7/
_ . @ERN) | Scientific
J. Software Engineering & Applications, 2008, 1: 38-43 \\!'l,’f) Research
Published Online December 2008 in SciRes (www.S@Rfjournal/jsea) i Publishing

Development of an Improved GUI Automation Test
System Based on Event-Flow Graph

Yongzhong Lu?, Danping Yan?, Songlin Nie®, Chun Wang*

School of Software Engineering, Huazhong UniversityScience & Technology, Wuhan 430074, P. R. CHiSahool of Public
Administration, Huazhong University of Science &cheology, Wuhan 430074, P. R. Chirigchool of Mechanical Science and
Engineering, Huazhong University of Science & Teabgy, Wuhan 430074, P. R. China

Email: hotmailuser@163.com

Received November 342008; revised November 802008; accepted Decembél, 2008.

ABSTRACT

A more automated graphic user interfg€&UI) test model, which is based on the event-flow grapproposed. In the
model, a user interface automation API tool istfirsed to carry out reverse engineering for a Gédit tsample so as to
obtain the event-flow graph. Then two approaches @dopted to create GUI test sample cases. Th& &y, an
improved ant colony optimizatigACO) algorithm is employed to establish a sequencestiitg cases in the course of the
daily smoke test. The sequence goes through adlcbleyvent points in the event-flow graph. On theerohand, the
spanning tree obtained by deep breadth-first seéBfS approach is utilized to obtain the testing cagsemfgoal point

to outset point in the course of the deep regrestst. Finally, these cases are applied to testribw GUI. Moreover,
according to the above-mentioned model, a corredipgnprototype system based on Microsoft Ul aut@ngtamework

is developed, thus giving a more effective waynfmrove the GUI automation test in Windows OS.

Keywords. Automated Software TestinGraphic User InterfaceEvent-Flow GraphRegression Testing\nt Colony
Optimization Ul Automation

1. Introduction

Testing GUI is a hard and monotonous labor. Sodar, for GUI testing [8] and test oracles for GUI-based
large number of scholars and experts have beesgoftware applications [41]. In recent years, McMaster
addressing themselves to the study of relateddfielid together with Memon presented call stack coverage f
the 1970s, some scholars suggested that testihngasef GUI test-suite reduction [12]. Moreover, Al and alat
design be modeled by finite-state machines andngest mining have been applied to the relevant studyhef t
software errors be found [1]. Thereafter anotherdeep regression test. Ye et al. investigated aroaph to
researchers applied the approach to the domaiesthg select a better way of the deep regression tesiaining
GUL It was called an improved model of finite-stat neural network [13]. White suggested a method &oths
machines, i.e. complete interaction sequence (@B) mathematical model of Latin square to reduce case
After having come to recognize the fact that itquantities [14]. Memon et al. put forward a propdbat
increasingly did not satisfy the modeling requiretseof the adaptability to software variation was improved
GUI automation test, experts proposed an event-flowhrough choosing event relationships in the deep
model based on event-flow graph. They investigaed regression test [15].

variety of automatic generation approaches to Gidtt However, these approaches have not yet fully been p
cases, which were closely connected with the adopteinto practice in GUI automation test systems ofuistdy
GUI model like above-mentioned CIS. Besides, theyfields for the time being, which are roughly cldissi
simultaneously presented an algorithm to check thénto three categories: capture and replay mode,
complete testing cases [4]. And an Al planning-dase scripts-driven mode, and data-driven mode. Theistex
approach to GUI test was employed [5,6], whichized several distinct defects among them such as heavily
the partial ordering planning in the field of AlaPhing depending on manual work, being characteristicoaf |
and attained test cases by the goal-driven metfod @daptability to software variation, and lackingteysatic
searching state point. During the process of géimgra management for testing cases and their coverage.
test cases by an Al planning-based approach, bigcat ~ Accordingly, in an effort to enhance the automatiest,

GUI test case generation is derived [7]. In additiother a more highly automated GUI testing model, which is
contribution like Memon and his colleagues at thebased on the event-flow graphs, is proposed. Imibeel,
University of Maryland are worth attention and thewe an automation tool is first used to carry out reeer
made great progress in the theories of coveraderiari engineering for testing GUI sample so as to obth@

Copyright © 2008 SciRes JSEA

Development of an Improved GUI Automation Test 8gstBased on Event-Flow Graph 39

event-flow graph. Then two approaches are adopied tcolony algorithm based on an adaptive pheromongaan
create testing GUI sample cases. That is to say, aype of rewards and penalty mechanism of pheromone
improved ACO algorithm is employed to establish avolatilization. Its concrete formulae are concisely
sequence of testing cases in the course of the slaibke expressed below as subsection functions-(8)) and
test. The sequence goes through all object evéntspe oquations (4)(6).

the event-flow graph. On the other hand, the spanni

tree obtained by deep BFS approach is utilizedbt@ain [7, 01 [n;)°
the testing cases from goal point to outset painthie PY(t) = Z[Tu (t)]am”_]/? if jOtabu, (1)
course of the deep regression test. Finally thasescare ! trtabuy others
applied to test the new GUI. Moreover, accordinght® 0
above-mentioned model, a corresponding prototype
system based on Microsoft Ul automation framewark i _ argnax{[rij(t)]"[/zj]”} if g<q,
developed, thus giving a more effective way of j=q imabu (2)
improving the GUI automation test in Windows OS. J others
Section 2 gives a brief description of GUI automiati
test model based on event-flow graph and also itescr Py (1) + A7, (1) vector borderson optimal paths 3y
two types of algorithms of generating automatiost te ~ 7i (t+2) =2 () = A7 (1) vector borderson worst paths
cases. Section 3 depicts the development of a pL; (1) others
corresponding prototype system based on Microsoéft U _
automation framework. Finally, the conclusions and My = A+ D +) “)
future work are given in Section 4. Ar(t)=Q/ u (5)
2. A GUI Automation Test Model Based on AT, O=HIQ ©
Event-Flow Graph where the number of crunodes is the rank, the numbe

ants is M. 7, (t) is pheromone density of vector border
In References [®, 10, 11], Memon et al. presented an .

event-flow graph model when deeply studying the("). n; is a elicitation variable which denotes the
coverage criteria for GUI testing, whose purposes wa elicitation factor during the solution procesa. is the
describe the mutual relationship among the objeeb® total number of crunodes which are not accessed fhe
more clearly. Thus a model, which was equipped #ieh crunodei while w, is the total number of crunodes

most complete functions for GUI test, came intoWhiCh are accessed from the crunodea,B are
existence. But our event-flow graph model is oladiby '

simplifying the above model. It is actually a corresponding to a pheromone elicitation factor and

two-dimension vector ¥ , E >, where V denotes event Self-elicitation factor.taby, is an accessed crunode list
sets in GUI and E represents order relationshipsvefit when next crunode is searched, is a stochastic

execution in GUI. Their definitions are the sametles \ 5riaple of average distribution among [0,1] whitg is

origin. In this model, non hierarchy modeling means_ . . -
gn. ' Y g a given constant beforehangh is the coefficient of
neglecting the process of constructing componeots f

GUI objects, thus enhancing the automation level foPheromone volatilizationAz, (t),A7'; (t) are pheromone
GUI test. What we have to do is to find out the GUlincrements. Q and Q' are both constangs. is the
events which are executed immediately after presioupnymper of repetitive crunodes) is the result of
events occur in terms of GUI states. In the cowbe sybsection functions (1). At the beginning, initial
reverse engineering, every GUI event has been 90"N¥heromone densityr; () in the MMAS is equally set to
through to discover the GUI events. Based on ti&se . i
execution events, the vector event-flow graph jgnaximum. When ant k moves from the crunddat t,
established. Then aiming at the requirements of GUIR/(t) is the probability of choosing the crunode
automation test, an improved ant colony optimizatio According to MMAS, each pheromone density of
algorithm is employed to establish a sequencesiing vector border is situated in between,, and 7,
cases in the course of t_he daily smoke test. lritiadd which are set in advance. If the value is biggantir
the spanning tree obtained by deep BFS approach IS)))
utilized to obtain the testing cases from goal pdn it is set to be equal ta,,; Vice versa. Such disposal is
outset point in the course of the deep regressish t beneficial to sufficient search and getting theiropt
These cases are applied to test the new GUI. Thes®lution. Furthermore, if the goal crunode is nutessed
algorithms are elaborated as follows. and its A is equal to 1, it should be preferentially

The improved ACO algorithm for the daily smoke testconsidered when another goal crunode is selectetle |
suggested in the paper defines elicitation varsmhled a algorithm is convergent, the generated event crenod
taby, list and takes into consideration the consanguiseo sequences are the desired GUI sample test cases for
combination of a max-min ant system (MMAS), an anttesting new GUI.

max ?

Copyright © 2008 SciRes JSEA

40 Development of an Improved GUI éwmgtion Test System Based on Event-Flow Graph

The algorithm based on the spanning tree obtaiyed bALGORITHM:GetTestCaseOfEvent(Vertex V){
deep breadth-first search (BFS) approach for thepde TestCase = @;

regression test is described as follows. FOR ALL InEdgeD v.InEdges{
u = BFSTree.Find(InEdge.SourceVertex)
ALGORITHM: BFS(G,s){ o TestCase[u].Add(v);
FOR ALL u= V[GY{s} {/*the initial crunode*/ TestCase[u].Add(u);
} color[u] = White; WHILE u.Parent != StartVertex{
color[s] = Gray; /*deal with the initial IiSLCSZ?g]{.Add(U'Parem)'
crunode*/ } ' '
7[s] = g; T .
Q-2 estCase[u].Add(StartVertex);
Enqueue(Q, s);
WHILE Q# @ { }
u—Dequeue(Q); 3. Developing the GUI Automation Test System
FOR ALL \& Adj[u] {)))
IF color[v] = White { uv) is the In the above-mentioned model, GUI hierarchy modglin
tree border*/ is not taken into consideration and the process of
color[v] = Gray; components construction is neglected. Because GUI
[v].Add(u,v); hierarchy modeling relies on the GUI logic relasbips
Enqueue(Q,v); and needs manual operation, it inevitably influsnttee
process of GUI automation test. Furthermore, wéthard
color[u] = Black; to GUI test case generation, an adaptive max-mi©®AC
} above based GUI test case generation algorithnses u
} for GUI daily smoke test, and a deep BFS based testl

According to the theory of the spanning tree wisisbws ~ case generation algorithm is exploited for GUI deep
simple path is corresponding to the shortest distgh6], regression test. The developing flow of GUI autdorat
GUI sample event cases can be gained as follows. test system is shown below in Figure 1.

To begin

A4

To establish an event-flow graph mods|

A 4
To pick up and build up test oracleg

A 4
Manual verification of event-flow graph and test
oracles

A 4
To generate test cases for GUI daily smoke regregsist

Yes

To carry out GUI daily smoke regression test

v

To create a report about the tests that have baea d

Toenc [«

Figure 1. Developing flow of GUI automation test system

Copyright © 2008 SciRes JSEA

Development of an Improved GUI Automation Test 8gstBased on Event-Flow Graph 41

The GUI automation test prototype system ismanual verification module is also exploited to uirg
developed by taking advantage of Microsoft Ul about whether there are some faults about GUI tbjerc
Automation frame, Visual Studio 2005, and advancechot. After the performance, test case generatioduleois
language C#. The Microsoft Ul Automation frame cantransferred to generate test cases for GUI dailpkem
provide the developers with more uniform andregression test. Then these cases are used fimgtesiv
convenient access to GUI in Windows OS than before. GUI. Finally, testing results are passed into tegtort
the past, GUI automation operation usually requiresnodule to work out an ultimate testing document.
indirect or direct usage of Windows API. Microsaft The first module is the most difficult one in thesem
Automation acts as a part of Windows Presentatiofbecause Microsoft Ul Automation frame is needed to
Foundation (WPF) in Windows SDK v6.0. It completely perform a dynamic automatic analysis to GUI sample.
supports Windows Vista, Microsoft Windows XP and The analysis is dynamic, that is to say, the GUI
Windows Server 2003. It is deemed as a uniformsgce information is constantly changing and there exists
frame for the development of the systems based BR W extremely complex relationship between the analytit
standard Win32, Windows Form and Web Ul. and GUI. This module is based on reverse enging&in

The prototype system is divided into three mainGUI event-flow graph. As a result, the documentées
functional modules as follows. 1) one includes éven about vector information in event-flow graph are
flow graph modeling based on reverse engineerirdy anobtained. Figure 3 shows the interface of test lesac
test oracles pick-up, 2) another one is for testeca pick-up sub-module and event-flow graph modeling
generation, 3) the last one is to finish testingoeion sub-module.
and report. The output of three parts is documgntar In test case generation module, the documentaey fil
format so as to facilitate the interaction with leather above are called, and then are parsed to attanduaies
and partially manual verification. Their interactiois of crunodes and their vector borders, and estaldish
presented in Figure 2. The hollow arrow pointsi® data vector graph objects. The above mentioned GUldase
flow direction. As Figure 2 shows, the sub-modui¢est generation algorithms are utilized to generate ¢ases.
oracles pick-up and another sub-module of event-flo In particular, the function of event-flow graph tilog is
graph modeling are used to acquire the relevandesigned in this module. In the process, the gdépera
information from GUI sample, and then output testprofessional plotting software Graphviz is usedyuré 4
oracles and event-flow graph. Thereafter, partiallyshows the interface of GUI test case generation.

Test oracles pick-up Manual
|:|'>’ sub-module verification
sub-module

1
:
GUI sample for modeling |
1
1
1
1
1

Even-flow graph

C——— | modeling sub-module

1
1
I
1
1
|
1
' Test case generation
) ! module
Upcoming tested GUI '
1
1
1
1
1
I
1
1

|:> Test execution
sub-module !

' i

1 1

I ﬂ I

1 1

1 1

1 1

1 1

i Test report sub-module I:'::> Test report

1

1

Figure 2. Interaction among three modules of GUI automation test system

Copyright © 2008 SciRes JSEA

42 Development of an Improved GUI éwmgtion Test System Based on Event-Flow Graph

In the last module of test execution and reporg th 4, Conclusions
required test event information can be obtainedthsy)
hash codes of new GUI. Microsoft Ul Automation ged ~ Based on the event-flow graph modeling, a new GUI
to acquire the controllers and their control modesew ~ a@utomation test model is presented. In the model, a
GUI. The test types are selected and GUI daily smokimproved ACO is put forward to generate test cames
regression test are done. If the test is a dailgkenone, the daily smoke test and a spanning tree is udilize
the test result is evaluated after each evennishied. If ~ Create test cases in the deep regression teste Tass
the test is a deep regression one, the test résult cases are generally applied in new GUI test. Mogecar
evaluated after the goal event is finished. Figushows Prototype system is developed on the basis of Mafto

the interface of GUI test execution and report. Ul Automation frame, thus giving a more effectiveyw
of improving the GUI automation test in Windows OS.
S hiim il UUL miiye i, ol = In the futurle., the systematic fgnction test andtiest
File®) Control @ Tosls () test with traditional GUI automation test softwateould
Leg | b | be done in order to verify the validation of the dab
Event-Flow graph infarmation got from target progran: And the adaptability of the studied system to theous
P ~ GUI in other OS should be facilitated. In additiche
Started-rbuttonZInwvokeFatternTdentifiersFatternInvoke . .
St axt odShiat toml TroralkaF at taxnT dent i £ v =P at taxnTavoke event-flow graph needs improving so as to solve the
e S e e Bl complex logic problem and reduce the involvement of
Started-MinimizeInvokePatternTdentifiersPatterninvoke ' H
St st et Main 2 oTocreleePatt evnT dent i £ ox P atbaxTaveles manual verification.

Started-leseInwokePatternTdentifiersPatternInvolke

buttonfInvokeFatternTdentifiersFatternInvoke— 3

N S 5. Acknowledgement

buttonfInvokePatternTdentifiersPatternInwoke— 2+

buttonlInvokePatternIdentifiersPatternInvolke . .

bat ton2Tavoleel at ¢ aral danti £ ar aPat t aralnvolea? The support from the Natural Science Foundation at
SystemExpandCollapzePatternIdentifiersFatternExpand . . .

it ton2Trwoleal at ¢ araldanti £i ar oP at ¢ araTnorcleacs Huazhong University of Science and Technology, the

MinimizeInvokeFatternIdentifiersFatternInvoke
buttonZInvoleFatternldentifiersFatternInvole=>

Natural Science Foundation in Hubei Province, arel t
National Natural Science Foundation in P. R. China,
grant numbers 2007Q006B, 2006ABA085, 50775081,
Figure 3. The interface of dealing with test oracles pick- ~ and 50675074 respectively, is gratefully acknowkstig

Ready

up and event-flow graph modeling for this work by the authors.
l Case Generation Tool EEx REFERENCES

[1] T. Chow, “Testing Software Design Modeled by FiState
Machines,” IEEE Transactions on Software Enginegrin

Paraneter o 15 Parameter P 0.7 Vol. 4, No. 3, pp. 178-187, May 1978.

[2] L. White and H. Almezen, “Generating test casesGoH
responsibilities using complete interaction seqgesricin
Proceedings of the International Symposium on Saftw
Reliability Engineering, San Jose, California, USA. p

Farameter Setting

Parameter B 3.0

110-121, October 2000.
[3] A. M. Memon, “An event-flow model of GUI-based
Rasiy applications for testing,” Software Testing, Veriftion
]]] and Reliability, Vol. 17, No. 3, pp. 13157, September
Figure4. Theinterface of GUI test case generation 2007.

[4] L. White, H. Almezen, and N. Alzeidi, “User-basedting of
GUI sequences and their interaction,” in Proceesliafy

] Automation Test Ezecution Tool

Tt et e the International Symposium on Software Reliability
TN Engineering, Annapolis, Maryland, USA, . 538,
EIEAE
I]J Hane Expactad Result Docunent Test Ramlt A November 2001.
& Ticha Pt el Nt [5] A. M. Memon, M. E. Pollack, and M. L. Soffa, “A
2 Z}{lg}{i:a iu}gz}i{lzzll EE :i:itgig planning-based approach to GUI testing,” in Protegsd
: u;g"E "d~ Tg:m Pdﬂm i o1 ot nsetad of The 13th International Software/Internet Quaigek,
0 o DoTavioteecnd) B s San. Francisco, California, USA, May 2000.

FormatExpan ormatExpandExecuted. xn ot exeruted
: B peedebeniel peue 6] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Plan
i WentoroaTorsin B B Teaia Generation for GUI Testing,” in Proceedings of fFith
i T Bt et feb s International Conference on Artificial Intelligence
i it e v ey g Planning and Scheduling, Menlo Park, California, USA
18 Started Startediiecuted xnl Hot executed ¥ .
— pp. 226235, April 2000.

[71 A. M. Memon, M. E. Pollack, and M. L. Soffa,
Figure5. Theinterface of GUI test execution and report “Hierarchical GUI test case generation using autecha

Copyright © 2008 SciRes JSEA

(8]

[9]

[10]

[11]

[12]

Development of an Improved GUI Automation Test 8gstBased on Event-Flow Graph

planning,” IEEE Transactions on Software, Vol. Rlp, 2,
pp. 144155, May 2001.

A. M. Memon, M. L. Soffa, and M. E. Pollack, “Covem
criteria for GUI testing,” in Proceedings of theh8t
European software engineering conference held Iyoint
with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, New York, UBp,
256-267, September 2001.

Q. Xie and A. M. Memon, “Designing and comparing
automated test oracles for GUI-based software catipns,”
ACM Transactions on Software Engineering and
Methodology, Vol. 16, No. 1, pp—4s, February 2007.

A. M. Memon, M. E. Pollack, and M. L. Soffa, “Autated
test oracles for GUIs,” in Proceedings of the 8tGM
SIGSOFT international symposium on Foundations of
software engineering: twenty-first century applicas,
San Diego, California, USA, pp. 389, November 2000.

A. M. Memon, |. Banerjee, and A. Nagarajan, “Wha te
Oracle should | use for effective GUI testing,” in

(13]

(14]

(15]

Proceedings of the IEEE International Conference or{16]

Automated Software Engineering, Montreal,
Canada, pp. 16473, October 2003.
S. McMaster and A. M. Memon, “Call stack coverage f

GUI test-suite reduction,” in Proceedings of thehl?

Quebec,

Copyright © 2008 SciRes

43

IEEE International Symposium on Software Reliability
Engineering, Raleigh, North Carolina, USA, pp—43,
November 2006.

M. Ye, B.Q. Feng, and Y. Lin, “Neural networks bdse
test cases selection strategy for GUI testing”, in
Proceedings of the 6th World Congress on Intelligent
Control and Automation, Dalian, China, pp. 573376,
June 2006.

L. White, “Regression testing of GUI event intei@ts,” in
Proceedings of the International Conference on Swéw
Maintenance, Monterey, California, USA, pp. 33868,
November 1996.

A. M. Memon and M. L Soffa, “Regression testing of
GUIs,” in Proceedings of the 9th European software
engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of
software engineering, New York, USA, pp. 1187,
September 2003.

A. M. Memon, |. Banerjee, and A. Nagarajan, “GUI
ripping: reverse Engineering of graphical user riates
for testing,” in Proceedings of the 10th Working
Conference on Reverse Engineering, Victoria, BJ@nada,
pp. 266-269, November 2003.

JSEA

