

Weighted Multi-Skill Resources Project Scheduling

Copyright © 2010 SciRes. JSEA

1129

tained for the meta-heuristic, and UBi is the best value
obtained for this problem with all meta-heuristics.

In [12], the authors have classified the multitude of
heuristic procedures for the RCPSP with respect to their
building blocks such as e.g. schedule generation scheme
(SGS), meta-heuristic strategy, and solution representa-
tion. They have also tested the heuristics on three sets of
benchmark instances from the PSPLIB library.

They also summarize recent heuristics from the litera-
ture. The approaches are grouped into priority rule-based
X-pass methods; classical meta-heuristics namely genetic
algorithms, tabu search, simulated annealing, and ant
systems; non-standard meta-heuristics such as local
search and population-based methods; and other heuris-
tics like Forward–backward improvement (FBI).

They employ the three test sets which consist of 30, 60,
and 120 activities, respectively. Each set has been gener-
ated using a full factorial design of parameters which
determines the characteristics of the resource and prece-
dence constraints. In total, they have 480 instances with
30 activities, 480 instances with 60 activities, and 600
instances with 120 activities. The instances have been
used by many researchers, and they are available from
the project scheduling library PSPLIB in the internet.

For the above reasons, it is important to develop ac-
ceptable lower bounds for NP-hard problem. In this sec-
tion we present a lower bound for WMSPSP. Let’s not
forget that computing lower bounds for the WMSPSP is
a challenging problem. Lower bounds are useful, first to
prove the efficiency of heuristics, and eventually to be
used in branch-and-bound methods. The lower bound
that we propose is destructive [13] in the sense that it is
used to determine if a given number LB is a valid lower
bound for the project duration. Once LB is fixed, a dead-
line di, is associated to each activity (i id LB q ).

The linear bound that we present is an adaptation of a
linear programming scheme proposed by Carlier and
Neron [14] for the RCPSP and MSPSP proposed by Ne-
ron [3], which is based on time-horizon decomposition
into successive intervals. The first step is the computa-
tion of time-intervals. We assume that release dates (ri)
and deadlines (di) have been computed according to the
precedence constraints and a given integer LB. Let

   1 1 2, , , ,i i i L IR U r d t t t    . We assume that R is
sorted in a non-decreasing order and that all time points
are different. Let:
    1 1 1 11 1 , ,L e t t    . L denotes the number

of consecutive time intervals that must be taken
into account. e1 is the 1-th interval and t1 is the
starting point of time-interval e1.

    1 1 , 1L i I     , xi,l is the absolute part of
Ai performed during e1. xi,l are variables for our li-
near program,

      1 1 , 1 , 1L m M k K        . 1
,km

the time a person Pm spent during e1 performing

skill .kS 1
,m k are variables for our linear program.

The first constraint (1) implies that the parts of activi-
ties are positive:

    , 11 , 1 1 , 0ii I L X      (1)

The second constraint (2) ensures that the activities are
completely performed:

,1
1

,
L

i i
I

i I x T


   (2)

Constraints (3)-(5) are used to model that an activity
must be performed within its time-window. Moreover,
for each interval, the part of the activity performed dur-
ing this interval must not be larger than the size of the
interval itself. Notice that (4) and (5) are linear con-
straints since ri, di and t1 are known beforehand (they are
data in our linear programming formulation)

 1 1 , ,L i I    xi,1  t1+1 – t1 (3)

 , 1 1 ,i I L     if di  t1 then xi,1 = 0 (4)

 , 1 1 ,i I L     if ri  t1+1 then xi,1 = 0 (5)

The following four Equations (6-9) are used to model
the resource constraints. Skill requirements of activities
must be met for each interval (6). A time interval being
given, a staff member cannot work longer than the size of
this time-interval (7). A staff member can perform a given
skill only if he has it (8). Total time spent on tasks must
meet the task requirements (9).

   1 , 1k K l L     1
,1 , ,

1

.
M

i i k m ki I
m

x b 




  (6)

   1 , 1l L m M     1
, 1 1 1

1

K

m k
k

t t 


  (7)

     1 , 1 , 1 ,l L m M k K       

 1
, , 1 1 1.m k m kS t t   (8)

 1 ,k K   1
, ,

1 1 1

L M n

m k i k
l m i

b
  

  (9)

Remember that deadlines are computed according to
LB and the precedence graph. Then if there is no solution,
there is at least one non-valid deadline, thus there is no
solution with a makespan equal to LB.

5. Conclusions

In this paper, an extension of the classical Resource Con-
strained Project Scheduling Problem (RCPSP) was pre-

Weighted Multi-Skill Resources Project Scheduling

Copyright © 2010 SciRes. JSEA

1130

sented. It is a new type of resource constraints in which
staff members are involved where staff members can
have several skills with different proficiency, i.e., a staff
member is able to perform more than one kind of activity
as well as the time need is complete the task assign de-
pends on the staff individual skill. We call this model the
Weighted-Multi-Skill Project Scheduling Problem
(WMSPSP). In this model, an activity has specific skill
requirements that must be satisfied. We proposed a lower
bound that uses a linear programming scheme for the
classical RCPSP.

6. Acknowledgements

This Research is sponsored by Kuwait university Re-
search Administration project number EO 01/07.

REFERENCES
[1] A. Elkhyari, C. Gueret and N. Jussien, “Solving Dynamic

RCPSP Using Explanation-Based Constraint Programm-
ing,” http://www.emn.fr/jussien/publications/elkhyari-
MAPSP03.pdf

[2] V. Valls, F. Ballestín and S. Quintanilla, “Justification
and RCPSP: A Technique That Pays,” European Journal
of Operational Research, Vol. 165, No. 2, September
2005, pp. 375-386. doi:10.1016/j.ejor.2004.04.008

[3] E. Neron, “Lower Bounds for the Multi-Skill Project
Scheduling Problem,” Proceeding of the Eighth Inter-
national Workshop on Project Management and Sche-
duling, Spain, 2002, pp. 274-277.

[4] P. Baptiste, C. Le Pape and W. Nuijten, “Satisfiability
Tests and Time Bound Adjustments for Cumulative
Scheduling Problems,” Annals of Operation Research,
Vol. 92, No. 0, 1999, pp. 305-333 doi:10.1023/A:
1018995000688

[5] S. Dauzere-Peres, W. Roux and J. B. Lassere, “Multi-
Resource Shop Scheduling with Resource Flexibility,”
European Journal of Operational Research, Vol. 107, No.
2, June 1998, pp. 289-305. doi:10.1016/S0377-2217(97)

00341-X

[6] B. Jurish, “Scheduling Jobs in Shops with Multi-Purpose
Machines,” Ph.D. Dissertation, University of Osnabrück,
Osnabrück, 1992.

[7] R. Kolisch, “Serial and Parallel Resource-Constrained
Project Scheduling Methods Revisited: Theory and
Computation,” European Journal of Operational Re-
search, Vol. 90, No. 2, April 1996, pp. 320-322. doi:
10.1016/0377-2217(95)00357-6

[8] E. Neron, P. Baptiste and J. N. D. Gupta, “Solving
Hybrid Flow Shop Problem Using Energetic Reasoning
and Global Operations,” Omega, Vol. 29, No. 6,
December 2001, pp. 501-511. doi:10.1016/S0305-0483
(01)00040-8

[9] A. Sprecher, “Resource-Constrained Project Scheduling,
Exacts Methods for the MultiMode Case,” Lectures
Notes in Economics and Mathematical Systems, Springer
Verlag, Berlin, 1994.

[10] J. S. Coelho, “Generating RCPSP Instances with Known
Optimal Solutions,” Proceedings of PMS, 2004

[11] J. S. Coelho and L. V. Tavares, “Comparative Analysis
on Approximation Algorithms for the Resource Con-
strained Project Scheduling Problem,” PMS2002, Eighth
International Workshop on Project Management

[12] R. Kolisch and S. Hartmann, “Experimental Investigation
of Heuristics for Resource-Constrained Project Sche-
duling: An Update,” European Journal of Operational
Research, Vol. 174, No. 1, October 2006, pp. 23-37.
doi:10.1016/j.ejor.2005.01.065

[13] R. Klein, A. Scholl, “Computing Lower Bounds by
Destructive Improvement: An Application to Resource-
Constrained Project Scheduling,” European Journal of
Operational Research, Vol. 112, No. 2, January 1999, pp.
332-346. doi:10.1016/S0377-2217(97)00442-6

[14] J. Carlier and E. Neron, “On Linear Lower Bound for the
Resource Constrained Project Scheduling Problem,”
European Journal of Operational Research, Vol. 149, No.
2, September 2003, pp. 314-324. doi:10.1016/S0377-
2217(02)00763-4

