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Abstract 
This paper presents a method for optimal sizing of an off-grid hybrid micro-
grid (MG) system in order to achieve a certain load demand. The hybrid MG 
is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy 
storage system (ESS). The reliability of the MG system is modeled based on 
the loss of power supply probability (SPSP). For optimization, an enhanced 
Genetic Algorithm (GA) is used to minimize the total cost of the system over 
a 20-year period, while satisfying some reliability and operation constraints. A 
case study addressing optimal sizing of an off-grid hybrid microgrid in Nige-
ria is discussed. The result is compared with results obtained from the Brute 
Force and standard GA methods. 
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1. Introduction 

Providing access to clean, reliable and affordable energy by adopting microgrid 
(MG) power systems is important for countries looking to achieve their sustain-
able development goals as the extension of the grid is time and capital expensive. 
These MGs are small electrical power systems that connect several electricity us-
ers to some distributed power generators and energy storage systems, which are 
mainly interconnected by power converters [1] and can be made of renewable 
energy sources or hybridized with fossil fuel generators [2]. Hybrid PV/Diesel 
MG power systems are used for off-grid electrification applications, and they are 
good for applications in hot climates [3]. However, due to the CO2 emission, 
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rising price and delivery cost of diesel fuel, renewable energy sources are be-
coming more and more popular in MG development, especially in remote areas. 
Both solar and wind power sources are intermittent as they depend on weather 
and climate changes; however, hybridizing the two sources can overcome this 
drawback [4]. Furthermore, using a hybrid ESS in an MG system can increase 
the system stability [5]. The PV is used as the main power supply in the system. 
The WT is used as complementary power supply to support the load when the 
PV production is low (e.g. cloudy day) or not available (night times). Addition-
ally, the ESS is used as a back-up power to support the load when the power 
generated by the PV and WT cannot handle the load demand. However, impro-
per sizing of the system components may result in higher MG cost and low re-
liability. For example, an oversized PV array may increase the MG investment 
cost and decrease its stability due to the unpredictable nature of solar power 
generation [6] [7]. Similarly, too much ESS capacity increases the cost and not 
enough ESS capacity may result in low system reliability. Consequently, many 
optimization problems are based mainly on either cost reduction or required re-
liability of the MG power system [4] [8] [9] [10] [11]. 

Previous studies have investigated various methods of optimally sizing in dif-
ferent scenarios of hybrid MG applications. [4] presented a simple sizing algo-
rithm to obtain the number of PV and WT units along with the storage capacity 
for a stand-alone hybrid MG. The work in [12] presented a simple method to 
optimize the size of PV, WT and battery using an iterative method driven by the 
loss of power supply probability (LPSP) to minimize the 20-year total cost in-
cluding capital, operation and maintenance cost of the MG. Other research stu-
dies focused on the operation optimization of MGs [13] [14] [15] [16] [17]. In 
[14] a method was presented, which used an energy management strategy based 
on a fuzzy expert system for optimal MG ESS sizing. [16] proposed a genetic al-
gorithm-based optimal sizing method using an operational strategy and 
joint-optimization for off-grid MGs. 

This paper aims to find the optimal size of PV array, WT and ESS for an 
off-grid MG by using an enhanced GA, proposed by [18], to minimize the total 
cost of the MG (which includes the capital and operating costs), while satisfying 
the load demand at all times with a desired reliability. Figure 1 shows the archi-
tecture of a typical hybrid PV/WT/ESS off-grid MG. In the figure is a 
DC-coupled MG in which the PV panel and the ESS are linked via a DC/DC 
charge controller, creating a DC bus that carries the power from the WT via a 
rectifier and power the household load using an inverter. The DC-coupled mi-
crogrid uses less power conversions (resulting in a small efficiency gain) com-
pared to an AC-coupled MG [5]. 

The reliability of the MG system is modeled based on the loss of power supply 
probability (LPSP). For optimization, an enhanced Genetic Algorithm (GA) is 
used to minimize the total cost of the system over a 20-year period, while satis-
fying some reliability and operation constraints. A case study addressing optimal 
sizing of an off-grid hybrid MG in Nigeria is discussed. 
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Figure 1. Architecture of hybrid PV/Wind/Battery off-grid 
microgrid with power converters. 

2. Mathematical Modeling of Hybrid Off-Grid Microgrid  
System 

2.1. PV Model 

As the main power supply in this off-grid solar hybrid MG system, the output 
power of a PV module is estimated from (1) based on the solar irradiation at 
time t, and the efficiency of the PV module is given by (2). 

( ) ( )PV PV PVP t A G tη= ⋅ ⋅                      (1) 

( )1PV STC MPPT C STCT Tη η η α = ⋅ − −                   (2) 

where PVA  is the area of a PV module in (m2), ( )G t  is the hourly total solar 
irradiance in (W/m2), PVη  is the efficiency of the PV array, STCη  is reference 
efficiency of the PV cell at standard temperature condition (STC), MPPTη  is the 
efficiency of the maximum peak power tracker, CT  is the temperature of the PV 
cell in (˚C), STCT  is the reference temperature of the PV cell at STC (25˚C), and 
α is the temperature coefficient of the PV cell (typically 0.4%/˚C – 0.6%/˚C for 
silicon cells). The temperature coefficient is given by the PV cell manufacturer 
and can be obtained from the PV panel datasheet. 

The cell temperature can be obtained from Equation (3). 

( )20
800C a

NOCTT T G t− = + ⋅  
                (3) 

where aT  is the ambient temperature in (˚C) and NOCT is the nominal oper-
ating cell temperature (45˚C - 47˚C). 

2.2. WT Model 

The output power from a WT at time t depends on the wind speed and can be 
obtained from (4) [19]. 
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where 
( )3 3
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WT

r ci

Pa
V V

=
−

 ; 
( )

3

3 3
ci

r ci

Vb
V V

=
−

 ; ( )V t  is the wind speed at time t in  

(m/s); r
WTP  is the rated power of the WT in (W); rV  is the rated speed in 

(m/s); ciV  is the cut-in speed in (m/s) and coV  is the cut-out speed of the WT 
in (m/s). 

2.3. ESS Model 

Depending on its state of charge (SOC), the ESS can supply the load when there 
is lack of electricity (discharge) and store surplus power when the generated 
power exceeds the load demand (charge). The discharging and charging energies 
of the ESS at time t can be obtained from (5) and (6), respectively [20]. 

( ) ( ) ( ) ( ) ( )1d
ESS ESS Load PV WT dE t E t E t E t E t η= − − − −         (5) 

( ) ( ) ( ) ( ) ( )1c
ESS ESS PV WT Load cE t E t E t E t E t η= − + + − ⋅           (6) 

where ( )1ESSE t −  is the energy at time 1t −  in (kWh); , ,PV WT LoadE E E  are 
the PV energy, WT energy and load energies, respectively; dη  and cη  are the 
discharge and charge efficiencies of the ESS, respectively. 

Equations (5) and (6) can be rewritten as (7) and (8) [10]. 

( ) ( ) ( )1d d
ESS ESS ESS dE t E t P t t η= − − ⋅∆                  (7) 

( ) ( ) ( )1 Δc c
ESS ESS ESS cE t E t P t t η= − + ⋅ ⋅                  (8) 

where ( ) ( ) ( ) ( )d
ESS Load PV WTP t P t P t P t= − −  is the power discharged by the ESS; 

( ) ( ) ( ) ( )c
ESS PV WT LoadP t P t P t P t= + −  is power charged into the ESS; and Δ 1t =  

since the time interval is 1 hour. 

2.4. Load Profile 

The load profile determines the requirements of power supply from the hybrid 
MG power system. The load profile is modeled according to the dynamic load 
power demands LoadP  at times t. In off-grid power system design, the load pro-
file is the driver. Figure 2 shows an example of a per-hour daily residential load 
demand profile for a group of some households. This double-bell curve, with 
high demands early in the morning and late in the evening, could be explained 
as follows: 
• Most residents wake up in the morning to prepare for work and school (i.e. 

taking hot showers, preparing breakfast, etc.). 
• People then leave for work and school typically from hours 7 to 18 on week-

days. 
• Most household members are cooking/warming food, eating dinner, watch-

ing TV from hours 18 to 22 then go to bed. 
The curve shown here in Figure 2 represents a weekend profile as people 

wake up later compared to week days and use more power during the day from 
staying at home. 
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Figure 2. Daily residential load demand. 

2.5. Reliability Model 

The power balance of the system is illustrated in Figure 3. When the load de-
mand exceeds the energy generated by PV and WT plus the energy stored in the 
ESS for hour t, this put the MG in a Loss of Power Supply scenario 
( ( ) ( )supplied neededP t P t< ), which is expressed as 

( ) ( ) ( ) ( ) ( )d
Load PV WT ESS invLPS t P t P t P t P t η = − + + ⋅  .     (9) 

where invη  is the efficiency of the inverter. 
The Loss of Power Supply Probability (LPSP), which is the reliability index of 

an MG system, for a given time period T can be defined as the ratio of all LPS(t) 
values for that period to the sum of the load demands [21]. 

( )
( )

0 0

0

Power failure timeT T
t t
T

Loadt

LPS t
LPSP

TP t
= =

=

= =∑ ∑
∑

          (10) 

3. Problem Formulation 
3.1. Objective Function 

The objective of this optimization problem is to minimize the capital and oper-
ating costs of the off-grid hybrid MG over a total life period of 20 years, while 
satisfying some reliability, operational and stability constraints. This optimiza-
tion problem is expressed in (11) and (12) [12]. 

( )min  , ,PV WT ESS PV PV WT WT ESS ESSf N N E C N C N C E= ⋅ + ⋅ + ⋅      (11) 

( )
( )

( )

20

20

20 1
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ESS cap ESS cap ESS op

C C C P

C C C P

C C y C y C

 = + ⋅ ⋅

 = + ⋅ ⋅


= + ⋅ + − − ⋅

       (12) 

where PVN  is the number of PV panels; WTN  is the number of wind turbines; 

ESSE  is the storage capacity of the ESS in (Wh); PVC  and WTC  are the total 
costs in (US$) of a PV and a WT, respectively; ESSC  is the per-unit cost of the 
ESS in (US$/Wh) of the ESS; ,PV WT

cap capC C  and ESS
capC  are the capitol costs of the  
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Figure 3. Power balance. 

 
PV in (US$/W), WT in (US$/W) and ESS in (US$/Wh), respectively; ,PV WT

op opC C  
and ESS

opC  are the operating costs of the PVin (US$/W), WT in (US$/W) and 
ESS in (US$/Wh), respectively; and ESSy  is the expected number of ESS re-
placement over the 20 years. The capital cost of each component includes the 
purchase and installation cost of that component. The operation cost of each 
component includes the maintenance and operation cost of that component. 

3.2. Constraints 

The following constraints should be satisfied: 
• Reliability: 

setLPSP LPSP≤                        (13) 

• PV power limits: 

( )min max ; 0,1, 2,PV PV PV PVP P t P N≤ ≤ =                 (14) 

• WT power limits: 

( )min max ; 0,1, 2,WT WT WT WTP P t P N≤ ≤ =               (15) 

• ESS stored energy and power limits: 

( )min maxESS ESS ESSE E t E≤ ≤                    (16) 

( )min max1ESS ESSE DOD E= − ⋅                     (17) 

( ) ( )( ){ }max max min0 min , 1d d
ESS ESS Ess d ESS ESS dP t P E E t Eη η⋅= − − ⋅≤ ≤  (18) 

( ) ( )( ){ }max max max0 min , 1c c
ESS ESS Ess c ESS ESS cP t P E E E tη η≤ ≤ = − −  (19) 

In addition to the stored energy constraint, the charge and discharge powers 
of the ESS must be kept within a certain limit at any point of time. In Equations 
(18) and (19), the energy terms are divided by the time internal Δ 1t =  to get 
the powers. 
• Energy balance (starting and ending limits): 

( ) ( )0ESS ESS ESSstoredE E T E= =                    (20) 
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• Power balance 

( ) ( ) ( ) ( )PV WT ESS LoadP t P t P t P t+ + =                (21) 

4. Enhanced Genetic Algorithm 

In the past few decades, various nature-inspired computational methods have 
been developed to solve complex engineering problems [22] [23] [24] [25]. One 
such computational method is Evolutionary algorithms which are generic, opti-
mization algorithms that are biology-inspired mechanisms. Geneticalgorithm 
(GA) is a rapidly growing area of Artificial Intelligence. It is an intelligent me-
thod for solving combinatorial, hard optimization problems in n-dimensions. 
The flowchart of a GA is shown in Figure 4. The work in [18] proposed en-
hancements that give a new variant of the Standard GA. Five enhancements were 
 

 
Figure 4. GA flowchart. 
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were introduced (multiple weighted roulettes, multiple cross over points, mul-
tiple mates, utilizing the Daubechies wavelets (D4) and using normal distribu-
tion for selecting the initial population). The convergence velocity of the algo-
rithm is also improved thereby reducing the time taken for the algorithm to 
reach the sought solution. 

A basic part of the selection process is to stochastically select from one gener-
ation to another in order to create the basis of the next generation. The under-
lining requirement is that the set of fittest individuals would have a greater 
chance of survival than the set of weaker ones. This inheritance nature in those 
fitter individuals will tend to have a better probability of survival and will go on 
forward to form updated mating pool for the next generation. Weaker individu-
als are not left without a chance though. In nature those individuals may have 
genetic coding that may also prove useful to future generations. 

Selection is the first genetic operation in the reproductive phase of GA. It 
helps the GA by directing the genetic search towards promising regions in the 
search space. Selection pressure is a crucial factor that determines the efficiency 
of the algorithm and is reduced in our proposed algorithm. The first enhance-
ment proposed is to use multiple weighted roulettes, each designed to comple-
ment the others. This will further distribute the selection pressure for one gener-
ation to another. The job that GAs have in this case is to mate sets of individuals 
and then replicate this selection process. The usual implementation is by cros-
sover. The only general requirement is that the offspring carry forward the im-
portant genetic material from the parents, whilst introducing enough variation 
that they survive. The crossover method emulates this process by exchanging 
chromosome patterns between individuals to create offspring for the next gener-
ation. 

The second and third enhancements are to use multiple cross over points as 
well as using multiple mates as a function of results of mating individual parents 
creating some offspring. Those offspring will have of the genetic material of both 
parents. There are three options regarding the fitness of the offspring, they can 
be weaker, the same or fitter than their parents. If they are weaker they will tend 
to die out—if they are stronger their chances of survival are better. It is of gener-
al note that the stronger the parents are in terms of fitness then the fitter the 
offspring will be. The variation caused by this process allows the offspring to 
search out different available niches, i.e. find better fitness values and subse-
quently better solutions. 

The fourth enhancement proposed is to utilize the Daubechies wavelet (D4), 
which is named after its discoverer the mathematician Ingrid Daubechies, as a 
preprocessing step. The D4 transform has four scaling function coefficients and 
can be extended to multiple levels as many times as the signal length can be di-
vided by 2. D4 was compared to other wavelets. The HAAR wavelet for instance 
is simple, memory efficient and computationally cheap. It uses two scaling and 
wavelet function coefficients, thus calculates pair wise averages and differences. 
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Daubechies wavelet family is the most popular wavelet family used for texture 
feature analysis, due to orthogonal and compact support abilities. Daubechies 
averages over more pixels, it is smoother than the HAAR wavelet. It is Similar to 
the well-known Fourier transform, but it takes care of rapid transitions better 
than Fourier. 

The fifth enhancement is used for initializing the initial population and it is 
done by replacing the uniform distribution with the normal distribution. The 
normal (Gaussian) distribution is the most widely known and used of all distri-
butions. Because the normal distribution approximates many natural phenome-
na so well, it has developed into a standard of reference for many probability 
problems. That is why it was selected to be the fifth enhancement proposed to 
deal with the step of selecting the initial population. Some of the characteristics 
of the normal distribution are that it is symmetric, bell shaped and continuous 
for all values of X between -∞ and ∞ so that each conceivable interval of real 
numbers has a probability other than zero. Normal distribution is actually a 
family of distributions since the two parameters μ and σ determine the shape of 
the distribution. 

This enhanced GA was used in radar system application to detect the angle of 
arrival by analyzing readings from an array of multiple radars [26]. This paper 
will assess the robustness and accuracy of the developed enhanced GA in MG 
power system applications. The form of the individual of the GA’s population is 
set to [NPV NWT EESS]. To accomplish this, a specific fitness function was devel-
oped along with a new data preprocessing program in Java to organize and pre-
pare the data for importation into the enhanced GA search environment to eva-
luate every individual for 8760 hours per simulation cycle. A GA optimization 
can have many ways to use as a stop rule. The best one of course is if the opti-
mum solution is known. However, since in this case the optimum solution was 
unknown, the system used the population size and a maximum number of gen-
erations as the stop rule. 

5. Case Study 

The location of Guzape (suburb of Abuja), Nigeria (Latitude 9˚0'31''N, Longi-
tude 7˚30'50''E) is used as site for the case study. The global horizontal solar ir-
radiance Figure 5, ambient temperature Figure 6 and wind speed Figure 7 data 
were taken from the Typical Meteorological Year (TMY) data sets [27] and used 
to calculate the output powers of the PV and WT. Table 1 contains information 
about the PV, WT and ESS parameters used in this paper. The site consists of 10 
apartments with some outside lighting. The estimated hourly load demand for 
the site is shown in Figure 8. 

6. Results and Discussion 

The enhanced GA was used to minimize the total MG cost, while considering 
different LPSP values for system reliability. The results were compared with  
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Figure 5. Hourly global solar irradiance of the year (W/m2). 

 

 
Figure 6. Hourly ambient temperature of the year (˚C). 

 

 
Figure 7. Hourly wind speed of the year (m/s). 

 
those obtained from the Brute Force and standard GA. A comparison between 
the three strategies is presented in Table 2. The enhanced GA outperformed the 
standard GA in terms of speed as it took 41,218 less trials to reach the same re-
sult on the same machine. The results obtained from the enhanced GA agree 
with those from the two other methods. The effect of the ESS depth of discharge 
(DOD) on the MG system sizing and total coast is shown in Table 3. It was  
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Figure 8. Hourly load demand for the year (W). 

 
Table 1. Parameters of system components. 

 Parameter Value 

PV Data 

Max power 
Efficiency at STC 

Length 
Width 

Capital cost 
Operation cost 

Life time 

255 W 
15.7% 
1.64 m 
0.99 m 

$0.80/W 
$0.04/W 

25 yr 

WT Data 

Rated power 
Cut-in wind speed 

Cut-out wind speed 
Rated wind speed 

Capital cost 
Operation cost 

Life time 

1500 W 
2.5 m/s 
17 m/s 
12 m/s 

$0.67/W 
$0.1005/W 

20 yr 

ESS Data 

Charge efficiency 
Discharge efficiency 

Capital cost 
Operation cost 

Life time 

80% 
100% 

$0.15/Wh 
$0.015/Wh 

5 yr 

 
Table 2. Comparison of the three strategies. 

 Brute Force Standard GA Enhanced GA 

No. of Trials 35,267,760 117,624 76,406 

 
Table 3. Results of optimal sizing. 

 DOD = 0.8 DOD = 0.7 DOD = 0.6 DOD = 0.5 

NPV 

NWT 

PPV 

PWT 

EESS 
Total Cost 

164 
5 

41.8 kW 
7.5 kW 

200 kWh 
$255012.00 

166 
5 

42.3 kW 
7.5kW 

200 kWh 
$255828.07 

168 
5 

42.8 kW 
7.5 kW 

200 kWh 
$256644.00 

176 
5 

44.9 kW 
7.5 kW 

200 kWh 
$259908.00 
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Figure 9. Aerial view of the site. 

 
found that the optimal size of the site is 176 solar panels, 5 wind turbines with 
200 kWh of energy storage for the minimum total 20-year cost of $259,908.00 
based on the desired operation and reliability constraints with 50% DOD and 
LPSP less than or equal to 0.15. Figure 9 shows an aerial view of the project site 
in Nigeria. 

7. Conclusions 

An approach of sizing a PV/WT/ESS hybrid off-grid MG using an enhanced GA 
is proposed in this paper. A case study involving the optimal sizing of an off-grid 
MG system site in Nigeria using real field data was discussed. For the case study, 
a special Java program was developed along with the enhanced GA to obtain the 
optimal size of the MG. 

That is the combination of PV, WT and ESS that met the load demand subject 
to the operation constraints and the desired LPSP with the minimum total MG 
cost over a period of 20 years. The result is compared to those obtained from the 
Brute Force and standard GA. All methods give the same result under the same 
conditions, showing that the enhanced GA is well suited for optimal MG system 
sizing, and the proposed method is feasible for sizing PV/WT/ESS hybrid 
off-grid MG systems. 
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