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ABSTRACT 
Traffic information is so far less than the number of OD variables, that it is difficult to obtain the satisfactory solution. 
In this paper, a method based on Quantum behaved Particle Swarm Optimization (QPSO) algorithm is developed to 
obtain the global optimal solution. It designs the method based on QPSO algorithm to solve the OD matrix prediction 
model, lists the detailed steps and points out how to choose the PSO operator. Moreover, it uses MATLAB program-
ming language to carry out the simulation test. The simulation results show that the method has higher efficiency and 
accuracy. 
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1. Introduction 
The traffic between import and export at the intersection 
is an important data for urban traffic management and 
control, and also impacts on the control of traffic lights at 
the intersection directly. Therefore, how to obtain accu-
rate intersection OD and avoid the time-delay of control 
and decision-making system are very important issues. As 
the OD matrix calculation based on traffic has advantages, 
such as convenience, rapidness, low-cost, effectiveness, it 
has been more and more used in transport planning re-
cently. However, when the number of surveyed sections 
is less than the number of OD variables, the solution of 
OD matrix calculation will be non-unique and cannot 
guarantee the accuracy [1]. Moreover, the objective func-
tion and fitness function of OD matrix calculation are 
mostly nonlinear equations. In light of the above issues, 
taking the reality situation that observation error and ran-
dom error exist into account, the relationship between OD 
traffic and road traffic is not absolute linear. Although 
through rigorous mathematical methods, it cannot get an 
exact solution to the problem. 

In pursuit of finding solution to these problems many 
researchers have been drawing ideas from the field of 
biology. A host of such biologically inspired evolutionary 
techniques have been developed namely Genetic Algo-
rithm (GA) ([Baykasoğlu et al., 2008], [Costa et al., 2004], 

[Grosset et al., 2001], [Gürdal Soremekun et al., 2001], 
[Le Riche and Haftka, 1993], [Park et al., 2001], [Rajen-
dran and Vijayarangan, 2001] and [Walker and Smith, 
2003]), Artificial Neural Networks (ANN) (Garg, Roy 
Mahapatra, Suresh, Gopalakrishna & Omkar, 2007), Arti-
ficial Immune System (AIS) (Omkar, Khandelwal, San-
thosh Yathindra, Narayana Naik & Gopalakrishna, 2008) 
and Particle Swarm Optimization (PSO) (Omkar, Mud- 
igere, Narayana Naik & Gopalakrishna, 2008; Parsopou-
los, Tasoulis & Vrahatis, 2004) which are widely used for 
solving such optimization problems. All of these algo-
rithms with their stochastic means are well equipped to 
handle such problems [2]. 

Particle Swarm Optimization was introduced by Eber-
hart and Kennedy [3], inspired by the social behavior of 
animals such as bird flocking, fish schooling, and the 
swarm theory. Compared with GA and other similar evo-
lutionary techniques, PSO has some attractive characteris-
tics and in many cases proved to be more effective (Has-
san, Cohanim, Weck & Venter, 2005). Both GA and PSO 
have been used extensively for a variety of optimization 
problems and in most of these cases PSO has been proven 
to have superior computational efficiency ([Hassan et al., 
2005] and [Sun, 2008]; Zhang et al., 2003 L. B. Zhang, C. 
G. Zhou, X. H. Liu, Z. Q. Ma, M. Ma & Y. C. Liang 
(2003) solved multi-objective optimization problems us-
ing particle swarm optimization in Proceedings of the 
IEEE congress on evolutionary computation (CEC). Since 
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1995, many attempts have been made to improve the per-
formance of the PSO (Clerc, 2004; Zheng, Ma, & Zhang, 
2003). (Sun et al., 2004) and (Sun and Xu et al., 2004) 
introduced quantum theory into PSO and proposed a 
Quantum-behaved PSO (QPSO) algorithm, which are 
guaranteed theoretically to find good optimal solutions in 
search of space. The experiment results on some widely 
used benchmark functions show that the QPSO works 
better than standard PSO ([Sun et al., 2004] and [Sun and 
Xu et al., 2004]) and is a promising algorithm. Hence in 
the current work we propose to employ a multi objective 
optimization method based on QPSO and compare it to its 
predecessor PSO, which has been already implemented 
by Omkar and Mudigere et al. (2008) [2]. 

This paper firstly establishes maximum entropy OD 
matrix calculation model. It makes full use of the quan-
tum behaved particle swarm optimization algorithm 
(QPSO algorithm) to solve the global optimization of the 
objective function, lists the detailed steps of calculation 
and shows how to choose the particle swarm operator, 
and then calculates the OD matrix of road intersection. 
Finally, compared to the results of conventional PSO al-
gorithm, it verifies the superiority of QPSO algorithm. 
Therefore, this paper provides a more reliable method to 
solve the OD matrix of road intersection. 

2. Origin—Destination Matrix Prediction 
Model 

2.1 Maximum Entropy Model 
The maximum entropy approach is motivated by ‘infor-
mation theory’ and the work of Shannon, 1948. C. E. 
Shannon, A mathematical theory of communication. Bell 
Syst. Tech. J. (1948), pp. 379–423. Shannon (1948) who 
defined a function to measure the uncertainty, or entropy, 
of a collection of events, and Jaynes who proposed 
maximizing that function subject to appropriate consis-
tency relations, such as moment conditions. The maxi-
mum entropy (ME) principle and its sister formulation, 
minimum cross-entropy (CE), are now used in a wide 
variety of fields to estimate and make inferences when 
information is incomplete, highly scattered, and/or incon-
sistent (Kapur and Kesavan, 1992). In economics, the ME 
principle has been successfully applied to a range of 
econometric problems, including nonlinear problems, 
where limited data and/or computational complexity hin-
der traditional estimation approaches. Theil (1967) pro-
vides an early investigation of information theory in eco-
nomics. Mittelhammer et al. (2000) provide a recent text 
book treatment which is focused more tightly on the ME 
principle and its relationships with more traditional esti-
mation criteria such as maximum likelihood [4]. 

In general, information in an estimation problem using 
the entropy principle comes in two forms: 1) information 
(theoretical or empirical) about the system that imposes 
constraints on the values that the various parameters can 

take; and 2) prior knowledge of likely parameter values. 
In the first case, the information is applied by specifying 
constraint equations in the estimation procedure. In the 
second, the information is applied by specifying a discrete 
prior distribution and estimating by minimizing the en-
tropy distance between the estimated and prior distribu-
tions — the minimum Cross-Entropy (CE) approach. The 
prior distribution does not have to be symmetric and 
weights on each point in the prior distribution can vary. If 
the weights in the prior distribution are equal (e.g. the 
prior distribution is uniform), then the CE and ME ap-
proaches are equivalent. 

The model is as follows: 

( )max ln ln
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Where n is the number of OD pairs; ijT is the estimated 
OD matrix; kV is the detected traffic on section k; k

ijp is 
the distribution ratio of ijT on section k, which is obtained 
by the traffic distribution. 

2.2 Hopfield Neural Network Model 
The Hopfield Neural Network model [4] is 
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Here in Equation (5), ijT is the connection weight value 
between node I  and node J , and ij jiT T= ; ( )g ⋅ . is a 

function with ( ) 0g′ ⋅ > ; iU  is the input of node I; iV  
is the output of node I ; iI  is the constant value of node 
I ; C  is a positive constant; and R is a positive constant. 

Equation (5) can be abbreviated to be 
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It can be proved that when the energy function of sys-
tem (6) is 

1 1 1
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We can have 0dE
dt

≤ , and only when 0idV dt = , 
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0dE dt = , ( )1,2, ,i N= K . 
The stable state of system (6) is the local minimum of 

the above energy function. The computation processor 
of system (6) is a process to find the local minimum in 
fact, the goal function is the above energy function of 
system (6). 

Maximum entropy model is recognized by majority of 
scholars among many OD matrix calculation models, be-
cause this model’s structure is simple and principle is 
clear. It also suits the situation without a priori OD matrix 
and which is a congested network [5]. 

2.3 Model Simplification 
In light of above optimization problems, it is difficult to 
solve the objective function directly. So Lagrange multi-
plier method is used to obtain the Lagrange function L: 

1 1 1 1 1
(ln ln ) ( )

n n m n n
k

ij ij k k ij ij
i j k i j

L T T T V T Pλ
= = = = =

= − − + −∑∑ ∑ ∑∑  (7) 

The following Equation is the result of the first-Order 
derivative of ijT  

1
ln 0

m
ij k

k ij
kij

TL P
T T

λ
=

∂
= − − =

∂ ∑           (8) 

So, 

1
exp( )

m
k

ij k ij
k

T T Pλ
=

= −∑               (9) 

T is given as 0exp( )T λ= − and take it into the Equa-
tions (7) and (9) respectively. The results are as follows: 
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Above equations are a set of nonlinear equations. The 
number of variables is (m+1) which is equivalent to the 
number of equations. Lagrange multipliers: 0 1, mλ λ λLL  
can be solved. And then the OD matrix can be obtained 
according to Equation (9). 

3. Design of the Quantum Behaved Particle 
Swarm Optimization Algorithm 

3.1 Particle Swarm Optimization Algorithm 
Particle Swarm Optimization algorithm is a global opti-
mization algorithm that can reproduce swarm intelligence. 
It is inspired from the foraging behavior of animal groups. 
When groups search for the optimal target, each individ-
ual searches for its own goal. At the same time, individual 
refers to other individuals who have achieved optimal 
location and then adjusts the next search. The algorithm 

uses the speed-location search model. The current loca-
tion of No.i particle is defined as iX = 1 2( , ,... )i i idx x x , 
experienced position is defined as iP＝ 1 2( , ,... )i i idp p p . 
Fitness function determines the level of merits of the lo-
cation, while fitness function is determined by the opti-
mization goal. Where, the individual particle best position 
is abbreviated as pbest , and the best location that all par-
ticles have experienced is regarded as global best location 
( gbest ). The speed of No. i particle is defined as 

1 2( , ,... )i i i idV v v v= that is the distance each iterative parti-
cle moves. The Equations of conventional PSO algorithm 
are described as follows: 

1 1 1 2 2( ) ( )i i i iv v r pbest x r gbest xφ φ+ = + ⋅ ⋅ − + ⋅ ⋅ −  (11) 

1 1i i ix x v+ += +                             (12) 

3.2 Quantum Behaved Particle Swarm 
Optimization Algorithm 

Particle Swarm Optimization algorithm is based on the 
theory of swarm intelligence optimization algorithm. As 
in the classical system, particles achieve convergence in 
the form of orbit. Moreover, the speed of particles is lim-
ited, and the space of particles is also a limited region that 
can not cover the entire feasible space. Therefore, with 
the quantum mechanics’ point of view that particles have 
quantum behavior, QPSO (Quantum Particle Swarm Op-
timization) algorithm is proposed [3,7–8]. Particle swarm 
achieves iterative update through the following four 
Equations: 
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(16) 
In order to avoid algorithm premature, Mean Best Posi-

tion (mbest) is regarded as the barycenter of all particles. 
Where, ipbest  is the best position of the particle. β  is 
the contraction and expansion coefficient that impacts the 
convergence speed and performance of algorithm. In this 
paper, deal with β  by adaptive changes in accordance 
with Equation (14). T is the number of current iteration. 
Tmax is the maximum number of iterations. 1 2,r r ∈  
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(0,1)rand , gbest  is the global optimal solution, u ∈  
(0,1)rand . 

3.3 Optimal Design of Origin—Destination 
Matrix Calculation Model Algorithm 

Algorithm design, including as follows: 
1) the determination of objective function 
In order to obtain better accuracy, this problem will be 

translated into the following optimization problem. The 
optimizing goal is that minimizes the mean square devia-
tion of the calculated value of the left from the true value 
of the right in Equation (13). That is： 

0
( ) ( )
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Lagrange multipliers 0 1, mλ λ λLL  are unknown. So-
lution space is the range of Lagrange multipliers. Because 
the Lagrange multipliers are not given in this model ex-
plicitly, it is necessary to estimate conservatively accord-
ing to the specific issues and enlarge the range appropri-
ately. 

2) detailed implementation steps are: 
Step1: Initialize particle swarm. 
Step2: Calculate the value of particle objective func-

tion. 
Step3: Update pbest and gbest  according to parti-

cles’ fitness. 
Step4: Calculate mbest according to Equation (13). 
Step5: Calculate random point p of each particle ac-

cording to Equation (15). 
Step6: Calculate new location of each particle accord-

ing to Equation (16). 
Step7: Double counting, until meet the number of itera-

tions. 

3.4 Simulation of a Typical Function Optimization 
Now, QPSO algorithm is illustrated that can be applied to 
the circuit performance equation to solve the global 
minimum feasibility and effectively, by solving the 
Schaffer’s f6 function. The value of the global minimum 
is 0. The Schaffer’s f6 function is: 

2 2 2

2 2 2 2

sin 0.5
( , ) 0.5

(1 0.001 ( ) )
x y

f x y
x y

+ −
= +

+ × +
      (18) 

( 10,10)x ∈ − ; ( 10,10)y ∈ −  

Use QPSO algorithm and PSO algorithm to solve the 

above equation respectively. 
The selected parameters are as follows: Particle number 

is 10; the maximum number of iterations is 1000; the ac-
curacy is set to 1e-25. Figure 1 and Figure 2 show the 
obtained convergence curves. 

As can be seen from Figure 1, when the iteration num-
ber reached 210, the curve tends to converge. Whereas, 
when the iteration number reached 310, the curve of Fig-
ure 2 tends to converge; the solution of QPSO algorithm 
from Figure 1 is 0, while, the solution of PSO algorithm 
from Figure 2 is 0.000114686. Therefore, this example 
shows that the convergence speed and accuracy of QPSO 
algorithm are far better than the PSO algorithm for opti-
mization problems. 

4. Simulation Examples 
4.1 Simulation Results 
This paper uses MATLAB programming language to 
carry out the simulation test. The intersection is shown in 
Figure 3. The traffic of every import is regarded as x1, x2, 
x3, x4 respectively. The traffic of every export is regarded 
as y1, y2, y3, y4 respectively. The traffic at intersection can 
be obtained by the detector. Count the total number of 
observed vehicles from 8:00 a.m. to 8:00 p.m. 

 

 
Figure 1. Convergence curve of QPSO algorithm 

 

 
Figure 2. Convergence curve of PSO algorithm 
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Figure 3. A intersection plot of Tianjin 

 
( )1 2 3 4 1 2 3 4, , , , , , , TV x x x x y y y y=  

( )5321,5069, 4986,5035,5109,5220, 4823,5259 T=  

Traffic distribution matrix is as follows: 

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0

P

 
 
 
 
 
 =  
 
 
 
 
  

 

4.2 Simulation Steps 
1) Determine the solution space 

The value of the OD matrix T can be calculated. It is 
equivalent to the total of all the exports (or imports): 

4 4
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that 0λ = -9.92, according to 0exp( )T λ= − .  
In addition, various components of the OD matrix 
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matrix is 0 or 1, so ( 1, )k k mλ = L  can not be all nega-
tive. There are two situations: The whole elements are 
nonnegative; one part of elements is positive, and the 
other parts are zero or negative. For the situation that the 
whole elements are nonnegative, the value of kλ  should 
be within the range [0,10]. For the second situation, the 
range can not be defined easily. As result of mutual in-
fluence between several unknown quantities, its value 
may be very large or may be very small. Therefore, we 
can obtain that there is a solution set and the values are 
within the range [0,10]. 
2) Determine the conditions of termination 

Set the maximum number of iterations as 300. When 
the average mean square error (MSE) of the objective 
function ( )J λ  is less than 0.1, we regard the obtained 

kλ  (k=0,1… 8) as the approximate optimal solution of 
Equations (10) and terminate iterations. 
3) Determine the number of particles 

The optimal goal is that the objective function (mean 
square error MSE) close to zero as possible. Selected pa-
rameters are as follows: The initial velocity of particles is 
generated randomly; the number of particles is 20. 

The simulation results are as follows: 

4.3 Analysis the Simulation Results 
Compared to the results of conventional PSO algorithm, 
we can see that the results of the conventional PSO algo-
rithm and QPSO algorithm all meet the accuracy re-
quirements (MSE<0.1). However, when the conventional 
PSO algorithm is used to solve individual variables, a 
local optimal solution is obtained that led to a larger ab-
solute error of individual variables. As can be seen from 
Table 1, the absolute error between actual traffic and cal-
culated traffic by QPSO algorithm is too small (≤0.103) to 
meet the accurate requirements fully. Compared to Table 
3, from Table 4 we can see the effect of the OD matrix 
calculation is ideal. 

 
Table 1. Absolute error of calculating road traffic 

Absolute 
Error V0-v0 V1-v1 V2-v2 V3-v3 V4-v4 V5-v5 V6-v6 V7-v7 V8-v8 

QPSO 0.0002 -0.026 0.038 -0.103 0.063 0.025 -0.054 0.019 -0.0237 
PSO 0.0003 -0.042 0.056 -0.120 0.084 0.023 -0.076 0.032 -0.0438 

 
Table 2. Comparison of MSE 

MSE QPSO PSO 

MSE= J（λ） 0.0485 0.0630 

Table 3. Factual OD matrix of intersection 
O        D 1 2 3 4 

1 0 1936 2351 1034 
2 1241 0 1392 2436 
3 1808 1389 0 1789 
4 2060 1895 1080 0 
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Table 4. Calculated OD matrix with QPSO 

O       D 1 2 3 4 

1 0 1936.01 2351.02 1034 
2 1240.99 0 1391.98 2435.99 
3 1808.04 1389.03 0 1789.03 
4 2059.95 1895.01 1079.98 0 

 
5. Conclusions 
This paper calculates the OD matrix calculation model 
using QPSO algorithm, and determines the fitness func-
tion, according to the maximum entropy model. We use 
this model to simplify the linear constraints between the 
traffic and the OD matrix, and solve the optimal solution 
of nonlinear equation using QPSO algorithm. It can be 
seen from the above simulation that OD matrix calcula-
tion proposed in this paper is effective. It proves that ap-
plication QPSO algorithm in the field of OD matrix cal-
culation is feasible. It can considerably reduce the itera-
tive number that objective function can reach conver-
gence. Moreover, QPSO algorithm can improve the accu-
racy of the calculation and solve the problem of no con-
vergent and insufficient accuracy. We will further study 
on how to apply QPSO algorithm in OD matrix calcula-
tion of a large and complex network. 
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