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ABSTRACT

Traffic information is so far less than the number of OD variables, that it is difficult to obtain the satisfactory solution.
In this paper, a method based on Quantum behaved Particle Swarm Optimization (QPSO) algorithm is developed to
obtain the global optimal solution. It designs the method based on QPSO algorithm to solve the OD matrix prediction
model, ligts the detailed steps and points out how to choose the PSO operator. Moreover, it uses MATLAB program-
ming language to carry out the simulation test. The simulation results show that the method has higher efficiency and

accuracy.
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1. Introduction

The traffic between import and export at the intersection
is an important data for urban traffic management and
control, and aso impacts on the contral of traffic lights at
the intersection directly. Therefore, how to obtain accu-
rate intersection OD and avoid the time-dday of control
and decision-making system are very important issues. As
the OD matrix calculation based on traffic has advantages,
such as convenience, rapidness, low-cost, effectiveness, it
has been more and more used in transport planning re-
cently. However, when the number of surveyed sections
is less than the number of OD variables, the solution of
OD matrix caculation will be non-unique and cannct
guarantee the accuracy [1]. Moreover, the objective func-
tion and fitness function of OD matrix calculation are
mostly nonlinear equations. In light of the above issues,
taking the reality situation that observation error and ran-
dom error exist into account, the rd ationship between OD
traffic and road traffic is not absolute linear. Although
through rigorous mathematical methods, it cannot get an
exact solution to the problem.

In pursuit of finding solution to these problems many
researchers have been drawing ideas from the field of
biology. A host of such biologically inspired evolutionary
techniques have been developed namely Genetic Algo-
rithm (GA) ([Baykasoglu et a., 2008], [Costa et al., 2004],
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[Grosset et d., 2001], [Giirdal Soremekun et al., 2001],
[Le Riche and Haftka, 1993], [Park et al., 2001], [Rajen-
dran and Vijayarangan, 2001] and [Walker and Smith,
2003]), Artificial Neural Networks (ANN) (Garg, Roy
Mahapatra, Suresh, Gopalakrishna & Omkar, 2007), Arti-
ficid Immune System (AlS) (Omkar, Khandelwal, San-
thosh Yathindra, Narayana Naik & Gopalakrishna, 2008)
and Particle Swarm Optimization (PSO) (Omkar, Mud-
igere, Narayana Naik & Gopalakrishna, 2008; Parsopou-
los, Tasoulis & Vrahatis, 2004) which are widely used for
solving such optimization problems. All of these ago-
rithms with their sochastic means are well equipped to
handle such problems|[2].

Particle Swarm Optimization was introduced by Eber-
hart and Kennedy [3], inspired by the socia behavior of
animals such as hird flocking, fish schooling, and the
swarm theory. Compared with GA and other similar evo-
[utionary techniques, PSO has some attractive characteris-
tics and in many cases proved to be more effective (Has-
san, Cohanim, Weck & Venter, 2005). Both GA and PSO
have been used extensively for a variety of optimization
problems and in most of these cases PSO has been proven
to have superior computational efficiency ([Hassan et al.,
2005] and [Sun, 2008]; Zhang et al., 2003 L. B. Zhang, C.
G. Zhou, X. H. Liuy, Z. Q. Ma, M. Ma & Y. C. Liang
(2003) solved multi-objective optimization problems us-
ing particle swarm optimization in Proceedings of the
| EEE congress on evol utionary computation (CEC). Since
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1995, many attempts have been made to improve the per-
formance of the PSO (Clerc, 2004; Zheng, Ma, & Zhang,
2003). (Sun et d., 2004) and (Sun and Xu et d., 2004)
introduced quantum theory into PSO and proposed a
Quantum-behaved PSO (QPSO) agorithm, which are
guaranteed theoretically to find good optima solutions in
search of space. The experiment results on some widely
used benchmark functions show that the QPSO works
better than standard PSO ([Sun et a., 2004] and [Sun and
Xu ¢ al., 2004]) and is a promising algorithm. Hence in
the current work we propose to employ a multi objective
optimization method based on QPSO and compareit to its
predecessor PSO, which has been aready implemented
by Omkar and Mudigere et a. (2008) [2].

This paper firdly establishes maximum entropy OD
matrix calculation modd. It makes full use of the quan-
tum behaved particle swarm optimization algorithm
(QPSO agorithm) to solve the global optimization of the
objective function, lists the detailed steps of calculation
and shows how to choose the particle swarm operator,
and then caculates the OD matrix of road intersection.
Finally, compared to the results of conventional PSO al-
gorithm, it verifies the superiority of QPSO dgorithm.
Therefore, this paper provides a more reliable method to
solve the OD matrix of road intersection.

2. Origin—Destination M atrix Prediction
M odel

2.1 Maximum Entropy Model

The maximum entropy approach is motivated by ‘infor-
mation theory’ and the work of Shannon, 1948. C. E.
Shannon, A mathematical theory of communication. Bell
Syst. Tech. J. (1948), pp. 379-423. Shannon (1948) who
defined a function to measure the uncertainty, or entropy,
of a collection of events, and Jaynes who proposed
maximizing that function subject to appropriate conss-
tency relations, such as moment conditions. The maxi-
mum entropy (ME) principle and its sister formulation,
minimum cross-entropy (CE), are now used in a wide
variety of fiedds to etimate and make inferences when
information is incomplete, highly scattered, and/or incon-
sistent (Kapur and Kesavan, 1992). In economics, the ME
principle has been successfully applied to a range of
econometric problems, including nonlinear problems,
where limited data and/or computational complexity hin-
der traditional estimation approaches. Thell (1967) pro-
vides an early investigation of information theory in eco-
nomics. Mittelhammer et al. (2000) provide a recent text
book treatment which is focused more tightly on the ME
principle and its relationships with more traditional esti-
mation criteria such as maximum likelihood [4].

In general, information in an estimation problem using
the entropy principle comes in two forms: 1) information
(theoretical or empirical) about the system that imposes
congtraints on the values that the various parameters can
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take; and 2) prior knowledge of likely parameter values.
In the firg case, the information is applied by specifying
congtraint equations in the estimation procedure. In the
second, the information is applied by specifying a discrete
prior distribution and estimating by minimizing the en-
tropy distance between the estimated and prior distribu-
tions — the minimum Cross-Entropy (CE) approach. The
prior digtribution does not have to be symmetric and
weights on each point in the prior digtribution can vary. If
the weights in the prior digtribution are equa (eg. the
prior digribution is uniform), then the CE and ME ap-
proaches are equivalent.
The modd isasfollows:
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Wheren isthe number of OD pairs;, Ti isthe estimated
OD matrix; V, is the detected traffic on section k; p; is
the distribution ratio of T, on section k, which is obtained
by thetraffic dlstrlbut|on.

2.2 Hopfield Neur al Network M odel
The Hopfield Neural Network model [4] is
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dt a Vi

i
T
I
[vi=g(u).i —:LZ,K,N.

U.
:-—'+|

©)

Herein Equation (5), T; is the connection weight value
andnode J,and T, =T,; g(¥.isa
function with g¢{¥>0; U, istheinput of node I; V,
isthe output of node | ; I, isthe constant value of node
| ; C isapositive congant; and Risapositive constant.
Equation (5) can be abbreviated to be
by
bt a i 6)
IV = g(u)i 120N,
It can be proved that when the energy function of sys-
tem (6) is

between node |

We can have dEgo, and only when dV,/dt=0
dt
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dE/dt =0, (i=12K,N).

The stable state of system (6) isthe local minimum of
the above energy function. The computation processor
of system (6) is a process to find the local minimum in
fact, the goal function is the above energy function of
system (6).

Maximum entropy model is recognized by majority of
scholars among many OD matrix calculation models, be-
cause this model’s structure is smple and principle is
clear. It dso suitsthe situation without a priori OD matrix
and which is a congested network [5].

2.3 Mode Simplification

In light of above optimization problems, it is difficult to
solve the objective function directly. So Lagrange multi-
plier method is used to obtain the Lagrangefunction L:
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The followmg Equation is the reault of the firs-Order
derivativeof T;
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Tis given asT =exp(- | o) and take it into the Equa-
tions (7) and (9) respectively. Theresultsare asfollows:
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Above equations are a set of nonlinear equations. The
number of variables is (m+1) which is equivaent to the
number of equations. Lagrange multipliers: 1,1, LLI
can be solved. And then the OD matrix can be obtained
according to Equation (9).

3. Design of the Quantum Behaved Particle
Swarm Optimization Algorithm

3.1 Particle Swarm Optimization Algorithm

Particle Swarm Optimization algorithm is a global opti-
mization agorithm that can reproduce swarm intelligence.
It isinspired from the foraging behavior of animal groups.
When groups search for the optimal target, each individ-
ual searchesfor its own goal. At the same time, individual
refers to other individuas who have achieved optimal
location and then adjusts the next search. The algorithm
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uses the speed-location search modd. The current loca-
tion of No.i particle is defined as X, =(X;,%,,--Xq)
experienced position is defined as P, = (P, P,--Py) -
Fitness function determines the level of merits of the lo-
cation, while fitness function is determined by the opti-
mization goal. Where, theindividual particle best position
is abbreviated as pbest , and the best location that al par-
ticles have experienced isregarded as global best location
(gbest) The speed of No. i particle is defined as

= (V. Vi, My ) that is the distance each iterative parti-

cle moves. The Equations of conventional PSO algorithm
are described asfollows:

Vi =V +f1>¢1>(pbe5t' >g)+f2>¢2>(gb$t- )ﬂ) (11)
)g )g+ i+1 (12)

3.2 Quantum Behaved Particle Swarm
Optimization Algorithm

Particle Swarm Optimization agorithm is based on the
theory of swarm intelligence optimization algorithm. As
in the classcal system, particles achieve convergence in
the form of orbit. Moreover, the speed of partidesislim-
ited, and the space of particlesisaso alimited region that
can not cover the entire feasble space. Therefore, with
the quantum mechanics’ point of view that particles have
guantum behavior, QPSO (Quantum Particle Swarm Op-
timization) algorithm is proposed [3,7-8]. Particle swarm
achieves iterative update through the following four
Equations.

M
mbset = g pbest /M

i=1

ga pbest, / M apbest IM Lapbest /M_

=1 i=1

(13)
b_-b_ )xT
b - bmax _ ( max mln)x max (14)
T
p = (r, xpbest +r, xgbest) / (r, +r,) (15)

jp+b’ |mbest- x(t)]" In(l/u) if u<05
X(t+l) =1
fPp- b” [mbest- x(t)|" In@/u) if u® 0.5

(16)
In order to avoid algorithm premature, Mean Best Posi-
tion (mbest) is regarded as the barycenter of al particles.
Where, pbest; isthe best position of the particle. b is
the contraction and expansion coefficient that impacts the
convergence speed and performance of agorithm. In this
paper, deal with b by adaptive changes in accordance
with Equation (14). T is the number of current iteration.
Trac iS the maximum number of iterations r,,r,1

JSEA



Research on OD Matrix Cal culation Based on Quantum Behaved Particle Swarm Optimization Algorithm 347

rand(0,2), gbest is the global optima solution, ul
rand(0,1) .

3.3 Optimal Design of Origin—Destination
Matrix Calculation Model Algorithm

Algorithm design, induding as follows:

1) the determination of objective function

In order to obtain better accuracy, this problem will be
trandated into the following optimization problem. The
optimizing god is that minimizes the mean sguare devia-
tion of the calculated value of the left from the true value
of theright in Equation (13). That is :

éi (\4<' \/L) >(\Q - \/L)

minJ(l ) =4|*=2 17
() — (17)
Where, v, = é. é. Fi)jk exp(- é. Iy ijk) Vo =1

i=1 j=1 k=1

v =aarenl,-alpk) k=l.m
i=1 j=1 k=1

Lagrange multipliers | ,,I, LI  are unknown. So-

Iution spaceisthe range of Lagrange multipliers. Because
the Lagrange multipliers are not given in this model ex-
plicitly, it is necessary to estimate conservatively accord-
ing to the specific issues and enlarge the range appropri-
ately.

2) detailed implementation steps are:

Stepl: Initialize particle swarm.

Step2: Caculate the value of particle objective func-
tion.

Step3: Update pbest and gbest according to parti-
cles’ fitness,

Stepd: Calculate mbest according to Equation (13).

Step5: Calculate random point p of each particle ac-
cording to Equation (15).

Step6: Calculate new location of each particle accord-
ing to Equation (16).

Step7: Double counting, until meet the number of itera-
tions.

3.4 Smulation of a Typical Function Optimization

Now, QPSO algorithm isillustrated that can be applied to
the drcuit performance equation to solve the global
minimum feasbility and effectively, by solving the
Schaffer’s f6 function. The vaue of the global minimum
is0. The Schaffer’sfé functioniis:

sin®{x*+y* - 05
(1+0.001" (x* +y?)%)?
x1 (-10,10) ; yi (-10,10)
Use QPSO dgorithm and PSO agorithm to solve the

f(x,y)=05+

(18)
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above equation respectively.

The sdected parameters are as follows: Particle number
is 10; the maximum number of iterationsis 1000; the ac-
curacy is st to 1e-25. Figure 1 and Figure 2 show the
obtained convergence curves.

As can be seen from Figure 1, when the iteration num-
ber reached 210, the curve tends to converge. Wheress,
when the iteration number reached 310, the curve of Fig-
ure 2 tends to converge; the solution of QPSO algorithm
from Figure 1 is O, while, the solution of PSO algorithm
from Figure 2 is 0.000114686. Therefore, this example
shows that the convergence speed and accuracy of QPSO
algorithm are far better than the PSO agorithm for opti-
mization problems.

4. Simulation Examples

4.1 Simulation Results

This paper uses MATLAB programming language to
carry out the smulation test. The intersection is shown in
Figure 3. Thetraffic of every import isregarded as xy, X»,
X3, X4 respectively. The traffic of every export is regarded
asyi, Yo, Ya, Y4 respectively. Thetraffic at intersection can
be obtained by the detector. Count the total number of
observed vehides from 8:00 am. to 8:00 p.m.

10° \%—&

£ 10
£ 10
o
10"
10"
10"+
10" ‘ :
0 50 100 150 200 250
epoch
Figure 1. Conver gence curve of QPSO algorithm
10"
10"
=
>
- 2
g 10
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10°
10"

0 100 200 300 400 500 600
epoch

Figure 2. Conver gence curve of PSO algorithm
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Figure 3. A intersection plot of Tianjin

V= (X% X X i Yoo Y0 V)
= (5321,5069, 4986, 5035, 5109, 5220, 4823, 5259)"

Traffic distribution matrix is as follows:

€ 1100000000 Oy
é001110000003
@0 00000111 00 00
P23000000000111h:j
900100100100
d 0000001001 0
20100100000013
@ 010010010 0 Of

4.2 Simulation Steps

1) Determine the solution space
The value of the OD matrix T can be calculated. It is
equivaent to thetota of all the exports (or imports):

4 4
T=4 % =4y, =20411=exp(9.92) . We can obtain
i=1 j=1
that | ,=-9.92, according toT =exp(-1,) .
In addition, various components of the OD matrix
should meet 1£T,£T , so we can obtan

& &
op-l,-alPp-l,. Or opal R p-1,p10.
k=1 k=1

According to T. =T exp(- g IR, the element of P

]
k=1
matrix isOor 1, so |, (k=1LL-m) can not be all nega-
tive. There are two situations: The whole dements are
nonnegative; one part of elements is positive, and the
other parts are zero or negative. For the situation that the
whole e ements are nonnegative, the value of |, should

be within the range [0,10]. For the second situation, the
range can not be defined easily. As result of mutud in-
fluence between several unknown quantities, its value
may be very large or may be very small. Therefore, we
can obtain that there is a solution set and the values are
within therange[0,10].
2) Determine the conditions of termination

Set the maximum number of iterations as 300. When
the average mean sguare error (MSE) of the objective
function J(I ) is less than 0.1, we regard the obtained

I, (k=01... 8) as the approximate optimal solution of

Equations (10) and terminate iterations.
3) Determine the number of particles

The optimal goa is that the objective function (mean
square error MSE) close to zero as possible. Selected pa-
rameters are as follows: Theinitial velocity of particlesis
generated randomly; the number of particlesis 20.

The simulation results are as follows:

4.3 Analysisthe Simulation Results

Compared to the results of conventiona PSO agorithm,
we can see that the results of the conventional PSO ago-
rithm and QPSO agorithm al meet the accuracy re-
quirements (MSE<0.1). However, when the conventional
PSO algorithm is used to solve individua variables, a
local optimal solution is obtained that led to a larger ab-
solute error of individual variables. As can be seen from
Table 1, the absolute error between actua traffic and cal-
culated traffic by QPSO algorithm istoo small (<0.103) to
meet the accurate requirements fully. Compared to Table
3, from Table 4 we can see the effect of the OD matrix
calculation isided.

Table 1. Absoluteerror of calculating road traffic

Absolute

Error V0-v0 Vi-vl V2-v2 V3-v3 V4-v4 V5-v5 V6-v6 V7-v7 V8-v8
QPSO 0.0002 -0.026 0.038 -0.103 0.063 0.025 -0.054 0.019 -0.0237
PSO 0.0003 -0.042 0.056 -0.120 0.084 0.023 -0.076 0.032 -0.0438
Table 2. Comparison of MSE Table 3. Factual OD matrix of intersection
o) D 1 2 3 4
M SE QPSO PSO 1 0 1936 2351 1034
2 1241 0 1392 2436
MSE=J (1) 0.0485 0.0630 s 1808 1389 0 1789
4 2060 1895 1080 0
Copyright © 2009 SciRes JSEA
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Table 4. Calculated OD matrix with QPSO

(0] D 1 2 3 4
1 0 1936.01 2351.02 1034
2 1240.99 0 1391.98 2435.99
3 1808.04 1389.03 0 1789.03
4 2059.95 1895.01 1079.98 0

5. Conclusions

This paper calculates the OD matrix calculation model
using QPSO algorithm, and determines the fitness func-
tion, according to the maximum entropy modd. We use
this model to smplify the linear condraints between the
traffic and the OD matrix, and solve the optimal solution
of nonlinear equation using QPSO agorithm. It can be
seen from the above simulation that OD matrix calcula
tion proposed in this paper is effective. It proves that ap-
plication QPSO algorithm in the field of OD matrix cal-
culation is feasible. It can consderably reduce the itera-
tive number that objective function can reach conver-
gence. Moreover, QPSO agorithm can improve the accu-
racy of the calculation and solve the problem of no con-
vergent and insufficient accuracy. We will further study
on how to apply QPSO algorithm in OD matrix calcula-
tion of alarge and complex network.
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