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ABSTRACT 

In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-
tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing 
makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the 
first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of 
the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed 
Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering 
method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of 
non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm 
are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is 
applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the 
applicability of the proposed decision making method. 
 
Keywords: Multi-Objective Optimization, Unrelated Parallel Machines Scheduling, Simulated Annealing Algorithm, 

Integer Programming Models, Multi-Criteria Decision Making 
 
1. Introduction 

Parallel machine scheduling problems have been exten-
sively studied in the literature and widely used in many 
manufacturing environments, such as the drilling opera-
tion in a PWB line [1] and glass etch polishing process in 
the TFT-LCD manufacture. In many real-life situations, 
the used machines are not always identical in perform-
ance. They are different because they were purchased at 
different times or for different considerations. Some ma-
chines may spend much more time on a particular job 
than others because of their age or design. Consequently, 
the layout of unrelated parallel machines is more com-
mon than identical parallel machines in real manufactur-
ing environments. The unrelated parallel machine sched-
uling problem (UPMSP) is more difficult than the identi-
cal case. Since the latter belongs to NP hard [2], the 
UPMSP is also NP hard. For further knowledge and re-
cent findings regarding the UPMSP, we refer to [3–4]. 

The problem solving approach to the UPMSP can be 
classified into two categories: metaheuristics and exact 
solution method. In metaheuristics, Hariri and Potts [5] 
proposed a two-phase method to solve the UPMSP with 
the objective of minimizing makespan (Cmax), where the 

first phase applies an integer programming technique and 
the second uses the earliest completion time rule to com-
plete the final schedule of the UPMSP. Weng et al. [6] 
proposed seven heuristics for the UPMSP with job se-
quence dependent setup times and the objective of mini-
mizing the weighted mean flow time. Two priority rules, 
shortest processing time (SPT) and the minimum sum of 
setup time and processing time, are respectively em-
ployed in the heuristics. The numerical results indicated 
that their algorithms are capable of finding quality solu-
tions to problems involving 120 jobs with 20 machines in 
short computational times. Bank and Werner [7] devel-
oped a constructive and iterative algorithm to solve the 
UPMSP with time window constraints on the job release 
dates and with the objective of minimizing the total 
weighted lateness. 

Glass et al. [8] developed a genetic algorithm (GA), 
simulated annealing (SA), and tabu search (TS) to solve 
the UPMSP without the sequence dependent setup time 
constraints. Their experiments conclude that GA per-
forms no better than the other two algorithms. Sirvastava 
[9] proposed a TS algorithm that could find high quality 
solutions in a short time for a part of the same instances. 

Kim et al. [10–11] proposed an SA to solve the 
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UPMSP with a goal of total tardiness minimization, while 
taking into consideration job sequence-dependent set up 
times. Logendran et al. [4,12] developed a TS for the 
same problem with additional considerations of dynamic 
release dates and time window machine availability, 
where the objective was to minimize the sum of weighted 
tardiness jobs. Chen [13] presented a record-to-record 
algorithm with tabu list to solve the UPMSP with the 
goal of minimizing the maximum tardiness. This paper 
also presented a threshold accepting algorithm with tabu 
list to solve the UPMSP to minimize the total tardiness. 

The branch and bound (B&B) methods are commonly 
used to optimally solve the UPMSP in the literature 
[14–18]. 

Most research on the UPMSP has been focused on a 
single objective only and there have been comparatively 
fewer studies on the multi-objective UPMSP. Suresh et 
al. [19] developed a TS for UPMSP with two objectives: 
minimizing the maximum makespan (Cmax) and the 
maximum tardiness. The tabu list keeps the record of 
newly found non-dominated solutions. Jansen et al. [20] 
modified the TS by Suresh et al. and solve the UPMSP 
with the objectives of minimizing Cmax and cost of 
scheduling. In this paper, a simulated annealing that 
interacts with the commercial software package CPLEX 
is developed for solving the UPMSP with three objec-
tives – minimizing Cmax, total flow time, and total num-
ber of tardy jobs. Since only one schedule will be im-
plemented in a real situation, a decision procedure is 
suggested to make the most preferable choice of the 
candidate solutions. 

Simulated annealing (SA) has been known as a com-
pact and robust technique to solve many NP-hard prob-
lems, including both single objective and multi-objective 
ones. It can provide excellent solutions to these problems 
with a substantial reduction in computational time. SA 
was first introduced by [21]. We refer to [22–24] for sur-
veys on single objective SA, and [25] for surveys on 
multi-objective SA. 

The remainder of this paper is structured as follows. 
Section 2 describes the problem under study. Section 3 
presents the proposed solution approach. Section 4 pre-
sents the numerical results from the proposed method 
used to solve a problem with real life data. Finally, Sec-
tion 5 concludes the paper with implications for future 
research. 

2. Problem Description 

The aim of this study is to develop a systematic solution 
method for determining the most preferred schedule 
among a non-dominated set of schedules found by the 
proposed hybrid simulated annealing algorithm. In this 
section, first of all, notations used in this paper are intro-
duced; secondly, the studied problem is described, in-
cluding a multi-objective mathematical model. 

2.1 Notations 

Symbols: 
i:  machine index, i = 1,…, M 
j:  job index, j = 1,…, J 
M: total number of machines used 
J: total number of jobs to be processed 
pij: processing time of job j performed by machine i  
sij: set up time for job j on machine i 
dj: due date of job j 
Gm: set of jobs in group m, m = 1,…, M 
Decision variables: 
Cmax: maximum makespan (completion time) among 

all machines 

max
iC : makespan of machine i 

Cij: completion time of job j on machine i 
Tij: tardiness of job j on machine i, Tij = max{0，Cij – 

dj} 
Uij: tardiness state of job j if it is processed on machine 

i: value is 1 if tardy;otherwise value is 0; number of tardy 
jobs for machine i 

yij: value is 1 if job j is assigned to machine i; value is 
0 otherwise 

xijk: value is 1 if both jobs j and k are assigned to ma-
chine i and job j immediately precedes job k; value is 0 
otherwise 

2.2 Problem Definition 

We consider the following manufacturing environment: 
there are I different machines in parallel with a total 
number of J jobs to be processed, and a job refers to a 
customer’s order. The problem under study assumes that 
each job may have different processing times depending 
on the assigned machine, each machine will process one 
job at a time, and the processing is non-preemptive. The 
setup time of each job is assumed to be machine depend-
ent but not job sequence dependent; thus, the setup time 
is included in the processing time. The scheduling prob-
lem considered in this study aims to minimize three ob-
jectives simultaneously: Cmax, total flow time, and total 
number of tardy jobs. 

2.2.1 Mathematical Formulation 

max
1 1 1 1

 ( ,  ,  
M J M J

ij ij
i j i j

)Minimize C C U
   
       (1) 

max max. .        is t C C i 

j

                   (2) 

max     ,i
ijC C i                         (3) 

max
1

   
J

i
ij ij

j

C p y


i                      (4) 

0;  C    ,ij ij ij jT T d i    j                (5) 
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    ij big ijT M U  ,i j            (6) 

(1 )ik ik big ijk ijC p M x C        , ,i j k     (7) 

1,

   ,
J

ijk ij
k k j

x y i
 

  j        

j

    (8) 

0  ,ijC i  , 

, 0,1  ,ij ij ;y U i   j 0,1   , ,ijkx i j k     (9) 

where Mbig is a big number. 
In the model, Equation (1) presents the three objective 

quality set (2) shows the first 
ob

 non-dominated schedules (or alternatives) 
 select the most 

 be adopted: 1) 
se

lem solving method 
 as the 

lowing strategy: 1) 
pr

to represent a 
nds to the set 

gi

functions of the UPMSP; ine
jective is to minimize the maximin makespan of all 

machines; constraint set (3) specifies the makespan of 
each machine; constraint set (4) defines the makespan of 
each machine; constraint set (5) defines the tardiness of 
each job; constraint sets (5) and (6) together define the 
number of tardy jobs; constraint set (7) specifies the 
starting time relationships between jobs under a certain 
processing sequence in the same group. Equation set (8) 
ensures that each individual job will be processed by only 
one machine. 

2.2.2 Multi-Criteria Decision Making 
Given a set of
to the problem under study, we seek to
preferable one. Various approaches can be applied to 
solve this decision problem. Some well known methods 
are as follows: 1) construct a multi-attribute utility func-
tion [26] which is defined on the objective space, and 
then take the alternative with the maximum utility value; 
2) assign priorities to objectives and take the alternative 
with the best Lexicographic order; 3) select the alterna-
tive that has the maximum AP efficiency ratio in data 
development analysis [27] or that has the maximum score 
using principle component analysis [28]. 

In the case that there are too many non-dominated so-
lutions, a simple three-stage method will

lect a reasonable number of diversified solutions; 2) 
decide what the inputs and the outputs should be; 3) 
compute the AP efficiency ratio and choose the one 
which ranks first. 

3. Problem Solving Method 

In this paper, we developed a prob
that uses the simulated annealing (SA) algorithm
main framework and employs the CPLEX optimizer to 
solve the multi-objective scheduling problem with an 
assigned weight vector. The acceptance probability takes 
into account the upgrading or downgrading of each indi-
vidual objective function at each step of generating a 
neighborhood solution, and is defined as the product of 
each individual acceptance probability with respect to the 

change of each objective at each step. 
In order to produce an acceptable number of non- 

dominated schedules, we adopt the fol
edetermine a set of weight vectors for the three- objec-

tive scheduling problem; 2) solve optimally or near opti-
mally the multi-objective scheduling problem with the 
target of minimizing the weighted sum of the objectives 
for each weight vector; 3) find higher quality diversified 
solutions using different initial solution. In the study, 
three priority rules, EDD (early due date), SPT (shortest 
processing time), and CR (critical ratio) are used to gen-
erate an initial solution. 

3.1 Encoding and Decoding Scheme 

In the proposed SA, a job list is used 
schedule of UPMSP. A sublist m correspo
of jobs assigned to group m. To generate an initial job list, 
all jobs are first sorted first based on a priority rule, and 
then placed one by one into each sublist according to the 
order of the list. In doing so, a set of job groups is formed, 
with the number of groups equal to the number of ma-
chines. Given a job list, a neighborhood solution will be 
generated by performing a 3-opt operation on the list. 

Figure 1 illustrates the decoding process using 15 jobs 
and four machines. First, a weight vector (1, 2, 3) is 

ven for the three objectives In step 1, 15 jobs are 
grouped and sequenced according to the priority rule. In 
the example, group 1 (sublist 1) contains jobs 2, 5, 6, and 
13. In step 2, based on the results in step 1, we can obtain 
an initial solution for each group-machine pair and fur-
ther improve it by single machine scheduling heuristic 
(SMSH). Note that in this step the three objective values 
are normalized using Equations (12)–(14). Since there are 
four machines, a 4 by 4 yielding 16 group-machine pairs 
are computed. Figure 2 displays the results of step 2. 

 

 

Figure 1. Example of decoding scheme 
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332211objective sum Weighted fff  

 

Figure 2. Applying SMSH to all group-machine pairs 

 

 
Figure 3. Optimal group-machine matching by BWMA 

 
Finally, the bipartite weighted matching algorithm (BW 
MA) is applied to find the optimal group-machine mat- 
ching and this concludes the decoding scheme (Figure 3). 

3.1.1 Single Machine Scheduling Problem with a 
Weighted Sum of Objectives 

This section presents the mathematical model of the 
weighted sum objectives of the single machine schedul-
ing problem, which will then be solved by the CPLEX 
solver in the interactive SA algorithm. Given a weight 
vector, (1, 2, 3) with 1 + 2 +3 = 1, 1, 2, 3  0, 
and group Gm is assigned to machine i, the mathematical 
model is as follows: 

Min ,
3

, ,
, 1 2 3 1 2 31 2( , , ) i m i m i m

i mF f f            

s.t. (3), (4), (5), (6), (7) for , mj k G  

f

, ,m

ijk
j k G j k 

1x   m

0    ij mC j G 
 

0,1ijkx   , mj k G      (11) 

k G           (10) 

)       (12) 
where  

,
max min max1 ( ) / (i m i i i if C g g  ming

,
min max min2 ( ) / ( )

m

i m i i i
j

j G

f C h h h


        
 (13) 

,
min max min3 ( ) / ( )

m

i m i i i
ij

j G

f U u u u


        (14) 

and ( min
ig , min

ih , mi
iu ) and ( max

ig ,n
i
maxh , max

iu ) are the 
ideal solution and anti-ideal solution to the three- 
ob schedulin  problem, re-
sp

3.1.2 Assignment Problems between J
Machines 

Given an assigned weig t vector ( 1, 2, 3) 
s {Gm, m = 1,…, M}, a total of M × M single 

eduling solutions can be crea
which corresponds to a group of jobs being 
a machine. The problem in this step is a bi
hted maching problem and will be solved by th
ian method. The mathematical model of the group-ma-
chine assignment problem is presented as follo

jective single machine g
ectively. 

ob Groups and 

h  and a set of 
job group
machine sch ted, each of 

processed by 
partite weig- 

e Hungar-

ws: 

,
1

  ( ,i m i
i

1 2 3
1

, )
M M

m
m

Min   F y
 

s.t.       
M

imy

  

1i

1 m M                  = 1，…， (15)
  

1

1im
m

y


M

  
                i = 1，…，M  (16) 

0imy 
 

                m, i = 1，…，M      

3.2 MOSA Algorithm 

The following presents the MOSA algorithm: 

1) Select a wide diversified set   = { k : k = 1,…, 

K}, where each k  corresp  the kth weight 

vector of the three objectives. Choose a set of prior-
ity rules, Pr = {prl: l = 1, …, L}, which will subse-

 be used to create the initial solutions. Set 
the number of temperature levels = NTL, and the 
number 
level = ITN. k = 1; l = 1, ntl = 1, T = T1, itn = 1. 

2) Apply priority rule prl to generate an initial parti-
tioned set of jobs, {Gm: m = 1,…, M}; Compute 

onds to

quently

of maximum iterations at each temperature 
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, 1( , , )k k k
i mF 2 3   ; employ the Hung gorithm 

 the group jobs – machines assignment 

arian al

to solve
problem; evaluate all objective functions and put 
them 

 (z1(x), z2(x), z3(x)) be the cor-
alized objective values. 

ted a new 

m ,

into a Pareto set of solutions. Let x = current 
solution with Z(x) =
responding non-norm

3) Give a random perturbation and genera

partitioned set of jobs. { '
mG :  = 1,…  M}; Com-

pute , 1 2 3( , )k k k
i mF ,   ; employ Hungarian algo-

rithm to solve the group jobs – machines assign-
ment problem and obtain a new solution y; evaluate 
all objective values: Z(y) = (z1(y), z2(y), z3(y)). 

 Compare y with all solutions in the Pareto set and 
update the Pareto set, if necessary. 

 If y is archived, make it the current solution by put-

4)

5)

probability to e

ting x = y and move on to step 7; otherwise compute 
( ) ( )r r rz z y z x   , r = 1, 2, 3. Assign acceptance 

ach of objective functions as fol-
lows: 

pr = 1 if 0rz  ; pr = (exp(- / )rz T )
k
r  if 

0rz  , r = 1, 2, 3; 

Acceptance probability = 1 2 3p p p   

6) If y is accepted, then set x = y; 
7) itn = itn + 1; if (itn > ITN), set ntl = ntl + 1; 

1ntl ntlT T   . 

 If (ntl ate and output the best solu-
tion; otherwise, go to step 2. 

hoosing the Best Alternative 

8) > NTL), termin

3.3 C

In
maki petitive alterna-
tiv
a hig
taken to complete the pr
of th
the t
sched ese two arded as 
the i omputing . On th ot
hand, the num  jobs represents the number of 
unsa e will instead be taken as 
an f tardy jobs imply a 
be
the ber of tardy bs
m
th

that the setup time of a job is only ma-
 job-sequence-dependent, and 
 time. 

s are chosen to construct the initial 

 this paper, we will choose the AP efficiency ratio for 
ng the best choice among many com

es. In the three objectives, a small Cmax usually implies 
h utilization of machine(s), i.e., how much time is 

oduction. Furthermore, the sum 
e completion times of J jobs gives an indication of 
otal holding or inventory costs incurred by the 

le [29u ]. Th objectives will be reg
nputs when c  the AP ratio e her 

ber of tardy
tisfied customers. This valu

 output. Since a small number o
tter performance, we use a total number of jobs minus 

num  jo  in a schedule as the performance 
easure to indicate the level of customers’ satisfaction of 
at schedule. 

4. Numerical Results 

In this section, the computational characteristics and ef-
fectiveness of the proposed interactive SA algorithm are 
evaluated via a practice example, which arises in the 
glass etch polishing during the Cell manufacturing stage 
of the TFT-LCD production process. The glass etch pol-

ishing operation is independent of the other manufactur-
ing processes, and is required only for some types of 
TFT-LCD products. 

In the example, a collection of real life data for four 
different machines and 21 different products was made. 
The data contains the information of the processing time 
of each job (a batch of the same products) on each indi-
vidual machine. Our observation indicates that the setup 
time of a job is approximately the same in each machine, 
regardless of whichever its preceding job is. But the setup 
time may be different in different machines. There- fore, 
it is assumed 
chine-dependent rather than
is included in the processing

In the experiment, the SA algorithm was coded in 
Visual Studio C++. NET and executed on a computer 
with Intel core dual, 1.8GHz and 2 GB DDR566, and 
used the CPLEX 10.0 optimizer to solve the weighted 
sum objective single machine scheduling problem. The 
parameters setting of the SA is as follows: NTL = 20, 
ITN = 5, T1 = 100, and  = 0.95. 

Three priority rule
solutions. They are early due date (EDD), shortest proc-
ess time (SPT), and critical ratio (CR), where CR is de-
fined as the ratio of the due date over the average proc-
essing time. Table 1 displays the best solutions found 
 

Table 1. Best solutions for various weight vector with EDD 
initial solution 

λ1  λ2  λ3 Cmax Total flow time No. tardy jobs CPU (sec.)

0.1, 0.1, 0.8 439 2105.9 2 201.5 
* 0.1, 0.2,0.7 344 1831.48 1 196.9 
0.1, 0.3, 0.6 556 2276.01 2 200.2 
0.1, 0.4, 0.5 367 1888.4 3 187 
0.1, 0.5, 0.4 372 1772.98 3 198.1 
0.1, 0.6, 0.3 588 2542.73 1 197.5 
0.1, 0.7, 0.2 450 1970.37 1 190.7 
0.2, 0.1, 0.7 596 2189.48 0 205.4 
0.2, 0.2, 0.6 598 2267.12 2 201.1 
0.2, 0.3, 0.5 726 2715.26 
0.

1 194.5 

0.3, 0.4, 0.3 389 2241.87 3 196.9 

1910.4 2 197.0 

2, 0.4, 0.4 427 2312.18 2 196.9 
0.2, 0.5, 0.3 382 1906.4 3 195.9 
0.2, 0.6, 0.2 400 2330.29 3 197.5 
0.3, 0.1, 0.6 475 2099.12 1 201.0 
* 0.3, 0.2,0.5 360 1774.87 2 203.4 
0.3, 0.3, 0.4 536 2103.48 1 210.9 

0.3, 0.5, 0.2 769 2890.04 1 194.0 
0.4, 0.1, 0.5 381 1924.4 1 199.8 
0.4, 0.2, 0.4 382
0.4, 0.3, 0.3 479 2138.9 1 202.5 
* 0.4, 0.4,0.2 527 2019.48 0 200.1 
* 0.5, 0.1,0.4 255 1770.4 3 199.8 
0.5, 0.2, 0.3 367 2083.79 2 195.6 
0.5, 0.3, 0.2 450 2275.62 1 202.3 
0.6, 0.1 ,0.3
0.6, 0.2, 0.2

389
663

1879.73 
2471.01 

2 
1 

206.7 
197.8 
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Table 2. N om utions fo  in all t

 max flow time No. tard

on-d inant sol und rials 

λ1  λ2  λ3 C Total y jobs 

0.4, 0.4, 0.2 527 2019.48 0 
0.3, 0.1, 0.6 304 1794.73 1 

48.51 2 
51 2 

0.2, 0.3, 0.5 241 17
0.4, 0.4, 0.2 245 1746.

 
T k  the ternative ased o AP 
ra

1 Output CCR o

able 3. Ran s of  four al s b n the 
tio 

Alternatives Input Input 2 AP rati

1 527 1.000 0.933  2019.48 0.933

2 304 0.952 1.000  

 0.905 1.000  

 0.905 0.999  

1794.73 1.024

3 241 1748.51 1.017

4 245 1746.51 0.999

 
 Nu esults of ENA 

r Cma flow time No. tard

Table 4. merical r  AR

Dispatching ules x Total y jobs 

SPT 262 2638 15 

EDD 294 3391 20 

 CR 597 4926 21 

 
wit o e weigh and the EDD initial 
sol der nd a li mber of hi  quality 
non-dom for ght vector, the SA 

ill output the solution with the minimum weighted ob-

observed from Table 1, only four local non-domi-
n ns were f it D al . 
H e n  gl n -
nated lutions nd A res in 2. 
The first one w rod ith DD l s n, 
the second wit e SPT, and t t t th . 
Three local n om so s in Table re 
emoved when compared with the second and third solu-

tions in Ta
m dule am se 

four al h e pr 6] 
is appli hen a ing t dure, the lues of 
Cmax an flow time are d as inputs e value 
of Cmax can be viewe  the t e of the equipments 

nd schedule should be the most prefer-
ab

iding 
quality

5.

-making process as to 
e. In addition, for problems of large 

onary algorithms will be more favor-

arlyle, and J. W. 

h respect t ach t vector 
ution. In or  to fi mited nu gh

inated solutions, each wei
w
jective value. 

As 
ated solutio
owever, th

ound w
otally o

h the ED
ly four

 initi
obal 

solution
on-domire are t

 so  fou  by the S , as p ented Table 
as p uced w  the E  initia olutio
h th he res wo wi the CR
on-d inated lution 1 we

r
ble 2.

 

To select the 
ternatives, t

ost prefera
e ranki

ble sche
ng procedur

ong the
oposed by [2

ed. W pply he proce  va
d total treate

otal tim
. Th

d as
used in the production, and the flow time gives an indica-
tion of the total holding or inventory costs incurred in the 
production. The number of tardy jobs occurs in a sched-
ule will be viewed as the output, since it represents the 
number of customers who will not be satisfied with the 
purchase service. The following scoring method for this 
output is adopted: 

(total no. of jobs – total no. of tardy jobs) / 
(total no. of jobs) 

Table 3 presents the ranks of the four non-dominated 
schedules. Both the second and the third schedules have a 

CCR ratio [30] of one, which implies both are effective. 
However, a further comparison based on the AP ratio 
indicates the seco

le. The proposed decision-making model is more pro- 
per if it includes the consideration of the cost of sched-
ules. In unrelated parallel machine scheduling problems, 
a job may take different processing times on different 
machines, and thus its processing cost may also be dif-
ferent when processed by different machines. 

Table 4 shows the numerical results by applying the 
simulation software ARENA to the instance using three 
different dispatching rules commonly used in industry. 
Clearly, the SPT rule works much better than the other 
two, but its solution is considerably dominated by the 
second to fourth solutions in Table 2. The proposed algo-
rithm is superior to the professional software in prov

 solutions for the instance. 

 Conclusions 

In this paper, we proposed an interactive simulated an-
nealing algorithm aimed at searching for a set of near 
Pareto optimal solutions to the unrelated parallel machine 
scheduling problem with three objectives: minimizing 
total completion time, total flow time, and total number 
of tardy jobs. A commercial optimization software pac- 
kage IILOG CPLEX is served as a function in the SA 
algorithm, with the mission of solving optimally the sub-
problem - weighted sum objective single machine sched-
uling problems. To produce an acceptable number of high 
quality non-dominated solutions, a unique best schedule 
is found with respect to each weight vector. The ranking 
procedure proposed by Andersen and Petersen is then 
applied to select the most preferable schedule, using total 
completion time and total flow time as the inputs, and 
total number of tardy jobs as the output. 

Further research would include the cost of schedules as 
one of the inputs in the decision
select the best schedul
size, hybrid evoluti
able than the current method, in which the CPLEX opti-
mizer occupies a large percentage of computational time. 
When solving large size problems, the number of 
non-dominated solutions would be very large. An inter-
esting research direction may be focused on developing a 
good method for making the best selection among the 
huge number of near Pareto-optimal solutions. 
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