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Abstract 
In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the 
maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in de-
scribing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by 
turbulent motions. We also demonstrate that the stream tube model customarily applied to derive 
the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate 
value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky 
limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in 
water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant cir-
culation model leads to values of the maximum efficiency which are higher than the Betz-Jow- 
kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected 
for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-ele- 
ment analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propeller- 
type wind turbines depends on tip-speed ratio and the number of blades. 
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1. Introduction 
In 2001, Gorban’ et al. [1] challenged the Betz limit (in our study called the Betz-Joukowsky limit [2]-[6] even 
though it has also been denoted as Lanchester-Betz-Joukowsky limit [2] [6]), i.e., the maximum power efficien-
cy of 59.3 percent for a propeller-type turbine, where the power efficiency is generally defined by 

P
PC
P∞

= .                                     (1.1) 

Here, P is the extracted (or consumed) power, and P∞  is the power carried by the flow through the projection of 
the turbine section region onto the plane perpendicular to it. Gorban’ et al. [1] argued that the maximum effi-
ciency of the plane propeller is about 30 percent for free fluids. Meanwhile, their paper has been cited numerous 
times in conference papers (e.g., [7] [8]), but recently van Kuik et al. [9] rejected their method and pointed out 
that the main problem of Gorban’ et al. “is their lack of comprehension of the working principles how the tur-
bine operates”. Since this argument is very harsh, it is indispensable to show that the result of Gorban’ et al. is 
based on an equation that may be acceptable for water fluids of low flow velocity, but that is indeed not very 
suitable for flows as they are typical in the atmospheric boundary layer (ABL, the lowest layer of the tropos-
phere, with a thickness of the order of 310 mh = ), especially at heights between 30 m to 150 m above the 
Earth’s surface. 

According to Gorban’ et al. [1], the filtration equation, 
p r−∇ = v ,                                      (1.2) 

holds in an open domain cV  (denoted by [1] as Ω ) with a smooth or piecewise smooth boundary together with 
the equation of continuity, 0∇⋅ =v  (only valid for an incompressible stationary flow), where p and v  denote 
the pressure and the velocity of the flow, respectively. The shape of cV is considered as a semi-penetrable ob-
stacle for the stream with a resistance density r inside. Let cA  the cross section of cV  perpendicular to the flow 
axis. The power carried by the flow through cA  is then given by 

31
2 cP A vρ∞ ∞= .                                   (1.3) 

Following these authors, ∞v  is the velocity of a uniform laminar current. Gorban’ et al. [1] argued that the 
power, P, consumed by the turbine is given by 

( )2 21d d d
c c cV V V

P p V p V r V
r

= ⋅∇ = ∇ =∫ ∫ ∫v v ,                        (1.4) 

where the filtration Equation (1.2) has been inserted. In accord with Equation (1.1), they obtained 

3

d

1
2

cV
P

c

p V
PC
P A vρ∞

∞

⋅∇

= =
∫ v

.                                (1.5) 

Gorban’ et al. [1] claimed: 
“The efficiency coefficient can be maximized by optimizing the resistance density. The optimal ratio between 

the streamlining current and the current passing through the turbines can also be obtained from this model. This 
parameter can be measured experimentally to determine how close a real turbine is to the theoretically optimal 
one.” 

Obviously, the maximum of the efficiency coefficient deduced by Gorban’ et al. [1] depends on the filtration 
equation. This equation, however, plays no role in the description of ABL flows. In addition, the ABL is mainly 
governed by turbulent motions. If we assume, for instance, a wind speed of 17.5 m s−= ⋅v  at a hub height of 

80 mz =  and a kinematic viscosity of 5 2 11.5 10 m sν − −= × ⋅  we will obtain a Reynolds number of about 
1

7
5 2 1

7.5 m s 80 m 4 10
1.5 10 m s

z
Re

ν

−

− −

⋅ ×
= = = ×

× ⋅

v
.                          (1.6) 

This Re value is far beyond the critical Reynolds number at which the transition from a laminar to a turbulent 
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flow occurs. 
In the following section, we will present the governing equations for macroscopic and turbulent systems rele-

vant for wind power studies: (a) the local balance equations for momentum (also called the Navier-Stokes equa-
tion), (b) total mass (also called the equation of continuity), and (c) kinetic energy. It is shown that the Bernoulli 
equation for an incompressible flow can simply be derived from the local balance equation of kinetic energy. 
Furthermore, we will derive the simplified integral balance equations recently used by Sørensen [6] in his re-
view on the aerodynamic aspects of wind energy conversion to incorporate his results in our discussion. Addi-
tionally, we will demonstrate that Equation (1.4) derived by Gorban’ et al. [1] is incomplete for the ABL so that 
their maximum efficiency calculation for plane propellers of about 30 percent for free fluids has to be discarded, 
as suggested by van Kuik et al. [9]. This means that the filtration Equation (1.2) is meritless if the maximum ef-
ficiency of wind power has to be determined. In Section 3, we will discuss the main characteristics of propel-
ler-type wind turbines. Our discussion will include the basics of the axial momentum theory, Joukowsky’s con-
stant circulation model, Glauert’s infinite-bladed actuator disk model, and finite-bladed rotor models. We will 
show that the Betz-Joukowsky limit is, indeed, the maximum of the wind power efficiency, even though some 
results of Joukowsky’s constant circulation model might exceed it because of physically inadequate conditions. 
Glauert’s [10] optimum actuator disk and finite-bladed rotors [6] [11] [12] tend to this maximum, if the tip- 
speed ratio, λ , increases. 

2. Theoretical Background 
2.1. The Governing Equations for the Macroscopic System 
In order to outline the generation of electricity by extracting kinetic energy from the wind field we consider the 
local balance equations for momentum (i.e., Newton’s 2nd axiom), Equation (2.1), and total mass, Equation (2.2), 
for a macroscopic system given by (e.g., [13]-[16]): 

( ) ( ) ( )2p
t
ρ

ρ ρ ϕ ρ
∂

+ ∇ ⋅ + + = − ∇ − ×
∂

Ω
v

vv E J v                      (2.1) 

and 

( ) 0
t
ρ ρ∂
+ ∇ ⋅ =

∂
v .                                    (2.2) 

Here, ρ  is the air density, t is time, v  is the velocity of the flow, J  is the Stokes stress tensor given by 

( )( ) ( )T 2
3dρν µ ρν = ∇ + ∇ + − ∇ ⋅ 

 
J v v v E .                        (2.3) 

where dµ  is the bulk viscosity (near zero for most gases), E  is the identity tensor, ϕ  is the gravity poten-
tial, and Ω  is the angular velocity of the Earth. Both J  and E  are symmetric second-rank tensors. Fur-
thermore, the 1st term of the left-hand side of Equation (2.1) describes the local temporal change of momentum, 
and the 2nd term represents the exchange of momentum between the system under study and its surroundings, 
where p +E J  exerts on the boundary of this system. The 1st term on the right-hand side of this equation 
represents the gravity force, and the 2nd one the Coriolis force. Equation (2.2) is the equation of continuity. In 
addition, local balance equations for various energy forms (i.e., internal energy, kinetic energy, potential energy, 
and total energy), various water phases (i.e., water vapor, liquid water, and ice), and gaseous and particulate at-
mospheric trace constituents exist. All these local balance equations can be derived from integral balance equa-
tions (e.g., [13] [14]). Since ( ) ( ) ( ) d dD Dt t tρ ρ ρ ρ= ∂ ∂ + ∇ ⋅ =v v vv v  and ( )p p∇⋅ = ∇E , Equation (2.1) 
is often written as (e.g., [17]-[19]) 

( )1 2p
t

ϕ
ρ ρ

∂ ∇
+ ⋅∇ + ∇ ⋅ = − − ∇ − ×

∂
v v v J vΩ ,                            (2.4) 

where d dt t= ∂ ∂ + ⋅∇v v v v  is the substantial derivative with respect to time. This equation form not only 
disguises its origin, namely the corresponding integral balance equation, but also is unfavorable if it has to be 
averaged, for instance, in the sense of Reynolds [20] to find a tractable equation for turbulent atmospheric layers. 
Nevertheless, in accord with Lamb’s transformation (e.g., [21]) 
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( )
2

2
 

⋅ ∇ = ∇ − × ∇× 
 

vv v v v ,                              (2.5) 

Equation (2.4) may be written as 

( )
2 1 12

2
p

t
ϕ

ρ ρ
 ∂

+ ∇ − × ∇× + = − ∇ ⋅ − ∇ − ∇ ∂  
Ωv v v v J .                       (2.6) 

The curl of Equation (2.6) leads to the prognostic equation for the vorticity 

( ) ( )( )
2 1 12

2
p

t
ϕ

ρ ρ
     ∂

∇× +∇×∇ −∇× × ∇× + = −∇× ∇ ⋅ − ∇× ∇ −∇×∇     ∂     
Ωvv v v J ,    (2.7) 

As the curl of the gradient of a scalar field is equal to zero, Equation (2.7) can be written as 

( ) ( )( ) 1 12 p
t ρ ρ

   ∂
∇× +∇× ∇× + × = −∇× ∇ ⋅ −∇× ∇   ∂    

Ωv v v J .                   (2.8) 

This equation plays an important role in the description of rotational flows as occurred in the wake of the 
wind turbine. If the friction effect is negligible and the density is considered as spatially constant like in case of 
an incompressible fluid we will obtain 

( ) ( )( )2 0
t
∂

∇× + ∇× ∇× + × =
∂

v v vΩ .                            (2.9) 

To deduce the local balance equation for the kinetic energy of the flow, Equation (2.1) has to be scalarly mul-
tiplied by the velocity vector v . Using the identities 

( ) { } ( ) { } ( ): :p p p p p⋅∇ ⋅ + = ∇ ⋅ + ⋅ − ∇ + = ∇ ⋅ + ⋅ − + ∇v E J v v J v E J v v J E J v       (2.10) 

and 
:p p∇ = ∇ ⋅E v v                                        (2.11) 

leads to 
2 2

:
2 2

p p
t
ρ ρ ρ ϕ

    ∂  +∇ ⋅ + + ⋅ = − ⋅ ∇ + ∇ ⋅ + ∇    ∂      

v v v v J v v J v .                (2.12) 

The colon expresses the double-scalar product (also called the double dot product) of the tensor algebra. Fur-
thermore, ( ) ( ) 0⋅ × = ⋅ × =Ω Ωv v v v . The 1st term of the left-hand-side of Equation (2.12) describes the local 
temporal change of kinetic energy, and the 2nd term is the energy exchange of the system with its surroundings 
which is performed by the surrounding air on the boundary of the system. The 1st term of the right-hand-side 
represents the conversion of potential energy into kinetic energy and vice versa, the 2nd term describes the re-
versible work rate of expansion, 0∇ ⋅ >v , or contraction, 0∇ ⋅ <v , and the 3rd term represents the irreversible 
work rate owing to viscous friction. This term represents the dissipation of kinetic energy into the reservoir of 
heat. The term of our primary interest reads 

2

2kin ρ=
vS v .                                    (2.13) 

It describes the transport of kinetic energy by the flow, and it may be called the kinetic energy stream density, 
but it is also denoted as wind power density. Inserting the definition of the total pressure, 

2

2
H p ρ= +

v ,                                    (2.14) 

into Equation (2.12) yields 

( ) :H pH p
t t

ρ ϕ∂ ∂
+ ∇ ⋅ + ⋅ = − ⋅ ∇ + ∇ ⋅ + ∇

∂ ∂
v v J v v J v .                     (2.15) 
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2.2. The Governing Equations for the Turbulent System 
Since the ABL is mainly governed by turbulent motion, the use of the macroscopic balance Equations (2.1), 
(2.2), and (2.12) is rather impracticable. Therefore, these balance equations are customarily averaged in the 
sense of Reynolds [20]. However, conventional Reynolds averaging will lead to various short-comings in the set 
of governing equations for turbulent atmospheric flow, even if these averaging techniques can be performed ac-
curately [22]. If we ignore, for instance, density fluctuation terms, the possibility to describe physical processes 
as a whole will clearly be restricted (see [23] [24]). The key questions that still remain are (a) how to average the 
governing macroscopic equations in the case of turbulent atmospheric flows and (b) what are the consequences 
of such an averaging, not only for momentum and total mass, but also for various energy forms like kinetic en-
ergy, potential energy, internal energy, and total energy, consisting of the sum of these three energy forms. In 
the terrestrial atmosphere, the total energy is conserved. As sketched in Figure 1 for a turbulent system (Hes-
selberg fluid), there are various ways of energy conversion. 

As argued by various authors [22]-[34], the density-weighted averaging procedure suggested by Hesselberg 
[35] is very appropriate to formulate the balance equation for turbulent systems. It is given by 



ρχχ
ρ

= ,                                     (2.16) 

where χ  is a field quantity like the wind vector, v , the specific internal energy, e, and the specific enthalpy, h. 
Furthermore, the overbar ( ) characterizes the conventional Reynolds mean. Whereas the hat (  ) denotes the 
density-weighted average according to Hesselberg, and the double prime (") marks the departure from that. It is  
obvious that " " 0ρ χ ρχ= = . The Hesselberg mean of the wind vector, for instance, is given by ρ ρ=v v .  
Note that intensive quantities like the pressure, p, and the density, ρ , of air are averaged in the sense of Rey-
nolds. Arithmetic rules can be found, for instance, in [25]-[27] [29] [31]. As pointed out by Kramm and Meixner 
[22] and Lumley and Yaglom [36], Hesselberg’s average is sometimes misnamed the Favre average. 

In comparison with that of Reynolds, Hesselberg’s averaging calculus leads to several prominent advantages 
[22] [25]-[27] [29]-[31] [35]: (a) The equation of continuity, 
 

 
Figure 1. Schematic representation of the energy conversion 
within a turbulent system (Hesselberg fluid) and the exchange 
of energy with its surroundings which is performed by the 
surrounding air on the boundary of the system. As illustrated 
in this sketch, there is no direct conversion of mean internal 
energy into mean potential energy and vice versa. Note that 

S IR= +R R R  is the total irradiance, where RS is solar irradi-

ance and RIR is the infrared irradiance. Furthermore, hJ  and 

h hρ ′′=F v  are the mean molecular and the turbulent enthalpy 
flux densities, respectively. All other symbols are explained 
in the text.                                            
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( ) 0
t
ρ ρ∂
+ ∇ ⋅ =

∂
v ,                                     (2.17) 

keeps its form, and (b) the mean value of kinetic energy can exactly be split into the kinetic energy of the mean 
motion and mean value of the kinetic energy of the eddying motion, according to 

( )2 22 2 21 1 1 " "
2 2 2 2

ρρ ρ ρ= + = + v v v v v .                            (2.18) 

This advantage is especially important in the theoretical description of the extraction of the kinetic energy 
from the wind field for generating electricity. The use of density-weighted averages is the common way to de-
fine averages in studies of highly compressible turbulent flows (see also [29] [32]), probably the most natural 
way to define averages. The kinetic energy of the mean motion is usually abbreviated by MKE, and the kinetic 
energy of the eddying motion is usually called the turbulent kinetic energy abbreviated by TKE. 

Hesselberg’s average procedure will be applied within the framework of this contribution. It can be related to 
that of Reynolds by (e.g., [22] [26] [30] [31] [37]) 



' ' ' '1ρ χ ρ χχ χ χ
ρ ρ χ

  = + = + 
  

.                                (2.19) 

Here, the prime ( ' ) denotes the deviation from the Reynolds mean. Obviously, the different means, χ  and  
χ , are nearly equal if { }' ' 1ρ χ ρ χ   as used, for instance, in case of the Boussinesq approximation. In case  

of a nearly incompressible fluid, the distinction between v  and v  is not necessary because the condition  

{ }' ' 1ρ ρ v v  is clearly fulfilled. However, to avoid any kind of confusion, we keep our notation. 

In the averaged form, the local balance equation for momentum of the turbulent atmosphere reads (e.g., [22] 
[25]-[27] [29] [35] [38]) 

( ) ( ) ( )2p
t

ρ
ρ ρ ϕ ρ

∂
+ ∇ ⋅ + + + = − ∇ − ×

∂
Ω



  

v
vv E J F v ,                   (2.20) 

where " "ρ=F v v  is the Reynolds stress tensor. It results from averaging the term ρvv  in Equation (2.1) 

leading to " "ρ ρ ρ= +vv vv v v  . Similar local balance equations can be derived for various energy forms (i.e.,  
internal energy, kinetic energy, potential energy, and total energy), various water phases (i.e., water vapor, liquid 
water, and ice), and gaseous and particulate atmospheric trace constituents [22] [25]-[31] [38] [39]. 

Averaging Equation (2.12) provides the corresponding local balance equation for the kinetic energy 

( ) ( ) ( )2 22 2 21" " " " "
2 2 2

" : : "

p
t

p p

ρ ρ ρ

ρ ϕ

   ∂  + + ∇ ⋅ + + + ⋅ + + + ⋅    ∂     

= − ⋅∇ − ⋅ ∇ + ∇ ⋅ + ∇ + ∇

   

  

v v v v v v J F v v v J

v v v J v J v

       (2.21) 

Obviously, the local derivative with respect to time not only contains the MKE, but also the TKE as outlined 
by Equation (2.18). Assuming, for instance, steady-state condition leads to 

( ) ( )2 22 2" 0 " const.
2 2t
ρ ρ ∂

+ = ⇒ + =  ∂  
 v v v v                       (2.22) 

This means that the total kinetic energy is time-invariant, but MKE can be converted into TKE. In the inertial 
range, for instance, the TKE is transferred from lower to higher wave numbers until the far-dissipation range is 
reached, where kinetic energy is converted into heat energy by direct dissipation, :∇J v , and turbulent dissipa- 
tion, : "∇J v . Even though the fluctuations of the wind vector are usually small as compared to the mean wind 

vector, " 

v v , the opposite is true for their gradients, "∇ ∇v v . This phenomenon is connected with a 
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great intensity of rotation and is characteristic for all turbulent flows. Except for the immediate vicinity of rigid 
walls, turbulent dissipation exceeds direct dissipation by several orders of magnitude depending on the Reynolds 
number (e.g., [18] [22]). Furthermore, the mean kinetic energy stream density reads 

( )2 2 21" " "
2 2kin
ρ ρ= + +S v v v v v  .                         (2.23) 

This equation describes the transfer of MKE and TKE by the mean wind field and the transfer of TKE by the 
eddying wind field. Ignoring the turbulent effects yields 

21
2kin ρ=S v v  ,                                 (2.24) 

i.e., kinS  is approximated by the MKE stream density. The magnitude of kinS  is given by 
2 31 1

2 2kin vρ ρ= =S v v   ,                              (2.25) 

where v=v  . Apparently, this quantity expresses that the wind power density is proportional to the cube of the 

wind speed. The rotor of a wind turbine causes a divergence effect expressed by 0kin∇ ⋅ ≠S . 
Unfortunately, there is a notable inconsistency regarding the role of the turbulence intensity. According to de  

Vries [40], for instance, this quantity is 

u uTi uσ= , where uσ  is the standard deviation of the horizontal wind 
speed and 2 2"u uσ =  is the corresponding variance. If we assume that only a horizontal component of the mean 
wind field exists, for the purpose of convenience, in the direction of the x-axis of a Cartesian coordinate frame, 
Equation (2.23) would provide 





 

2 23

2 3

" " "1
2kin x

uu
u u

ρ ρ

ρ

 
 = + +
 
 

v vS                             (2.26) 

or 







 

2 233
2 3

" " "1 uu u
u u

ρ

ρ

 
 = + +
 
 

v v ,                            (2.27) 

i.e. we have still to consider the fluctuations of all components in this coordinate frame. On the other hand, de  

Vries [40] argued that the instantaneous value is given by  "u u u= + , and, hence,  ( )3
3 "u u u= + , i.e., 



( )

   

 

3 3 23 2 3" 3 " 3 " "u u u u u u uu u= + = + + + .                      (2.28) 

Since " 0u = , we have 











2 333
2 3

"1 3 u uu u
u u

σ 
 = + +
 
 

.                              (2.29) 

The term  

33"u u  is only equal to zero when the probability distribution of u is symmetrical. Nevertheless,  
for estimating the effect owing to turbulence this term is ignored which leads to 



 ( )33 21 3 uu u Ti= + .                               (2.30) 

Ignoring the similar term in Equation (2.27) yields 





  

2 2 233
2 2 21 u v wu u

u u u

σ σ σ 
= + + +  

 
,                             (2.31) 
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where 2 2"v vσ =  and 2 2"w wσ =  are the variances with respect to the y- and z-axis of a Cartesian coordinate 
frame. Thus, only in case of 2 2 2

u v wσ σ σ= =  Equations (2.30) and (2.31) become identical, but such an equality 
does not generally exist. Figure 2 shows that the mean and the median of the turbulence intensity depending at 
the height of 90 m [41]. The observations were performed at the offshore measurement platform FINO1 which 
is located 45 km north of the island of Borkum in the German Bight. For wind speeds ranging from 13 m s−⋅  to 

125 m s−⋅  the mean and the median of the turbulence intensity are smaller than 0.1. This means that according 
to Equation (2.30), the effects of the turbulence intensity are smaller than 3 percent. As reported by Türk and 
Emeis [41], the same is true for this wind speed range at the 30 m height. The effect by turbulence may become 
more influential in case of aerodynamically rougher landscapes covered, for instance, with vegetation. In case of 
wind farms the effect by turbulence may considerably increase inside the array of wind turbines [42] [43]. 

To obtain the local balance equation of MKE, Equation (2.20) has to be scalarly multiplied by v  leading to 

( ) ( )
2 2

:
2 2

p p
t
ρ ρ ρ ϕ

    ∂     + ∇ ⋅ + + ⋅ + = − ⋅ ∇ + ∇ ⋅ + + ∇    ∂      

v v v v J F v v J F v
 

          (2.32) 

or 

( ){ } ( ) :H pH p
t t

ρ ϕ∂ ∂
+ ∇ ⋅ + ⋅ + = − ⋅ ∇ + ∇ ⋅ + + ∇

∂ ∂
    v v J F v v J F v            (2.33) 

with 
2

2
H pρ= +

v .                                 (2.34) 

The quantity H may be considered as the mean total pressure. Subtracting Equation (2.32) from Equation 
(2.21) yields 

 2 2 21" " " " " " : " :
2 2 2

p
t

ρ ρ ρ
   ∂

+ ∇ ⋅ + + ⋅ = − ⋅∇ + ∇ − ∇      ∂    
 v v v v v v J v J v F v           (2.35) 

or 

  ( )2 2 21" " " " " : " : 1
2 2 2 fS

t
ρ ρ ρ

   ∂
+ ∇ ⋅ + + ⋅ = ∇ − ∇ −      ∂    

v vv v v v J J v F v  ,           (2.36) 

 

 
Figure 2. Turbulence intensity depending on wind speed at 90 m height for 
the period September 2003-August 2007 (taken from Türk and Emeis, [41]). 
The observations were performed at the offshore measurement platform FINO1 
which is located 45 km north of the island of Borkum in the German Bight.                                                            
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where 

"
ˆ:f

pS ⋅ ∇
=
− ∇
v

F v
                                (2.37) 

is a non-dimensional parameter characterizing the thermal stability of a turbulent flow. This stability parameter 
expresses the relative importance of the two TKE-terms. It may be interpreted as a generalized Richardson 
number. The difference between the well-known flux-Richardson number and the generalized Richardson num-
ber results from the parameterization of " p⋅ ∇v  [22] [27]. Besides the vertical effects also horizontal effects 
have to be regarded under certain circumstances. In case of 0 " 0fS p> ⇔ ⋅∇ >v , mechanically produced 
TKE is mainly consumed by Archimedean effects. Consequently, there exists a critical fS -value given by 

, 1f crS = . It characterizes that the mechanical gain of TKE is equal to the thermal loss of TKE, i.e., the term
( ): 1 fS∇ −F v  becomes equal to zero, and the net production rate of TKE vanishes. As the turbulent dissipa-

tion still acts as a sink of TKE, the turbulent flow will become more and more viscous (laminar). In case of 
0 " 0fS p< ⇔ ⋅∇ <v , TKE is generated mechanically and thermally. If the mechanically generated TKE is 

much smaller than the thermal gain of TKE, and, hence, negligible, free convective conditions, ,f f fcS S≤ , will 
occur. In the remaining range, forced convective conditions may prevail, , 0f fc fS S< < . Thermally neutral 
stratification is characterized by 0fS = . The 2nd-order balance equation (2.35) is the only balance equation that 
additionally arises from averaging a macroscopic balance equation (e.g., [18] [23]). In meteorological models, 
the balance equation of TKE (2.35) serves to derive the eddy diffusivities for momentum and—via the turbulent 
Prandtl number and the species-dependent turbulent Schmidt numbers—the eddy diffusivities for sensible heat, 
and water vapor. This method of parameterization is known as one-and-a-half-order closure (e.g. [22] [44] [45]). 
In the mesoscale model of the National Centers for Environmental Prediction (NCEP) and the Weather Research 
and Forecasting (WRF) model, it is realized with respect to the level 2.5 of Mellor and Yamada [46]-[48]. 

The local balance equation for the mean total energy  ( )2 21 "
2tote e φ= + + +v v   can be deduced from Figure 

1 leading to 

( )
( ){ } 21 " " " 0

2
tot

h h tot

e
e p

t

ρ
ρ ρ

∂  + ∇ ⋅ + + + ⋅ + + + + + ⋅ = 
∂  

R J F v E J F v v v J .      (2.38) 

This equation demonstrates that no production or destruction of mean total energy within any given fixed 
volume exists (e.g., [22] [26] [27] [29]). Obviously, contributions of energy of different orders of magnitude are 
summed, where only a very small fraction of the total potential energy (or total internal energy), e φ+ , is 
available for conversion into kinetic energy (e.g., [22] [49]-[52]). 

From the perspective of the generation of electricity by extracting kinetic energy from the wind field, Equa-
tions (2.17), (2.20), and (2.32) play the dominant role. To obtain a tractable set of equations, effects caused by  

molecular and turbulent friction, +J F , ( )⋅ +v J F , and ( ) :+ ∇J F v , are usually ignored. In addition, in-

compressibility ( 0∇⋅ =v ) and steady state ( ( ) 0t∂ ∂ = ) conditions are presupposed. In doing so, the set of  
approximated equations reads 

( ) 0ρ∇ ⋅ =v ,                                    (2.39) 

( ) ( )2pρ ρ ϕ ρ∇ ⋅ + = − ∇ − ×Ω  vv E v ,                        (2.40) 

and 
2

2
pρ ρ ϕ

    ∇ ⋅ + = − ⋅ ∇     



 

v v v .                           (2.41) 

2.3. The Bernoulli Equation 

Because of the condition of incompressibility, 0∇ ⋅ =v , Equation (2.41) may also be written as 
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2 2

0
2 2

p pρ ρ ϕ ρ ρϕ
   
   = ⋅ ∇ + + ⋅ ∇ = ⋅ ∇ + +
   
   

v vv v v
 

   .                    (2.42) 

Based on this condition, Bernoulli’s equation, which plays an important role in describing the conversion of 
wind energy, can simply be derived by considering this condition along a streamline. In accord with the natural 
coordinate frame for streamlines, the Nabla operator reads 

( ) ( ) ( ) ( )
s s s

s ss n b
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

t n b
  


.                            (2.43) 

Here, we consider a natural coordinate frame with the unit vectors st , sn  , and sb  that form a right- 
handed rectangular coordinate system at any given point of a curve in space (moving trihedron) like a trajectory 
or a streamline (see Figure 3), where the subscript s characterizes the streamline-related quantities. The velocity 
vector at a given point along the streamline is given by s tV V= =v t t , where V is its magnitude, st  is the unit 
tangent of the streamline, and tt  is the unit tangent of the corresponding trajectory. The unit vectors sn  and 

sb  are the principal normal and the binormal, respectively (e.g., [53] [54]). The different meaning of trajectories 
and streamlines is explained in the Appendix A. 

With respect to Equation (2.43), the condition (2.42) results in 

 

2 2

0
2 2s sV p V p

s s
ρ ρϕ ρ ρϕ

   ∂ ∂   = ⋅ + + = + +
   ∂ ∂   

v vt t
 

.                  (2.44) 

This means that for any value of 0V ≠ , the condition 
2

const.
2

p ρ ρϕ+ + =
v                                   (2.45) 

is fulfilled along a streamline. Equation (2.45) is Bernoulli’s equation (e.g., [14] [15] [17] [55] [56]). Even though 
air density is considered as spatially constant, Bernoulli’s equation can often be applied to atmospheric flows. If 
the streamlines are mainly horizontally oriented and the variation of the gravity potential with height is small 
like in case of the swept area of a wind turbine, the variation of the gravity effect may be considered as negligible 
 

 
Figure 3. Chronologically ordered streamlines (dashed lines) enveloped by a 
trajectory (solid line). The trihedron at any point of the trajectory is given by 
the unit tangent, tt , the principal normal, tn , and the binormal, tb . The 
−t tt n  plane is called the osculating plane, the −t tt b  plane is the rectifying 

plane, and the −t tn b  plane is the normal plane (e.g., [53] [54]). The corre-
sponding unit vectors of a streamline are st , sn , and sb , where at a given 
point st  and tt  are identical.                                           
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so that Equation (2.45) results in (e.g., [21] [56]) 
2

const.
2

H p ρ= + =
v                                   (2.46) 

This approximation of Bernoulli’s equation customarily serves as the foundation of, and is used to derive the 
Rankine-Froude theorem. 

2.4. The Integral Equations 
The integration of Equations (2.39) to (2.41) over a time-independent control volume, encompassing the rotor of 
the wind turbine, yields [6] [56] 

( )d 0
CV

Vρ∇ ⋅ =∫ v ,                                  (2.47) 

( ) ( )( )d 2 d
C CV V

p V Vρ ρ ϕ ρ∇ ⋅ + = − ∇ + ×∫ ∫vv E v  Ω ,                  (2.48) 

and 

( )
2

d d
2

C CV V

p V Vρ ρ ϕ
    ∇ ⋅ + = − ⋅ ∇     

∫ ∫
v v v


  .                      (2.49) 

In accord with Gauss’ integral theorem, Equation (2.47) and the left-hand side of Equation (2.48) can be writ-
ten as 

( )
( )

d d 0
C CV A V

V Aρ ρ∇ ⋅ = ⋅ =∫ ∫ v v n                           (2.50) 

and 

( ) ( )
( )

d d
C CV A V

p V p Aρ ρ∇ ⋅ + = + ⋅ =∫ ∫   vv E vv E n T ,                (2.51) 

where T  is the thrust. Since ρvv   is a second-rank tensor, it is advantageous to scalarly multiply Equation 
(2.48) by the unit vector xe  from the left to get the more tractable equation 



( ) ( )
( )( )d d 2 d

C C C

x x x x x
A V A V V

u A p A T Vρ ρ ϕ ρ⋅ + ⋅ = = − ⋅ ∇ + ⋅ ×∫ ∫ ∫v n e n e e v Ω .            (2.52) 

Here, x xT = ⋅e T  is the axial force acting on the rotor (e.g., [6]). If we assume that the axial direction coin-

cides with any horizontal direction, the term x ϕ⋅ ∇e  will be nearly equal to zero. Since the Coriolis accelera-

tion is given by ( )  2 2 cos sin 2 sin 2 cosw v u uφ φ φ φ× = Ω − + Ω − Ωv i j k Ω , where φ  is the latitude, and u , 

v , and w  are the components of the mean wind vector in west-east direction (characterized by the unit vector 
i ), south-north direction (characterized by the unit vector j ), and the vertical direction (characterized by the  
unit vector k ), respectively; the term ( ) ( ) 2 2 cos sin sinx x xw v uφ φ φ⋅ × = Ω − ⋅ + ⋅e v e i e j Ω is very small  

for any wind speed smaller than the cut-out wind speed because 5 17.27 10 rad s− −Ω = × ⋅ . Thus, this term is 
negligible, and Equation (2.52) may be approximated by 



( ) ( )
d d

C C

x x x
A V A V

u A p A Tρ ⋅ + ⋅ =∫ ∫v n e n .                          (2.53) 

The second term of the left-hand side of this equation is usually ignored in the blade element momentum 
(BEM) theory. However, this term is not zero [6] [10] [57]. 

The velocity vector may be expressed by   

x x r rv v vθ θ= + +v e e e , where xv , rv , and  v rθ ω=  are the cylin- 
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drical polar coordinates, respectively; and xe , re , and θe  are the corresponding unit vectors pointing in axial, 
radial, and azimuthal direction. The azimuthal velocity component acting on the rotor at a certain radius r causes 
a torque given by 



( )
d

CA V

rv A Qθρ ⋅ =∫ v n .                              (2.54) 

In accord with Gauss’ integral theorem, the left-hand side of Equation (2.49)reads 

( )

2 2

d d
2 2

C CV A V

p V p A Pρ ρ
        ∇ ⋅ + = + ⋅ =         

∫ ∫
 

 

v vv v n .              (2.55) 

This term represents the power extracted by the rotor of the wind turbine. In case of a quasi-horizontal flow, 
the right-hand side of Equation (2.49) can be neglected because ϕ∇  is quasi-perpendicular to v . The effect of 
the gravity potential was already considered as negligible in Bernoulli’s Equation (2.45). The integral relation 
(2.55) underlines the importance of Bernoulli’s equation in wind power studies. 

Rearranging the left-hand side of Equation (2.49) yields 

( )
2 2

d d d
2 2

C C CV V V

P p V V p Vρ ρ
        = ∇ ⋅ + = ∇ ⋅ + ∇ ⋅         

∫ ∫ ∫
 

  

v vv v v .            (2.56) 

Because of 0∇ ⋅ =v , the divergence term ( )p∇ ⋅ v  can be expressed by ( )p p∇ ⋅ = ⋅ ∇v v   leading to 

2 2

d d d
2 2

C C CV V V

P p V V p Vρ ρ
        = ∇ ⋅ + = ∇ ⋅ + ⋅ ∇         

∫ ∫ ∫
 

  

v vv v v .            (2.57) 

Obviously, the first term on the right-hand side of this equation is missing in that of Gorban’ et al. [1], re-
peated here by Equation (1.4). This means that the filtration Equation (1.2) that leads to Equation (1.4) is merit-
less in determining the maximum efficiency of propeller-type wind turbines. Thus, the argument of van Kuik et 
al. [9] seems to be justified by Equation (2.57). 

3. Wind Turbine Characteristics 
3.1. The Axial Momentum Theory 
3.1.1. The Rankine-Froude Theorem 
In the following, we assume a pure axial flow (one-dimensional problem), i.e., the undisturbed wind speed far  
upstream of the wind turbine, ∞v , the wind speed at the rotor area, Rv , and the undisturbed wind speed far 

downstream of the wind turbine, wv , have the same direction so that we may consider only the magnitude of 

these wind vectors expressed by v∞ , Rv , and wv , respectively. Doing so agrees with the so-called stream-tube  
model sketched in Figure 4, in which an “actuator disk” is representing the axial load on a rotor (e.g., [58]). 
This axial momentum theory was developed by Rankine [59], W. Froude [60], and R.E. Froude [61]. 

To derive the Rankine-Froude theorem we consider the variation of wind speed and pressure by approaching 
and leaving the rotor area as sketched in Figure 4, part A. In accord with Bernoulli’s equation in its approx-
imated form (see Equation (2.46)), the former can be expressed by 

 

2 2

2 2
R

R
v vH p pρ ρ∞

∞ ∞= + = + .                          (3.1) 

Whereas the latter is given by 

 

22

2 2
wR

w R w
vvH p p pδ ρ ρ= − + = + .                        (3.2) 
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(a)                                                       (b) 

Figure 4. (a) Sketch of the stream-tube model; (b) Wind speed and pressure variations by approaching and leaving the rotor 
area (with respect to Betz [58]). The stream-tube model is based on the equation of continuity expressed by Equation (3.7), 
where the mean axial velocity is approximated by a sigmoidal function   ( ) ( )( )( )01 expwv v v v∞ ∞= − − + − ξ ξ δξ  to guar-

antee that   ( )0.5R wv v v∞= + . Note that 1000 hPawp p∞= = , 0 0.5ξ = , and 0.0833δξ =  have been chosen.                 

 
Here, p∞  is the static air pressure far upstream of the wind turbine, wp  the static air pressure far downstream 
of the wind turbine, and Rp  and Rp pδ−  are the static air pressures directly in front and directly behind the 
rotor area, respectively. Thus, the jump in the Bernoulli constant, wH H H∞∆ = − , caused by the wind turbine 
is given by 

 ( )2 21
2w wH p p p v vδ ρ∞ ∞∆ = = − + − .                        (3.3) 

Assuming that wp p∞ =  yields 

 ( )  ( )  ( )2 21 1
2 2w w wH p v v v v v vδ ρ ρ∞ ∞ ∞∆ = = − = + − .                    (3.4) 

The thrust force acting on the rotor is then given by (the subscript x that occurs in Equations (2.52) and (2.53) 
is ignored in this section because a pure axial flow is presupposed so that x=n e ) 

 ( )  ( )1
2R R R w wT A p A v v v vρ ∞ ∞= ∆ = + − .                       (3.5) 

On the other hand, the thrust force experienced by the rotor can also be expressed by 

 

2 2

w wT A v A vρ ρ∞ ∞= − .                                 (3.6) 

According to Figure 4, the equation of continuity (as outlined by Equation (2.47)) can be expressed by 

   const.R R w wA v A v A vρ ρ ρ∞ ∞ = = = ,                         (3.7) 

i.e., the mass flow rate through the wind turbine is  const.R RA vρ =  With Equation (3.7), the thrust force (see  
Equation (3.6)) may be written as 

  



 



   ( )2 2

R R R R

w w w w w R R w

A v A v

T A v A v A v v A v v A v v v
ρ ρ

ρ ρ ρ ρ ρ∞ ∞ ∞ ∞ ∞ ∞= − = − = −
 

.            (3.8) 

Thus, combining Equations (3.5) and (3.8) provides 

 ( )  ( )   ( )1
2 R w w R R wT A v v v v A v v vρ ρ∞ ∞ ∞= + − = − .                       (3.9) 
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Rearranging yields 

  ( )  ( )  ( )1
2R R w R w wA v v v A v v v vρ ρ∞ ∞ ∞− = + −                        (3.10) 

or 

  ( )1
2R wv v v∞= + ,                                   (3.11) 

i.e., the axial velocity at the rotor disk corresponds to the arithmetic mean of the axial velocities far upstream 
and far downstream of the wind turbine. Equation (3.11) is the Rankine-Froude theorem (e.g., [10] [40] [58] 
[62]-[64]). 

3.1.2. The Betz-Joukowsky Limit 
According to Equation (2.55), the total wind power of the undisturbed wind field far upstream of the wind tur-
bine is given by 

 

31
2

P A v A p vρ∞ ∞ ∞ ∞ ∞ ∞= +                                 (3.12) 

and that of the undisturbed wind field far downstream of the wind turbine is given by 

 

31
2w w w w w wP A v A p vρ= + .                                (3.13) 

Again, we assume that wp p∞ = . Thus, the power extracted by the wind turbine is given by 

   

 ( )  ( )
 ( )  ( )
  ( )   ( )  ( )

3 3

3 3

2 2

2 2

1 1
2 2
1
2
1
2
1 1
2 2

w w w w w w

w w w w

R R R R w R R R R

R R w R R w w

P P P A v A p v A v A p v

A v A v p A v A v

pA v v A v v A v A v

A v v v A v v v v v

ρ ρ

ρ ρ

ρ ρ ρ ρ
ρ

ρ ρ

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞
∞

∞ ∞ ∞

= − = + − −

= − + −

= − + −

= − = + −

          (3.14) 

Inserting Equation (3.11) into Equation (3.14) yields 

 ( )  ( )2 21
4 R w wP A v v v vρ ∞ ∞= + −                            (3.15) 

or 











2
31 1 1

4
w w

R
v v

P A v
v v

ρ ∞

∞ ∞

     = + −           
.                         (3.16) 

Defining the power efficiency by PC P P∞=  leads to 

( )( )21 1 1
2P

PC X X
P∞

= = + − ,                           (3.17) 

where  

wX v v∞=  and 

3
1 2 RP A vρ∞ ∞= . Trivially, 0X =  leads to 1 2pC = , and for 1X =  we obtain 

0pC = . To determine the maximum of PC , we have to consider the first derivative test, d d 0PC X = , and the  
second derivative test, 2 2d d 0PC X < . The first derivative test leads to   1 3wX v v∞= = , for which the second  
derivative becomes negative, i.e., for 1 3X = , the wind power efficiency reaches its maximum (see Figure 5). 
Inserting 1 3X =  into Equation (3.17) yields 
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Figure 5. The Betz-Joukowsky limit. The solid line represents 
Equation (3.17) and the dash-dotted lines characterize the 
maximum of the power efficiency (with respect to Betz [58]).   

 
16 0.593
27PC = ≅ .                                  (3.18) 

According to Betz [3], and Joukowsky [4], this value is the maximum wind power efficiency (see also [6] [11] 
[40] [58] [62]-[64]). 

Sometimes, the axial interference factor, a, defined by (e.g., [6] [11] [12] [62] [63]) 
 







1R Rv v va
v v

∞

∞ ∞

−
= = − ,                                  (3.19) 

is inserted. Using this factor leads to 
  ( )1Rv v a∞= −                                     (3.20) 

and 
  ( )  ( )1 2 1wv v a v b∞ ∞= − = −                                (3.21) 

with 2b a= . The axial interference factor measures the impact of the wind turbine on the air flow. In accord 
with the definition of this factor, the wind power efficiency and the thrust force can be expressed by 

( )24 1PC a a= −                                     (3.22) 

and 

  ( ) ( ) 

214 1
2R R w RT A v v v a a A vρ ρ∞ ∞= − = − .                         (3.23) 

The latter may be used to define the thrust coefficient, TC , by (e.g., [6] [11]) 



( )
2

4 1
1
2

T

R

TC a a
A vρ ∞

= = − .                               (3.24) 

Thus, we have ( )1P TC a C= − . 

3.2. General Momentum Theory 
The result of the Betz-Jowkowsky limit is based on simplified description of the flow field. Even though the 
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flow field exhibits a pure axial behavior in front of the rotor, the exertion of a torque on the rotor disk by the air 
passing through it causes an equal, but opposite torque to be imposed on the air. Because of this reaction torque, 
the air starts to rotate in a direction opposite to that of the rotor; the air gains angular momentum and so in the 
wake of the rotor disk the air particles have a velocity component in a direction which is tangential to the rota-
tion as well as having an axial velocity component [65]. Since the stream tube is opening behind the propeller, 
there is also a velocity component in the radial direction. Thus, by interacting with the rotor also velocity com-
ponents in radial and azimuthal directions occur. The velocity vector at the rotor may be expressed by cylindric-
al polar co-ordinates; the velocity vector in the wake behind the rotor may be expressed in a similar manner. 

To consider these rotational effects, Glauert [10] developed a simple model for the optimum rotor. In his ap-
proach, the rotor is a rotating axisymmetric actuator disk, corresponding to a rotor with an infinite number of 
blades [6] [11] [12]. 

As outlined in Appendix B, the general equations of the General Momentum Theory lead to (see Equation 
(B.24)) 

 ( )
 



2
2

1 1
1 2 2
2

R w R

w w w w
w x

v v v r
v v

ω ω
ω∞

 Ω + Ω + 
− = − 

  
 

,                 (3.25) 

where v∞  is, again, the undisturbed wind speed far upstream of the wind turbine, RΩ  is the angular velocity 

of the rotor, xv  is the axial velocity through the propeller disk, ω  is the angular velocity imparted to the slip-

stream, wv  the axial velocity in the final wake, and wω  the corresponding angular velocity at radial distance  

wr  from the axis of the slipstream. Equation (3.25) already derived by Glauert [10] for an engine-driven pro-
peller and by Wilson and Lissaman [62] for propeller-type wind turbines suffice to determine the relationship 
between the thrust and torque of the propeller and the flow in the slipstream. Owing to the complexity of the 
equations, however, it is customary to adopt certain approximations based on the fact that the rotational velocity 
in the slipstream is generally very small. 

3.2.1. Joukowsky’s Constant Circulation Model 
An exact solution of the general equations of the General Momentum Theory can be obtained when the flow in 
the slipstream is irrotational except along the axis [10]. This condition implies that the rotational momentum 

2rω  has the same value k for all radial elements, i.e., 
2 2

w wr r kω ω= = .                               (3.26) 

Here, r is the radial distance of any annular element of the propeller disk. Equation (3.26) is the basis for Jou-
kowsky’s constant circulation model [10] [65]. 

On the basis of Equation (B.19) of Appendix B, 

 ( ) ( ) ( )2 2 21 d d
2 d dw R w w w

w w

v v r
r r

ω ω∞ − = Ω + ,                     (3.27) 

we can deduce that the axial velocity wv  is constant across the wake because ( )2d d 0w w wr rω =  and, hence, 

d d 0w wv r = . Furthermore, Equation (3.25) is satisfied by a constant value of the axial velocity xv  across the 

propeller disk. If wv  and xv  are constant, we will obtain from the equation of continuity (see Equation (B.1)  
of Appendix B), 

 d d const.w w w xv r r v r r= = ,                               (3.28) 

and the conservation of angular momentum (see Equation (B.6) of Appendix B), 
2 2

w wr rω ω= ,                                     (3.29) 

the following relationship [10] 
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



2 2

2 2
w w

w wx

v r R
r Rv

ω
ω

= = = .                               (3.30) 

In accord with Equation (3.30), Equation (3.25) becomes 

 ( )
 



21
2

x w
w R

x

v v
v v k

v
∞

−
− = Ω .                             (3.31) 

If we assume again that 0wp p p∞∆ = − = , we will obtain (see Equation (B.14) of Appendix B) 

 ( )2 21 1
2 2w R wv v kω∞

 − = − Ω + 
 

.                          (3.32) 

Using the definitions   ( )1xv v a∞= −  and   ( )1wv v b∞= −  yields (see Equations (C.10) and (C.20) of Ap-
pendix C) 



221
2 1 R

b ab v k
a∞

−
= Ω

−
                               (3.33) 

and 

( )
( )

2

2

11 1
2 4

a b
a b

b aλ
 −

= −  − 
,                             (3.34) 

where 



R R
v

λ
∞

Ω
=                                       (3.35) 

is the tip speed ratio. Thus,   ( ) 2x wv v v∞≥ + , i.e., Equation (3.11) is not generally valid. Formula (3.34) was  

already derived by Wilson and Lissaman [62] for a propeller-type wind turbine; a similar formula was given by 
Glauert [10] for an engine-driven propeller. Obviously, Equation (3.34) can only be solved iteratively. Results of 
such a solution are shown in Figure 6. As illustrated, for tip speed ratios in the range of 0 0.25λ< < , the axial 
interference factor, a, becomes negative. These results have to be discarded because they disagree with observa-
tions. For tip speed ratios 2λ ≥ , the condition 2b a= , derived in the matter of the axial momentum theory, is 
nearly fulfilled [10] [62]. From Equation (3.34) we can infer that the condition 2b a=  is exactly fulfilled if λ  
becomes infinite. 

In accord with Equation (2.54), the torque, dQ , experienced by this annular stream tube element between r 
and dr r+  reads 

  ( )2d d 2π 1 dxQ v r A v a kr rρ ω ρ ∞= = − ,                           (3.36) 

where the area of the stream tube element is d 2π dA r r= , and k is given by Equation (3.26). Since the power 
caused by the rotor is the product of the angular velocity and this annulus torque, i.e., d dRP Q= Ω , the integra-
tion over the total blade span provides 

 ( ) 2π 1 RP v a kRρ ∞= − Ω .                                (3.37) 

Replacing RkΩ  with the aid of Equation (3.33) yields 



( )22
32 11

2
b a

P R v
b a

π ρ ∞

−
=

−
.                               (3.38) 

Thus, in contrast to the axial momentum theory, the wind power efficiency is given by [60] [62] 



( )22

32

1
1 π
2

P

b aPC
b aR vρ ∞

−
= =

−
.                              (3.39) 
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Figure 6. Effect of the tip speed ratio λ, defined by Equation (3.35), on the induced velocities for flow with an irrotational 
wake. The diagram on the right side is based on Figure 3.3 of Wilson and Lissaman [62].                                  
 

Inserting 2b a=  into this formula provides Equation (3.22). This means that the power efficiency for the ir-
rotational wake tends to that for the axial momentum theory (see Equation (3.22)) if the tip speed ratio exceeds 

2λ =  [62] [65]. Since the ratio a b  varies with λ  (Figure 6), different tip speed ratios provide different 
curves for the power efficiency. The maximum power efficiency that is close to the Betz-Joukowsky limit of  
0.593 occurs around 2 3b =  if the tip speed ratio exceeds 2λ =  (cf. Figure 7). Thus, for   1wX v v b∞= = −   
we obtain 1 3X = . This is the value for which the Betz-Joukowsky limit was determined (see Figure 5 and 
Figure 7). Consequently, in case of an irrotational wake, the axial momentum theory provides reasonable results 
for tip speed ratios larger than 2λ = . 

Glauert [10] already argued: 
The condition of constant circulation k along the blade, which has been the basis of the preceding calcula-

tions, cannot be fully realized in practice since it implies that near the roots of the blades the angular velocity 
imparted to the air is greater than the angular velocity of the propeller itself. In any practical application of the 
analysis it is therefore necessary to assume that the effective part of the propeller blades commences at a radial  
distance not less than Rk Ω  at which ω  is equal to RΩ . 

It implies that, near the roots of the blades, the angular velocity imparted to the air is greater than the angular 
velocity of the propeller itself [6]. Wilson & Lissaman [62] and de Vries [40] shared Glauert’s viewpoint that 
the solution is unphysical as it results in infinite values of power and circulation when the tip-speed ratio tends 
to zero. 

From Equations (3.30) and (3.33) we can derive 
2

2

1 1
2

1

w

R w

bRk
R
R

λ
 =  Ω     − 

 

                             (3.40) 

or 
2 21 11

1 2
w x wR

w

R v bRa
R v b k λ

Ω−   = = = +   −   
.                       (3.41) 

The maximum values of the power efficiency for various tip speed ratios are also illustrated in Figure 8. This 
diagram shows that for 2λ <  the maximum power efficiency notably exceeds the Betz-Joukowsky limit. 
However, these results must be assessed with care. For 0.5λ = , for instance, we obtain ,max 1PC =  that occurs 
at 1b = . According to Figure 6, for 1b =  the axial interference factor amounts to 0a = . Consequently,  
  ( ) 1xv v a v∞ ∞= − =  and   ( )1 0wv v b∞= − = . These results seem to be unlikely because  

xv v∞=  would only  
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Figure 7. Effect of the tip speed ratio λ, defined by Equation 
(3.35), on the power efficiency for a flow with an irrotational 
wake.                                                    

 

 
Figure 8. Maximum power efficiency, CP,max, taken from 
Figure 7 versus tip speed ratio λ defined by Equation (3.35).    

 
be adequate in case of no wind turbine and  0wv =  would require, in accord with Equation (3.30), that the  
radius of the wake, wR , must tend to infinity. 

3.2.2. Glauert’s Optimum Rotor 
For wind turbines, Glauert [10] derived an approximate solution on the basis of Equation (3.25). The angular 
velocity ω  imparted to the slipstream is, in general, very small compared with the angular velocity RΩ  of the 
rotor. Therefore, it is possible to simplify the general equations by neglecting certain terms involving 2ω . Be-
cause of this simplification the pressure wp  in the wake becomes equal to the initial pressure p∞  of the fluid, 
and the decrease of static pressure across the propeller disk is equal to the decrease of total pressure head, i.e., 

wp H H Hδ ∞= − = ∆ . The relationships connecting the thrust and axial velocity are then the same as in the  
simple axial momentum theory, the axial velocity xv  at the propeller disk is the arithmetic mean of the axial 

velocity wv  and the slipstream velocity wv . Thus, in accord with Equation (B.20) of Appendix B, the element  
of thrust becomes 
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  ( )   ( )   ( )d d 2 d 4π dw w w x x x xT v v v A v v v A v v v r rρ ρ ρ∞ ∞ ∞= − = − = − .             (3.42) 

Now, the torque experienced by this annular stream tube element is given by 
 

2 3d d 2π dx xQ v r A v r rρ ω ρ ω= = .                              (3.43) 

Inserting   ( )1xv v a∞= − , λ  and  ( )' 2 Ra ω= Ω  into these equation yields [10] 

( ) 
2

d 4π 1 dT a a v r rρ ∞= −                                (3.44) 

and 

( )  3d 4π ' 1 dRQ a a v r rρ ∞= Ω − .                              (3.45) 

Since the related power is given by d dRP Q= Ω , the integration over the total blade span provides [10] [62] 

( ) 2 3

0 0

d 4π ' 1 d
R R

R RP Q a a v r rρ ∞= Ω = Ω −∫ ∫ .                          (3.46) 

Defining r vχ ∞= Ω  leads to 

 ( )
3 3

2
0

1 8 ' 1 d
2 RP A v a a

λ

ρ χ χ
λ∞= −∫ .                           (3.47) 

Thus, the power efficiency is given by [10] [62] 



( ) 3
23

0

8 ' 1 d
1
2

P

R

PC a a
A v

λ

χ χ
λρ ∞

= = −∫ .                         (3.48) 

Alternatively, defining x r R=  provides [6] [56] 

( )
1

2 3

0

8 ' 1 dPC a a x xλ= −∫ .                                (3.49) 

This formula is equivalent to Equation (3.48). Obviously, the power efficiency strongly depends the tip-speed 
ratio, but weighted by the integral expression. Unfortunately, Equations (3.48) and (3.49) contain the two un-
knowns a and 'a . Thus, we need additional information for determining PC . 

The pressure increment at the propeller disk is given by [62] 

  ( )2 2 31d d d 4π 1 ' ' d
2R RT p A r A a a r rδ ρ ω ω ρ = = Ω + = Ω + 

 
.                (3.50) 

From Equations (3.44) and (3.50) we obtain 

( ) ( )2 ' 1 ' 1a a a aχ + = − .                             (3.51) 

To obtain the maximum power for a given tip-speed ratio λ , the factors a and 'a  must be related by [10] 

( ) d '1 '
d
aa a
a

− =                                   (3.52) 

and 

( )2 d '1 2 ' 1 2
d
aa a
a

χ + = − .                              (3.53) 

Thus, combining Equations (3.51) to (3.53) provides 

1 3'
4 1

aa
a
−

=
−

                                   (3.54) 

and 



G. Kramm et al. 
 

 
21 

( )( )2' 1 4 1a a aχ = − − .                               (3.55) 

The quantities 'a , 2'a χ , and χ  as a function of a are illustrated in Figure 9. In case of 0.333a = , we 
have a large value of 8.57χ = , while the azimuthal interference factor, ' 0.003a = , is very small. The opposite 
is true in the case of 0.253a = . The quantities χ  and 'a  amount to 0.021χ =  and ' 20.1a = , respectively. 
Inserting these values of the interference factors into Equation (3.48) provides the power efficiency of the wind 
turbine. The relationship between PC  and the tip-speed ratio λ  is illustrated in Figure 10. Obviously, the 
maximum power efficiency depends on the tip-speed ratio. It approaches the Betz-Joukowsky limit at large tip- 
speed ratio only [6] [11] [62]. 

3.3. Finite-Bladed Rotor Models 
In case of finite-bladed rotor Equations (3.42) and (3.43) are imprecise. Based on the vortex theory, each of the 
rotor blades has to be replaced by a lifting line on which the radial distribution of bound vorticity is represented 
 

 
Figure 9. The quantities 'a , 2'a χ , and χ  versus the axial 
interference factor a .                                      

 

 
Figure 10. Power coefficient, CP, vs. tip-speed ratio, λ for 
Glauert’s [10] optimum actuator disk.                         
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by the circulation ( )rΓ = Γ  depending on the radial distance along the blade [11] [12]. This results in a free 
vortex system consisting of helical trailing vortices, as sketched in Figure 11. With respect to the vortex theory, 
the bound vorticity serves to produce the local lift on the blades while the trailing vortices induce the velocity 
field in the rotor plane and the wake [11] [12]. The velocity vector in the rotor plane is made up by the rotor an-
gular velocity, RΩ , the undisturbed wind speed, v∞ , the axial and circumferential velocity components, 

Rzu , 
and 

R
uθ , respectively. These velocity components induced at a blade element in the rotor plane by the tip vor-

tices (see Figure 12). Another circumferential velocity, 
R

vθ  is induced by the hub vortex (see Figure 12). To 
determine the velocity field given by 

R
vθ , 

Rzu , and 
R

uθ  induced at a blade element in the rotor plane, the free 
half-infinite helical vortex system behind the rotor is replaced by ‘an associated vortex system’ that extends to 
infinity in both directions [12]. Neglecting deformations or changes in the wake, the vortex system is uniquely 
described by the far wake properties in the Trefftz plane [66]. It is defined as the plane normal to the relative 
wind far downstream of the rotor. In accordance with Helmholtz’ vortex theorem, the bound circulation Γ  
around a blade element is uniquely related to the circulation of a corresponding vortex in the Trefftz plane [12]. 
By symmetry, the induced velocities at a point in the rotor plane equals half the induced velocity at a corres-
ponding point in the Trefftz plane [67]-[70], i.e., 2

R
v vθ θ= , 2

Rz zu u= , and 2
R

u uθ θ=  (see also [12]). 
Okulov and Sørensen [12] distinguished between two different concepts that dominated the conceptual inter-

pretation of the optimum rotor: (a) Joukowsky [67] defined the optimum rotor as one having constant circulation 
along the blades, such that the vortex system for an bN -bladed rotor consists of bN  helical tip vortices of 
strength Γ  and an axial hub vortex of strength bN− Γ . A simplified model of this vortex system can be obtained 
by representing it as a rotating horseshoe vortex (Figure 11(a)). Betz and Prandtl [71] argued that optimum 
 

 
(a)                                                  (b) 

Figure 11. Sketch of the vortex system corresponding to lifting line theory of the ideal pro-
peller of (a) Joukowsky and (b) Betz (from Okulov and Sørensen [12], but with respect to 
Sørensen [6]).                                                                     

 

 
(a)                                                  (b) 

Figure 12. Velocity and power triangles in the rotor plane of (a) Joukowsky rotor and (b) Betz 
rotor (adopted from Okulov and Sørensen [12], but some symbols have changed to fit the text).    
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efficiency is obtained when the distribution of circulation along the blades generates a rigidly helicoidal wake 
that moves in the direction of its axis with a constant velocity. Betz used a vortex model of the rotating blades 
based on the lifting-line technique of Prandtl in which the vortex strength varies along the wing-span (Figure 
11(b)). This distribution, usually referred to as the Goldstein circulation function, is rather complex and difficult 
to determine accurately [12] [72]. 

Using the Kutta-Joukowsky-theorem 
d dR rρ= ×L V Γ ,                                 (3.56) 

where dL  is the lift force on a blade element of radial dimension dr , RV  is the resultant relative velocity and 
Γ  is the bound circulation, Okulov and Sørensen [11] deduced the local thrust and the local torque of a rotor 
blade given by 

( )d d
RRT r u r rθρ= Γ Ω +                                (3.57) 

and 
( )d d

RzQ v u r rρ ∞= Γ − .                               (3.58) 

Here, we only discuss the torque. Since the related power is given by d dRP Q= Ω , the integration over the total 
blade span provides for bN  blades yields 

( )
0

d
R

R

B R zP N v u r rρ ∞= Ω Γ −∫ .                            (3.59) 

Using the analytical solution to the induction of helical vortex filaments developed by Okulov [73], Okulov & 
Sørensen [11] extended Goldstein’s [72] original formulation by a simple modification to handle heavily loaded 
rotors in accord with the general momentum theory. Assuming that the induction in the rotor plane equals half 
the induction in the Trefftz plane in the far wake, as described before, they found for the power efficiency 

1 32 1
2 2PC I Iϖ ϖϖ   = − −  

  
.                               (3.60) 

Here, ϖ  is the dimensionless translational velocity of the vortex sheet (see Figure 11(b)) 

( )
1

1
0

2 , dI G x l x x= ∫                                     (3.61) 

and 

( )
1 3

3 2 2
0

2 , dxI G x l x
x l

=
+∫ ,                               (3.62) 

where ( ) ( ) ( ), ,bG x l N x l hϖ= Γ  is the Goldstein [72] circulation function, x r R= , ( )2πl h R= , 
2π tanh r= Φ  is the pitch of the vortex sheet, and Φ  is the angle between the vortex sheet and the rotor plane. 

Thus, l may be expressed by tanl x= Φ . The first derivative test yields 

( )2 2
1 3 1 1 3 3

3

2
3

I I I I I I
I

ϖ = + − − + .                        (3.63) 

The result of the second derivative test shows that Equation (3.63) characterizes the maximum of PC . As 
pointed out by Okulov and Sørensen [11], for a rotor with infinitely many blades, both functions, 1I  and 3I , 
tend to unity when the pitch tends to zero. In this case, Equation (3.60) degenerates to the expression 

( )22 1 2PC ϖ ϖ= − . This result is completely consistent with the axial momentum theory because 2aϖ =  
leads to Equation (3.22). Furthermore, Equation (3.63) provides 2 3ϖ =  and, hence, 1 3a = . This result is in  
agreement with   / 1 2 1 3wX v v a∞= = − =  that designates the maximum of PC  in Figure 5. 

In the vortex theory of the Joukowsky rotor [67]-[70], each of the blades is replaced by a lifting line about 
which the circulation associated with the bound vorticity is constant, resulting in a free vortex system consisting 
of helical vortices trailing from the tips of the blades and a rectilinear hub vortex [12]. As sketched in Figure 11(a), 
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the vortex system may be interpreted as consisting of rotating horseshoe vortices with cores of finite size, where 
the radius of the core is ε . The “associated vortex system” consists of a multiplet of helical tip vortices of finite 
vortex cores ( Rε  ) with constant pitch h and circulation Γ . The multiplet moves downwind (in case of a 
propeller) or upwind (in case of a wind turbine) with a constant velocity  ( )1v υ∞ ±  in the axial direction, 
where υ  is the difference between the wind speed and axial translational velocity of the vortices [12]. Using 
the analytical solution to the induction of helical vortex filaments developed by Okulov [73] again, Okulov & 
Sørensen [12] derived for the power efficiency 

1 3
1 12 1 1
2 2PC a aJ aJ   = − −   

   
                          (3.64) 

where 1 1J σ= +  and 

 ( )
1

3
0

2 , 0 dzJ u x x x= ∫ .                               (3.65) 

Here, Rσ ε=  is the non-dimensional radius of the vortex core, and  ( ), 0zu x  is a non-dimensional axial ve-
locity. For a given helicoidal wake structure, the power coefficient is seen to be uniquely determined, except for 
the parameter a. The first derivative test yields 

( )2 2
1 3 1 1 3 3

1 3

2
3

a J J J J J J
J J

= + − − + .                       (3.66) 

The result of the second derivative test shows that for this value of a characterizes the maximum of the power 
efficiency. 

Figure 13 illustrates that the power coefficient computed by Okulov and Sørensen [11] [12] for various num-
ber of blades depends on the tip-speed ratio λ  given by Equation (3.35). Also shown is the result provided by 
Glauert’s [10] optimum actuator disk. Obviously, the optimum power coefficient of the Joukowsky rotor for all 
number of blades is larger than that for the Betz rotor, but the efficiency of the Betz rotor is larger if we compare 
it for the same deceleration of the wind speed [12]. The difference, however, vanishes for λ →∞  or for 

bN →∞ , where in both models tend towards the Betz-Joukowsky limit [12]. 
Since neither the axial interference factor a nor λ  explicitly occurs in Equations (3.60) and (3.63), λ  and 

a have to be connected to the helical pitch l and the generic parameter w by [12] 



1
2

R R R w
lv

λ
∞

Ω  = = − 
 

                                (3.67) 

and 
 

 
(a)                                                  (b) 

Figure 13. Power coefficients, CP, of an optimum rotor as a function of tip speed ratio and 
number of blades. (a) Joukowsky rotor and (b) Betz rotor (adopted from Okulov and Sørensen 
[12]). The red lines are added. They illustrate the solution of Glauert’s optimum actuator disk 
shown in Figure 10.                                                                  
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( )
1

0

, da w G x l x= ∫ ,                                (3.68) 

In case of the Joukowsky rotor the tip-speed ratio can be expressed by [12] 



1 1
2

R R R a
l Rv

ελ
∞

Ω   = = − +  
  

.                           (3.69) 

3.4. The Efficiency of Real Wind Turbines 
Figure 14 shows the power curves of seven wind turbines of different rated power listed in Table 1. The power 
curves were determined by considering the listed values (only the Enercon machines) or by taking discrete val-
ues from the power curves illustrated in the actual brochures found at the manufacturers’ websites. Based on 
these discrete values, the parameters A, K, Q, B, M, and u of the generalized logistic function (e.g., [56]) 

( )
( ){ }( )

1

1 exp u

K AP v A
Q B v M

−
= +

+ − −

.                          (3.70) 

were numerically determined for each of the seven wind turbines (see Table 2). The function ( )P v  represents 
the power generated by the corresponding wind turbine at the wind speed v. 

Figure 15 illustrates the wind power density, kinS , for (a) a flow far upstream to the wind turbine given Eq-
uation (2.25) with 31.2 kg mρ −= ⋅ , (b) an “ideal” wind turbine generating wind power by obeying the Betz- 
 

 
Figure 14. Wind power density of seven wind turbines of different rated 
power considered in this study. They are based on the parameters of the ge-
neralized logistic function (see Equation (3.70)) listed in Table 2.            

 
Table 1. Specifications of the wind turbines considered in this study.                                                    

Wind turbine Hub 
height (m) 

Swept 
area (m2) 

Cut-in wind 
speed (m∙s−1) 

Rated wind 
speed (m∙s−1) 

Cut-out wind 
speed (m∙s−1) 

Rated power 
(kW) Wind Class 

Enercon E-48 76 1810 2-3 13.5 25 800 IEC IIa 

Suzlon S64 Mark II-1.25 MW 74.5 3217 4 12.0 25 1250 IIa 

General Electric 1.6 - 82.5 80 5345 3.5 11.5 25 1600 IEC IIIb 

Senvion MM92 78 - 80 6720 3 12.5 24 2050 IEC IIa 

Mitsubishi MWT95/2.4 80 7088 3 12.5 25 2400 IEC IIa 

Enercon E-82 E4 78/84 5281 2-3 16 25 3000 IEC IIa 

Siemens SWT-3.6 - 107 80 9000 3 14.0 25 3600 IEC Ia 
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Figure 15. Wind power densities of the seven wind turbines listed in Table 1. 
Also shown are the wind power density kinS  given by Equation (2.25), and 

kinS  weighted by the Betz-Joukowsky limit.                             

 
Table 2. Parameters A, K, Q, B, M, and u of the generalized logistic function (3.70) used to model the wind turbines’ power 
curves.                                                                                                 

Wind turbine A K Q B M u 

Enercon E-48 −24.9 811.2 0.54 1.0 10.9 2.3 

Suzlon S64 Mark II-1.25 MW −56.5 1250.6 3.88 2.0 9.6 4.5 

General Electric 1.6 - 82.5 −315.7 1601.3 1.66 2.0 9.8 7.2 

Senvion MM92 −267.6 2050.4 19.5 1.9 8.5 6.2 

Mitsubishi MWT95/2.4 −270.4 2403.3 12.2 1.5 8.8 4.9 

Enercon E-82 E4 −113.8 3038.8 1.49 0.6 10.6 1.7 

Siemens SWT-3.6 - 107 −414.3 3599.6 40.0 1.4 9.0 5.4 

 
Joukowsky limit of 0.593PC = , and (c) the power curves of the seven wind turbines shown in Figure 14, but 
normalized by the corresponding swept areas. As shown in Figure 15, the wind power densities are lower than 
the Betz-Joukowsky limit, but follow it up to a wind speed at hub height of 110 m s−⋅  or so. Beyond this wind 
speed, they approach plateau values at the rated wind speeds; these plateau values are ranging from 

2300 W m−⋅  (General Electric 1.6-82.5) to 2575 W m−⋅  (Enercon E-82 E4). The two other wind power densi-
ties continuously increase because of the 

3
v -law. Thus, the power efficiencies of all wind turbines considered 

here are notably higher than the 30-percent limit of Gorban’ et al. [1] for wind speeds between 16 m s−⋅  and 
111 m s−⋅  (see Figure 16). In case of wind speeds higher than 111 m s−⋅ , the power efficiencies eventually fall 

below this 30-percent limit and approach very low values in the vicinity of the cut-out wind speed. 

4. Summary and Conclusions 
We demonstrated that the filtration equation used by Gorban’ et al. [1] for determining the maximum efficiency 
of plane propellers at about 30 percent for free fluids plays no role in describing the flows in the ABL and has to be 
discarded. The ABL is mainly governed by turbulent motion, even though the effect of the turbulence intensity 
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Figure 16. Power efficiencies of the seven wind turbines listed in Table 1 (in 
accord with Enercon’s product overview updated in September 2012).           

 
is relatively small in the undisturbed wind field over water surfaces. This effect may become more influential in 
case of aerodynamically rougher landscapes covered, for instance, with vegetation canopies. In case of wind 
farms the effect by turbulence may considerably increase inside the array of wind turbines. Based on Equation 
(2.57), we showed that the criticism of van Kuik et al. [9] regarding the work of Gorban’ et al. [1] is quite justi-
fied. 

We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem 
must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. 
Including this correction leads to the Betz-Joukowsky limit, namely of a maximum efficiency of 59.3 percent. 

We also assessed Joukowsky’s constant circulation model that leads to values of the maximum efficiency ex-
ceeding the Betz-Jowkowsky limit for very low tip speed ratios. Some of these values, however, have to be re-
jected because of physical reasons. 

Using Glauert’s [10] optimum actuator disk, and the results of the blade-element analysis by Okulov and 
Sørensen [11] [12] we illustrated that the maximum efficiency of propeller-type wind turbines depends on tip- 
speed ratio and the number of blades. 

Finally, we showed that the power efficiencies of seven wind turbines of different rated power are notably 
higher than 30-percent limit of Gorban’ et al. [1] for wind speeds between 16 m s−⋅  and 111 m s−⋅ . In case of 
wind speeds higher than 111 m s−⋅ , the power efficiencies eventually fall below this 30-percent limit and ap-
proach very low values in the vicinity of the cut-out wind speed. 

Acknowledgements 
We would like to express much gratitude to the Alaska Department of Labor for funding Dr. Gary Sellhorst’s 
project work. We would like to extend gratitude to the National Science Foundation for funding the project work 
of Hannah K. Ross and John Cooney in summer 2012 through the Research Experience for Undergraduates 
(REU) Program, grant number AGS1005265. We also express our thanks to the Max Planck Institute for Che-
mistry for the current financial support for Dr. Dr. habil. Ralph Dlugi. 

References 
[1] Gorban’, A.N., Gorlov, A.M. and Silantyev, V.M. (2001) Limits of the Turbine Efficiency for Free Fluid Flow. Jour-

nal of Energy Resources Technology, 123, 311-317. http://dx.doi.org/10.1115/1.1414137 
[2] Okulov, V.L. and van Kuik, G.A.M. (2011) The Betz-Joukowsky Limit: On the Contribution to Rotor Aerodynamics 

by the British, German and Russian Scientific Schools. Wind Energy, 15, 355-344. http://dx.doi.org/10.1002/we.464 
[3] Betz, A. (1920) Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Zeitschrift für 

das gesamte Turbinenwesen, 26, 307-309. (In German) 
[4] Joukowsky, N.E. (1920) Windmill of the NEJ Type. Transactions of the Central Institute for Aero-Hydrodynamics of 

Moscow. (In Russian) (as cited by [5]) 

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

 Enercon E-48
 Suzlon S64 Mk II-1.25 MW
 General Electric 1.6-82.5
 Senvion MM92
 Mitsubishi MWT95/2.4
 Enercon E-82 E4
 Siemens SWT-3.6-107
 Gorban' et al. [1]
 Betz-Joukowsky limit

Po
we

r e
ffi

cie
nc

y 
C P

Wind speed at hub height in m s-1

http://dx.doi.org/10.1115/1.1414137
http://dx.doi.org/10.1002/we.464


G. Kramm et al. 
 

 
28 

[5] van Kuik, G.A.M. (2007) The Lanchester-Betz-Joukowsky Limit. Wind Energy, 10, 289-291.  
http://dx.doi.org/10.1002/we.218 

[6] Sørensen, J.N. (2011) Aerodynamic Aspects of Wind Energy Conversion. Annual Review of Fluid Mechanics, 43, 427- 
448. http://dx.doi.org/10.1146/annurev-fluid-122109-160801 

[7] Hartwanger, D. and Horvat, A. (2008) 3D Modelling of Wind Turbine Using CFD. NAFEMS UK Conference 2008 
“Engineering Simulation: Effective Use and Best Practice”, Cheltenham, 10-11 June 2008, 14 p. 

[8] Blackledge, J., Coyle, E. and Kearney, D. (2011) A Stochastic Model for Wind Turbine Power Quality Using a Levy 
Index Analysis of Wind Velocity Data. The Third International Conference on Resource Intensive Applications and 
Services, Venice, 22-27 May 2011. 

[9] van Kuik, G.A.M., Sørensen, J.N. and Okulov, V.L. (2015) Rotor Theories by Professor Joukowsky: Momentum 
Theories. Progress in Aerospace Sciences, 73, 1-18. http://dx.doi.org/10.1016/j.paerosci.2014.10.001 

[10] Glauert, H. (1935) Airplane Propellers. In: Durand, W.F., Ed., Aerodynamic Theory, Vol. IV, Division L, Springer, 
New York, 169-360. http://dx.doi.org/10.1007/978-3-642-91487-4_3 

[11] Okulov, V.L. and Sørensen, J.N. (2008) Refined Betz Limit for Rotors with a Finite Number of Blades. Wind Energy, 
11, 415-426. http://dx.doi.org/10.1002/we.274 

[12] Okulov, V.L. and Sørensen, J.N. (2010) Maximum Efficiency of Wind Turbine Rotors Using Joukowsky and Betz 
Approaches. Journal of Fluid Mechanics, 649, 497-508. http://dx.doi.org/10.1017/S0022112010000509 

[13] de Groot, S.R. and Mazur, P. (1969) Non-Equilibrium Thermodynamics. North-Holland Publishing Comp., Amsterdam/ 
London. 

[14] Landau, L.D. and Lifschitz, E.M. (1981) Lehrbuch der theoretischen Physik-Hydrodynamik. Akademie-Verlag Berlin. 
(In German) 

[15] Budó, A. (1990) Theoretische Mechanik. In: Rompe, R. and Schmutzer, E., Eds., Hochschulbücher für Physik, VEB 
Deutscher Verlag der Wissenschaften, Berlin, 615. (In German) 

[16] Mölders, N. and Kramm, G. (2014) Lectures in Meteorology. Springer International Publishing.  
http://dx.doi.org/10.1007/978-3-319-02144-7 

[17] Prandtl, L. (1905) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des III. Internationalen 
Mathematiker Kongresses, Heidelberg, 8-13 August 1904, B. G. Teubner, Leipzig, 485-491. (In German) 

[18] Rotta, J.C. (1972) Turbulente Strömungen. B. G. Teubner, Stuttgart. (In German)  
http://dx.doi.org/10.1007/978-3-322-91206-0 

[19] Sanderse, B., van der Pijl, S.P. and Koren, B. (2011) Review of Computational Fluid Dynamics for Wind Turbine 
Wake Aerodynamics. Wind Energy, 14, 799-819. http://dx.doi.org/10.1002/we.458 

[20] Reynolds, O. (1895) On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Crite-
rion. Philosophical Transactions of the Royal Society of London, 186, 123-164.  
http://dx.doi.org/10.1098/rsta.1895.0004 

[21] Prandtl, L. (1918) Tragflügeltheorie—I. Mitteilung. Nachrichten der K. Gesellschaft zu Göttingen, Mathematisch- 
Physikalische Klasse, 451-477. 

[22] Kramm, G. and Meixner, F.X. (2000) On the Dispersion of Trace Species in the Atmospheric Boundary Layer: A 
Re-formulation of the Governing Equations for the Turbulent Flow of the Compressible Atmosphere. Tellus, 52A, 
500-522. http://dx.doi.org/10.1034/j.1600-0870.2000.00984.x 

[23] Montgomery, R.B. (1954) Convection of Heat. Archiv für Meteorologie,Geophysik und Bioklimatologie, A7, 125-132.  
http://dx.doi.org/10.1007/BF02277911 

[24] Fortak, H. (1969) Zur Energetik der planetarischen Grenzschicht. Annalen der Meteorologie (NF) 4, 157-162. (In 
German) 

[25] van Mieghem, J. (1949) Les equations générales de la mécanique et de l'énergétique des milieux turbulents en vue des 
applications à la météorologie. Inst. R. Météor. Belgique., Mém., XXXIV, 60. (In French) 

[26] van Mieghem, J. (1973)Atmospheric Energetics. Clarendon Press, Oxford, UK. 
[27] Herbert, F. (1975) Irreversible Prozesse der Atmosphäre—3. Teil (Phänomenologische Theorie mikroturbulenter 

Systeme). Beiträge zur Physik der Atmosphäre, 48, 1-29. (In German) 
[28] Libby, P.A. and Williams, F.A., Eds. (1980) Turbulent Reacting Flows. Springer-Verlag, Berlin.  

http://dx.doi.org/10.1007/3-540-10192-6 
[29] Pichler, H. (1984) Dynamic der Atmosphäre. Bibliographisches Institut, Zürich. (In German) 
[30] Cox, G. (1995) Basic considerations. In: Cox, G., Ed., Combustion Fundamentals of Fire, Academic Press, London, 

San Diego, New York, 3-30. 

http://dx.doi.org/10.1002/we.218
http://dx.doi.org/10.1146/annurev-fluid-122109-160801
http://dx.doi.org/10.1016/j.paerosci.2014.10.001
http://dx.doi.org/10.1007/978-3-642-91487-4_3
http://dx.doi.org/10.1002/we.274
http://dx.doi.org/10.1017/S0022112010000509
http://dx.doi.org/10.1007/978-3-319-02144-7
http://dx.doi.org/10.1007/978-3-322-91206-0
http://dx.doi.org/10.1002/we.458
http://dx.doi.org/10.1098/rsta.1895.0004
http://dx.doi.org/10.1034/j.1600-0870.2000.00984.x
http://dx.doi.org/10.1007/BF02277911
http://dx.doi.org/10.1007/3-540-10192-6


G. Kramm et al. 
 

 
29 

[31] Kramm, G., Dlugi, R. and Lenschow, D.H. (1995) A Re-evaluation of the Webb-Correction Using Density-Weighted 
Averages. Journal of Hydrology, 166, 283-292. http://dx.doi.org/10.1016/0022-1694(94)05088-F 

[32] Thomson, D. (1995) The Parameterization of the Vertical Dispersion of a Scalar in the Atmospheric Boundary Layer. 
Atmospheric Environment, 29, 1343. http://dx.doi.org/10.1016/1352-2310(94)00326-G 

[33] Venkatram, A. (1998) Response. Atmospheric Environment, 32, 259.  
http://dx.doi.org/10.1016/S1352-2310(96)00078-7 

[34] Kowalski, A.S. (2012) Exact Averaging of Atmospheric State and Flow Variables. Journal of the Atmospheric 
Sciences, 69, 1750-1757. http://dx.doi.org/10.1175/JAS-D-11-0299.1 

[35] Hesselberg, T. (1926) Die Gesetze der ausgeglichenen atmosphärischen Bewegungen. Beiträge zur Physik der freien 
Atmosphäre, 12, 141-160. (In German) 

[36] Lumley, J.L. and Yaglom, A.M. (2001) A Century of Turbulence. Flow, Turbulence and Combustion, 66, 241-286.  
http://dx.doi.org/10.1023/A:1012437421667 

[37] Herbert, F. (1995) A Re-evaluation of the Webb Correction Using Density-Weighted Averages—Comment. Journal of 
Hydrology, 173, 343-344. http://dx.doi.org/10.1016/0022-1694(95)02867-o 

[38] Eliassen, A. and Kleinschmidt Jr., E. (1957) Dynamic Meteorology. In: Flügge, S., Ed., Handbuch der Physik, Bd. 
XLVIII. Springer-Verlag Berlin/Heidelberg/New York, 1-154. http://dx.doi.org/10.1007/978-3-642-45881-1_1 

[39] Dutton, J.A. (1995) Dynamics of Atmospheric Motion. Dover, New York. 
[40] de Vries, O. (1979) Fluid Dynamic Aspects of Wind Energy Conversion. AGARDograph 243, AGARD, Brussels. 
[41] Türk, M. and Emeis, S. (2010) The Dependence of Offshore Turbulence Intensity on Wind Speed. Journal of Wind 

Engineering and Industrial Aerodynamics, 98, 466-471. http://dx.doi.org/10.1016/j.jweia.2010.02.005 
[42] Barthelmie, R.J., Frandsen, S.T., Nielsen, M.N., Pryor, S.C., Rethore, P.-E. and Jørgensen, H.E. (2007) Modelling and 

Measurements of Power Losses and Turbulence Intensity in Wind Turbine Wakes at Middelgrunden Offshore Wind 
Farm. Wind Energy, 10, 517-528. http://dx.doi.org/10.1002/we.238 

[43] Barthelmie, R.J., Churchfield, M.J., Moriarty, P.J., Lundquist, J.K., Oxley, G.S., Hahn, S. and Pryor, S.C. (2015) The 
Role of Atmospheric Stability/Turbulence on Wakes at the Egmond aan Zee Offshore Wind Farm. Journal of Physics: 
Conference Series, 625, conference 1. http://dx.doi.org/10.1088/1742-6596/625/1/012002 

[44] Stull, R.B. (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, Boston, 
London. http://dx.doi.org/10.1007/978-94-009-3027-8 

[45] Garratt, J.R. (1994) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, New York, Mel-
bourne. 

[46] Mellor, G.L. and Yamada, T. (1974) A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. 
Journal of the Atmospheric Sciences, 31, 1791-1806.  
http://dx.doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2 

[47] Mellor, G.L. and Yamada, T. (1982) Development of a Turbulence Closure Model for Geophysical Fluid Problems. 
Review of Geophysics and Space Physics, 20, 851-875. http://dx.doi.org/10.1029/RG020i004p00851 

[48] Janjić, Z.I. (2001) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. 
National Centers for Environmental Prediction (NCEP), Office Note #437. 

[49] Lorenz, E.N. (1967) The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological 
Organization, WMO-No. 218.Tp.115, Geneva. 

[50] Bernhardt, K. and Lauter, E.A. (1977) Globale physikalische Prozesse und Umwelt. Zeitschrift für Meteorologie, 27, 
1-20. (In German) 

[51] Holton, J.R. (1979) An Introduction to Dynamic Meteorology. Academic Press, New York, San Francisco, London. 
[52] Peixoto, J.P. and Oort, A.H. (1992) Physics of Climate. Springer-Verlag, New York, Berlin, Heidelberg. 
[53] Hilbert, D. and Cohn-Vossen, S. (1952) Geometry and the Imagination. Chelsea Publishing Company, New York. 
[54] Lass, H. (1950) Vector and Tensor Analysis. McGraw-Hill, New York, Toronto, London. 
[55] Alekseenko, S.V., Kuibin, P.A. and Okulov, V.L. (2007) Theory of Concentrated Vortices. Springer, Berlin, Heidel-

berg, New York. 
[56] Ross, H.K., Cooney, J., Hinzman, M., Smock, S., Sellhorst, G., Dlugi, R, Mölders, N. and Kramm, G. (2014) Wind 

Power Potential in Interior Alaska from a Micrometeorological Perspective. Atmospheric and Climate Sciences, 4, 100- 
121. http://dx.doi.org/10.4236/acs.2014.41013 

[57] Goorjian, P.M. (1972) An Invalid Equation in the General Momentum Theory of the Actuator Disc. AIAA Journal, 10, 
543-544. http://dx.doi.org/10.2514/3.50146 

http://dx.doi.org/10.1016/0022-1694(94)05088-F
http://dx.doi.org/10.1016/1352-2310(94)00326-G
http://dx.doi.org/10.1016/S1352-2310(96)00078-7
http://dx.doi.org/10.1175/JAS-D-11-0299.1
http://dx.doi.org/10.1023/A:1012437421667
http://dx.doi.org/10.1016/0022-1694(95)02867-o
http://dx.doi.org/10.1007/978-3-642-45881-1_1
http://dx.doi.org/10.1016/j.jweia.2010.02.005
http://dx.doi.org/10.1002/we.238
http://dx.doi.org/10.1088/1742-6596/625/1/012002
http://dx.doi.org/10.1007/978-94-009-3027-8
http://dx.doi.org/10.1175/1520-0469(1974)031%3C1791:AHOTCM%3E2.0.CO;2
http://dx.doi.org/10.1029/RG020i004p00851
http://dx.doi.org/10.4236/acs.2014.41013
http://dx.doi.org/10.2514/3.50146


G. Kramm et al. 
 

 
30 

[58] Betz, A. (1926) Wind-Energie und Ihre Ausnutzung durch Windmühlen. Vandenhoeck & Ruprecht, Göttingen, Ger-
many. (In German) 

[59] Rankine, W.J.M. (1865) On the Mechanical Principles of the Action of Propellers. Transaction of the Institute of Naval 
Architects, 6, 13-39. 

[60] Froude, W. (1878) On the Elementary Relation between Pitch, Slip and Propulsive Efficiency. Transaction of the In-
stitute of Naval Architects, 19, 22-33. 

[61] Froude, R.E. (1889) On the Part Played in Propulsion by Difference in Pressure. Transaction of the Institute of Naval 
Architects, 30, 390-405. 

[62] Wilson, R.E. and Lissaman, P.B.S. (1974) Applied Aerodynamic Performance of Wind Power Machines. Oregon State 
University, Corvallis. 

[63] Snel, H. (1998) Review of the Present Status of Rotor Aerodynamics. Wind Energy, 1, 46-69.  
http://dx.doi.org/10.1002/(SICI)1099-1824(199804)1:1+<46::AID-WE3>3.3.CO;2-0 

[64] Mathew, S. (2006) Wind Energy: Fundamentals, Resource Analysis, and Economics. Springer.  
http://dx.doi.org/10.1007/3-540-30906-3 

[65] Sharpe, D. (2004) A General Momentum Theory Applied to an Energy-Extracting Actuator Disc. Wind Energy, 7, 177- 
188. http://dx.doi.org/10.1002/we.118 

[66] Trefftz, E. (1921) Zur Prandtlschen Tragflächentheorie. Math. Ann., 82, 306-319.  
http://dx.doi.org/10.1007/BF01498674 

[67] Joukowsky, N.E. (1912) Vortex Theory of Screw Propeller, I. Trudy Otdeleniya Fizicheskikh Nauk Obshchestva 
Lubitelei Estestvoznaniya 16 (1), 1-31 (In Russian). French translation in: Théorie tourbillonnaire de l’hélice propul-
sive (Gauthier-Villars, Paris, 1929) 1-47 (as cited by [12]). 

[68] Joukowsky, N.E. (1914) Vortex Theory of Screw Propeller, II. Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lu-
bitelei Estestvoznaniya 17 (1), 1-33 (In Russian). French translation in: Théorie tourbillonnaire de l’hélice propulsive 
(Gauthier-Villars, Paris, 1929) 48-93 (as cited by [12]). 

[69] Joukowsky, N.E. (1915) Vortex Theory of Screw Propeller, III. Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lu-
bitelei Estestvoznaniya 17 (2), 1-23 (In Russian). French translation in: Théorie tourbillonnaire de l’hélice propulsive 
(Gauthier-Villars, Paris, 1929) 94-122 (as cited by [12]). 

[70] Joukowsky, N.E. (1918) Vortex Theory of Screw Propeller, IV. Trudy Avia Raschetno-Ispytatelnogo Byuro, no 3, 1-97 
(In Russian). French translation in: Théorie tourbillonnaire de l’hélice propulsive (Gauthier-Villars, Paris, 1929) 
123-198 (as cited by [12]). 

[71] Betz, A. (1919) Schraubenpropeller mit geringstem Energieverlust—Mit einem Zusatz von L. Prandtl. Nachrichten d. 
K. Gesellschaft d. Wissenschaften, Göttingen, Math.-phys. Klasse, 193-217. (In German) 

[72] Goldstein, S. (1929) On the Vortex Theory of Screw Propellers. Proceedings of the Royal Society of London. Series A, 
123, 440-465. http://dx.doi.org/10.1098/rspa.1929.0078 

[73] Okulov, V.L. (2004) On the Stability of Multiple Helical Vortices. Journal of Fluid Mechanics, 521, 319-342.  
http://dx.doi.org/10.1017/S0022112004001934 

[74] Haltiner, G.J. and Martin, F.L. (1957) Dynamical and Physical Meteorology. McGraw-Hill, New York, Toronto, Lon-
don. 

[75] Thomas, T.Y. (1961) Concepts from Tensor Analysis and Differential Geometry. Academic Press, New York, London. 
[76] Sokolnikoff, I.S. (1964) Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. 2nd Edi-

tion, John Wiley & Sons, New York, London, Sydney. 
[77] Eisenreich, G. (1971) Vorlesungen über Vektor- und Tensorrechnung. BSB B.G. Teubner Verlagsgesellschaft, Leipzig. 

(In German) 
[78] Teichmann, H. (1973) Physikalische Anwendungen der Vektor-und Tensorrechnung. Bibliographisches Institut 

Mannheim, Wien, Zürich. (In German) 
[79] Fortak, H. (1967) Vorlesungen über theoretische Meteorologie-Kinematik der Atmosphäre. Freie Universität Berlin, 

Institut für Theoretische Meteorologie. (In German) 

http://dx.doi.org/10.1002/(SICI)1099-1824(199804)1:1+%3C46::AID-WE3%3E3.3.CO;2-0
http://dx.doi.org/10.1007/3-540-30906-3
http://dx.doi.org/10.1002/we.118
http://dx.doi.org/10.1007/BF01498674
http://dx.doi.org/10.1098/rspa.1929.0078
http://dx.doi.org/10.1017/S0022112004001934


G. Kramm et al. 
 

 
31 

Appendix A: Trajectories versus Streamlines 
Let us consider a natural coordinate frame with the unit vectors tt , tn , and tb  that form a right-handed rec-
tangular coordinate system at any given point of a curve in space (moving trihedron) like a trajectory (Figure 3), 
where the subscript t characterizes the trajectory-related quantities. Such a frame describing the movement of a 
particle along its trajectory in space is called an intrinsic system because it is closely related to the motion itself 
(e.g., [16] [54] [74]). As illustrated in Figure 3, the unit vector tt  is related to the direction of the instantaneous 
motion at any point, i.e., it is tangent to the curve of the trajectory, and is, therefore, called the unit tangent. The 
velocity vector is given by tV=v t , where V is its magnitude. The moving trihedron consisting of tt , tn , and 

tb  is an orthonormal frame, i.e., the orthonormal conditions 
1t t t t t t⋅ = ⋅ = ⋅ =t t n n b b                                (A.1) 

and 
0t t t t t t⋅ = ⋅ = ⋅ =t n t b n b .                              (A.2) 

are fulfilled. These unit vectors can be considered as either contravariant or covariant basis vectors. We may 
write 

t t t

t t t

t t t

= × 
= × 
= × 

t n b
n b t
b t n

.                                   (A.3) 

because the triple scalar product ( ) [ ], , 1t t t t t t g⋅ × = = =t n b t n b . The unit vector tn  is the principal normal.  
The unit vector tb  is perpendicular to the osculating plane spanned by tt  and tn , and called the binormal. 
The plane containing tn  and tb  is the normal plane, and the plane determined by tt  and tb  is the rectifying 
plane (e.g., [53]). As the unit tangent tt  is time-dependent, the other two basis vectors depend on time, too. The 
unit tangent is defined by 

d
dt s

=
rt ,                                      (A.4) 

where r  is the position vector, and s is the arc length. From Equation (A.4) we can infer that ( )2d d ds = ⋅r r . 
Thus, the arc length between two points α  and β  is given by 

1 2d d d
d d

s s
s s

β

α

 = ⋅ 
 ∫

r r .                               (A.5) 

The principal normal tn  is referred to the change of the unit vector tt  along the space trajectory because 

( ) dd 0 2
d d

t
t t ts s
⋅ = = ⋅

tt t t .                             (A.6) 

This means that tt  and d dt st  are perpendicular to each other, or in other words, d dt st  is normal to the 
curve of the trajectory. The magnitude of d dt st  is defined as the curvature tK  of the trajectory at a given 
point. Thus, we have 

d
d

t
t tK

s
=

t n .                                   (A.7) 

We may also define a radius of curvature by 1
t tR K −= . As 

( ) dd 0 2
d d

t
t t ts s
⋅ = = ⋅

bb b b .                                  (A.8) 

and 

( ) d d d dd 0
d d d d d

t t t t
t t t t t t t t tK

s s s s s
⋅ = = ⋅ + ⋅ = ⋅ + ⋅ = ⋅

t b b bt b b t n b t t ,                  (A.9) 

we may infer that d dt sb  is perpendicular to both tb  and tt . Thus, d dt sb  can also be expressed by 
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d
d

t
t tT

s
= −

b n ,                                   (A.10) 

where the proportionality constant tT  is the torsion. For the derivative of tn  with respect to s we obtain 

( )d d dd
d d d d

t t t
t t t t t t t t t t t t t tT K T K

s s s s
= × = × + × = − × + × = −

n b tb t t b n t b n b t .       (A.11) 

The relations (A.7), (A.10), and (A.11) can be summarized as follows 

d
d
d
d
d
d

t
t t

t
t t t t

t
t t

K
s

T K
s

T
s

= 

= − 



= − 


t
n

n
b t

b
n

.                               (A.12) 

These equations are the central equations in the theory of space curves customarily called the Serret-Frenet 
formulae (e.g., [74]-[76]). The Serret-Frenet formulae (A.12) allow to determine the change of the vectors of the 
trihedron, tt , tn , and tb , while it is moving along a given space curve ( )s=r r  as a function of the arc 
length s. 

Equation (A.11) may also be written as 

( )d
d

t
t t t t t t t t tT K T K

s
= − = + ×

n
b t t b n .                            (A.13) 

The vector t t t t tT K= +δ t b  that lies in the rectifying plane (see Figure 3) is the Darboux vector of a space 
curve (e.g., [77] [78]). Using this definition yields 

d
d

t t

t t t

t t
s

   
   = ×   
   
   

t t
n δ n
b b

.                                 (A.14) 

Obviously, the Darboux vector determines the new orientation (rotation) of the moving trihedron (see Figure 
3). In other words, the Darboux vector coincides with the instantaneous axis of rotation. If tω  denotes the in-
stantaneous angular velocity vector and V the instantaneous speed, we will have 

t tV=ω δ .                                       (A.15) 

The magnitude of the Darboux vector is the total curvature, sometimes also called the Lancret curvature (e.g., 
[79]). 

A trajectory is the actual path of an air particle, i.e., it characterizes the direction of the velocity that such an 
air particle is taking successively during a certain time interval (e.g., [79]). If the velocity field ( ), tv r  is al-
ways known during that time interval, the trajectory can be calculated by integration of d dt=r v . A streamline 
represents a “snapshot” of the directions of the velocity field ( ), tv r  at various locations at time 0t . As at 
each location a streamline is parallel to the flow field, we may write 

( )d , t× = 0r v r .                                      (A.16) 

As sketched in Figure 3, a trajectory is the envelope of the corresponding streamlines. Thus, at a certain point 
( )P t  the unit tangent t s=t t  represents both the direction of this trajectory and the direction of the streamline 

touching the trajectory at this certain point. Even though the unit tangent is the same, the principal normal, tn , 
and the binormal, tb , of the trajectory generally differ from the principal normal, sn , and the binormal, sb , of 
the streamline, i.e., t s≠n n  and t s≠b b . However, we have 

t t t s s= × = ×t n b n b .                                  (A.17) 

If we express the substantial derivative of the unit tangent in the Eulerian form, we will obtain 
d
d

t t t t
s sV VK

t t s t
∂ ∂ ∂

= + = +
∂ ∂ ∂

t t t t n .                               (A.18) 
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Here, the partial derivative of the unit tangent with respect to the arc length was replaced by t s ss K∂ ∂ =t n , 

where 1
s sK R−=  is the curvature of the streamline and sR  is the corresponding radius of the curvature. On the  

other hand, we have 
d d d
d d d

t t
t t

s VK
t s t
= =

t t n .                                (A.19) 

Combining Equations (A.18) and (A.19) yields 

( )t
t t s sV K K

t
∂

= −
∂
t n n .                                (A.20) 

In the two-dimensional case, we have t s=n n  because t s=b b . Thus, Equation (A.20) becomes 

( )t
t s tV K K

t
∂

= −
∂
t n .                                  (A.21) 

With respect to the unit vectors i  and j  of a Cartesian frame the unit tangent of a plane trajectory can be 
expressed by 

cos sint ϑ ϑ= +t i j .                                   (A.22) 

where ϑ  is the angle between i  and tt . It is also the angle between j  and tn . This angle usually depends 
on time. Thus, the local rate of change of the unit tangent reads 

sin cost
tt t t t

ϑ ϑ ϑϑ ϑ∂ ∂ ∂ ∂
= − + =

∂ ∂ ∂ ∂
t i j n .                      (A.23) 

Combining Equations (A.21) and (A.23) yields 

( )t sV K K
t
ϑ∂
= −

∂
.                                (A.24) 

The scalar form of the relation (A.24) is Blaton’s equation. In the case of steady-state conditions, the left-hand 
side terms of Equations (A.21) and (A.24) vanish and the curvatures of the trajectories and the streamlines are 
identical, i.e., the trajectories and the streamlines coincide. 

If no tangential acceleration exists, i.e., 0p s∂ ∂ = , and the horizontal scale is small enough, so that the mag- 
nitude of Coriolis acceleration is small in comparison with those of the centripetal acceleration and the accelera-
tion due to the pressure gradient, we will lead to the following conditions for a frictionless flow: 

d 0
d
V
t
=                                      (A.25) 

and 
2 1

t t

V p
R nρ

∂
= −

∂
.                                  (A.26) 

The solution of this equation set is then given by 

t

t

R pV
nρ
∂

= ± −
∂

.                                  (A.27) 

The equation describes the cyclostrophic flow. Obviously, tp n∂ ∂  and tR  must have opposite signs to en-
sure that the condition  

0t

t

R p
nρ
∂

− ≥
∂

.                                   (A.28) 

is fulfilled. Both cyclonic and anti-cyclonic flows are possible. Assuming, for instance, 31.2 kg mρ −= ⋅ , 
130 m sV −= ⋅ , and 300 mtR =  yields 13.6 Pa mtp n −∂ ∂ = − ⋅ . The cyclostrophic approximation is acceptable 

if the Ross by number defined by 
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b
t

VRo
fR

=                                     (A.29) 

fulfills the condition 1bRo  . Figure 17 shows the wind speed V as a function of the pressure gradient tp n∂ ∂  
in case of a cyclostrophic flow, where 300 mtR =  and 31.2 kg mρ −= ⋅  were assumed. As illustrated, even 
small values of the pressure gradient like 10.02 Pa mtp n −∂ ∂ = − ⋅ can produce a cyclostrophic wind speed of 
more than 12 m s−⋅ . In such a case the Rossby number amounts to 75 1bRo =   if a typical value of 

4 110 sf − −=  for the Coriolis parameter is considered. In case of 130 m sV −= ⋅ , 300 mtR = , and 4 110 sf − −= , 
the Rossby number is 310bRo = . These numbers are typical for an F1 tornado on the Fujita Tornado Damage 
Scale. The occurrence of a cyclostrophic flow has to be considered if a difference between the static pressure far 
upstream and far downstream of a wind turbine is presupposed. 

Appendix B: The Equations of the General Momentum Theory 
In this appendix, we only consider average values. Thus, all symbols that are characterizing average values are 
ignored here. Let be r the radial distance of any annular element of the propeller disk, xv  and rv  the axial and 
the radial components of the fluid velocity, respectively. Furthermore, let be p the pressure immediately in front 
of the propeller and pδ  the decrease of the pressure behind the propeller associated with the angular velocity
ω . Moreover, let wp  be the pressure in the final wake, wv  the corresponding axial velocity, and wω  the 
corresponding angular velocity at radial distance wr  from the axis of the slipstream. Since the area of the annu-
lar element is d 2π dA r r= , the equation of continuity reads 

d d const.w w w xv r r v r r= =                               (B.1) 

Generally, the torque is 
= ×Q r F                                      (B.2) 

If the force F  is only a function of the radial vector r  of the form ( )f r=F r , as considered here, we 
will obtain ( )f r= × = 0Q r r . Since the torque is equal to the derivative of the angular momentum, L , with 
respect to time, we may write 

d
dt

= = 0LQ                                      (B.3) 

i.e., the angular momentum is invariant with time ( const.=L ). Equation (B.3) describes the conservation of 
angular momentum in the central field. The angular momentum can be expressed by 
 

 
Figure 17. Wind speed versus pressure gradient in case of a 
cyclostrophic flow.                                          
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const.m= × =L r v                                     (B.4) 

where v  is the velocity vector of a particle with the mass m moving through the central field. As ⊥L r  and 
⊥L v  throughout the motion, the radius vector of the particle on which the central field is acting lies in the 

plane spanned by r  and v  which is perpendicular to L . Hence, we may write for convenience 
2 const.L m rω= = =L                                  (B.5) 

Thus, the conservation of angular momentum provides 
2 2

w wr rω ω= .                                     (B.6) 

In accord with Equation (2.54), the torque is given by 
2 3d d 2π dx xQ v r A v r rρ ω ρ ω= = .                              (B.7) 

The Bernoulli equation in its approximated form (2.46) yields 

( )2 2 21 1
2 2 x rH p v p v vρ ρ∞ ∞ ∞= + = + + .                           (B.8) 

and 

( ) ( )2 2 2 2 2 2 21 1
2 2w x r w w w wH p p v v r p v rδ ρ ω ρ ω= − + + + = + + .                 (B.9) 

Thus, the difference of the total pressure heads, wH H H∞∆ = − , is given by 

( ) ( )2 2 2 2 2 2 2 21 1 1
2 2 2x r x rH p v v p p v v r p rρ δ ρ ω δ ρω∆ = + + − + − + + = − .         (B.10) 

In addition, the pressure difference wp p p∞∆ = −  reads 

( ) ( )

( )

( ) ( )

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

1 1 1 1
2 2 2 2
1 1 1
2 2 2
1 1
2 2

w w w w w w w

w w w

w w w w

p H v H v r v v r H

p v v r r

p v v r

ρ ρ ω ρ ρω

δ ρ ρω ρω

δ ρ ρ ω ω ω

∞ ∞ ∞

∞

∞

∆ = − − + + = − + + ∆

= + − + −

= + − + −

,        (B.11) 

where the conservation of the angular momentum (see Equation (B.6)) has been used. Rearranging 
( ) 2

w w wrω ω ω−  by 

1 12 2 2 2
2 2w w wω ω ω ω ω ω   − = + Ω − Ω − = Ω + − Ω +   

   
 

leads to 

( )2 2 2 21 1 1
2 2 2w w w w w wp p v v r rδ ρ ρ ω ω ρ ω ω∞

   ∆ = + − + Ω + − Ω +   
   

.           (B.12) 

Here, Ω  is the angular velocity of the rotor. 
In applying Bernoulli's equation to the flow relative to the propeller blades, we have to consider the relative 

angular velocity of the air that increases from Ω  to ω + Ω  associated with a decrease of the static pressure 
behind the propeller and given by 

( )( )2 2 2 2 21 1 1
2 2 2 w wp r r rδ ρ ω ρ ω ω ρ ω ω   = Ω + − Ω = Ω + = Ω +   

   
.           (B.13) 

Thus, we obtain 

( )2 2 21 1
2 2w w w wp v v rρ ρ ω ω∞

 ∆ = − + Ω + 
 

.                       (B.14) 
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The pressure gradient in the wake balances the centrifugal force on the fluid and is governed by 
2

2d
d

w
w w

w w

p v
r

r r
ρ ρωΘ= = .                               (B.15) 

A balance between the pressure gradient force and the centrifugal force in the horizontal direction leads to the 
cyclostrophic flow well known in meteorology (e.g., [12]). The derivation of Equation (B.14) with respect to wr
leads to 

( ) ( ) ( )2 2 2 2dd 1 d 1 d
d 2 d 2 d d

w
w w w w w w

w w w w

p
p v v r r

r r r r
ρ ρ ω ω ρω∞

 ∆ = − + Ω + = − = − 
 

          (B.16) 

or 

( ) ( )2 2 2 21 d 1 d
2 d 2 dw w w w w w

w w

v v r r
r r

ω ω ω∞
 − = Ω + + 
 

,                   (B.17) 

where Equation (B.15) was used. Since 

( )2 21 d
2 dw w w w w

w

r r
r

ω ω ω= ,                            (B.18) 

Equation (B.17) becomes [62] 

( ) ( ) ( )2 2 21 d d
2 d dw w w w

w w

v v r
r r

ω ω∞ − = Ω + .                          (B.19) 

Furthermore, the thrust is given by 

( )

( ) ( )2 2 2

d d d

1 1d d d
2 2

w w w w

w w w w w w w w w

T v v v A p A

v v v A v v A r A

ρ

ρ ρ ρ ω ω

∞

∞ ∞

= − + ∆

 = − − + − + Ω + 
 

.           (B.20) 

The pressure increment at the propeller disk is given by [62] 

21d d d
2

T p A r Aδ ρ ω ω = = Ω + 
 

.                           (B.21) 

Combining these two equations leads to 

( ) ( )2 2 2 21 1 1d d d d
2 2 2w w w w w w w w wv v v A v v A r A r Aω ω ω ω∞ ∞

   − − + − + Ω + = Ω +   
   

.          (B.22) 

The equation of continuity provides d dw w xv A v A=  (see Equation (B.1)). Thus, we obtain 

( ) ( )2 2 2

1 1
1 2 2
2

w

w w w w w w
x w

v v v v v v r
v v

ω ω
ω∞ ∞

 Ω + Ω + 
− − + − = − 

  
 

.              (B.23) 

Finally, using ( ) ( ) ( )22 21 1
2 2w w w wv v v v v v v∞ ∞ ∞− − − = −  yields 

( )2 2

1 1
1 2 2
2

w

w w w w
w x

v v v r
v v

ω ω
ω∞

 Ω + Ω + 
− = − 

  
 

.                   (B.24) 

This equation already derived by Wilson and Lissaman [62] suffice to determine the relationship between the 
thrust and torque of the propeller and the flow in the slipstream. Owing to the complexity of the equations, 
however, it is customary to adopt certain approximations based on the fact that the rotational velocity in the 
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slipstream is generally very small. 
Since Sharpe [65] criticized the work of Glauert [10], Wilson and Lissaman [62]and others because of their 

dropping of the static pressure in the wake, we compared Sharpe’s equation (4), (7), (8), and (11) with our Equ-
ations (B.11), (B.13), (B.14), and (B.19). Rearranging Equation (B.11) yields 

( )2 2 2 2 2 21 1 1
2 2 2w w wp v v r r pδ ρ ρω ρω∞= − − − + + ∆ .                     (B.25) 

Using ( )1rv v a∞= − , ( )1wv v b∞= − , ( )' 2a ω= Ω , and ( )' 2wb ω= Ω  yields ( )2 2 2 2wv v v b b∞ ∞− = −  

and ( ) ( )( )2 22 2 2 2 21 1 2 ' '
2 2w w wr r b r a rρω ρω ρ− + = − Ω − , so that Equation (B.25) becomes 

( ) ( ) ( )( )2 22 21 2 4 ' '
2 wp v b b b r a r pδ ρ ∞

 = − − Ω − + ∆  
.                  (B.26) 

This is identical with Sharpe’s Equation (4). Considering 2 2' 'wb r a r=  (see Equation (B.6)) leads to Sharpe’s 
Equation (5). In a similar manner, we obtain from Equation (B.13) 

( ) ( )2 2 2 2 21 2 1 ' ' 2 1 ' '
2 w w wp r a b r a a rδ ρ ω ω ρ ρ = Ω + = Ω + = Ω + 

 
.                (B.27) 

that is identical with Sharpe’s Equation (7). Thus, our Equation (B.14) results in 

( ) ( ) ( )2 2 2 2 2 21 1 1 4 1 ' ' 2
2 2 2w w w wp v v r b a r v b bρ ρ ω ω ρ∞ ∞

   ∆ = − + Ω + = Ω + − −    
.            (B.28) 

This equation completely agrees with Sharpe’s Equation (8). Finally, by rearranging our Equation (B.19)we 
obtain 

( ) ( ) ( )2 2 2d d1 2 1 2 ' '
d d w

w w

bv b b b r
r r∞ − = Ω + .                            (B.29) 

that is identical with Sharpe’s Equation (11). Thus, Equation (B.24) already derived by Wilson and Lissaman 
[62] and the opposite one derived by Glauert [10] are accurate if an actuator disk is considered. Sharpe’s criti-
cism is, therefore, not justified. 

Appendix C: Solution of an Irrotational Wake 
An exact solution of the general equations of the General Momentum Theory described before can be obtained 
when the flow in the slipstream is irrotational except along the axis [10] [65]. This condition implies that the ro-
tational momentum 2rω  has the same value k for all radial elements, i.e., 

2 2
w wr r kω ω= = .                                    (C.1) 

Here, r the radial distance of any annular element of the propeller disk. 
On the basis of the equation (see Equation (B.19) of Appendix B) 

( ) ( ) ( )2 2 21 d d
2 d dw w w w

w w

v v r
r r

ω ω∞ − = Ω +                              (C.2) 

we can deduce that the axial velocity wv  is constant across the wake because ( )2d d 0w w wr rω =  and, hence, 
d d 0w wv r = . Furthermore, it can be shown that Equation (B.24) of Appendix B is satisfied by a constant value 
of the axial velocity xv  across the propeller disk. If wv  and xv  are constant, we will obtain from the equation 
of continuity (see Equation (B.1) of Appendix B), 

d d const.w w w xv r r v r r= = ,                               (C.3) 

and the conservation of angular momentum (see Equation (B.6) of Appendix B), 
2 2

w wr rω ω= ,                                        (C.4) 

the following relationship [10] 



G. Kramm et al. 
 

 
38 

2 2

2 2
w w

x w w

v r R
v r R

ω
ω

= = =                                     (C.5) 

or with respect to Sharpe’s [65] notation 
2 2

2 2

d 1 '
d 1 '

w w w wr r R ra a
r r b bR r

−
= = = =

−
,                                 (C.6) 

where ( )1xv v a∞= − , ( )1wv v b∞= − , R is the radius of the rotor, wR  is the maximum value of wr , 

'
2 2
v

a
r

θ ω
= =

Ω Ω
                                         (C.7) 

is the azimuthal interference factor, and by analogy with that quantity, 

,'
2 2

w w

w

v
b

r
θ ω

= =
Ω Ω

,                                        (C.8) 

considered for the fully developed wake. Thus, Equation (B.24) of Appendix B becomes 

( )21
2

x w
w

x

v v
v v k

v∞

−
− = Ω                                     (C.9) 

or 

2 21
2 1

b ab v k
a∞

−
= Ω

−
.                                    (C.10) 

In accord with Glauert [10], we define 
v

R
∞Χ =

Ω
,                                     (C.11) 

xv
R

µ =
Ω

,                                     (C.12) 

w
w

v
R

µ =
Ω

,                                    (C.13) 

and 

2 3 2
xv k kq
R R

µ
= =
Ω Ω

.                                 (C.14) 

Inserting these definitions into Equation (C.9) yields 

( )22

2
w

w

q
µµ
µ µ

− Χ
=

−
.                                 (C.15) 

If we assume again, that 0wp p p∞∆ = − = , we will obtain from Equation (B.14) of Appendix B 

( )2 21 1
2 2w wv v kω∞

 − = − Ω + 
 

                             (C.16) 

or 

( )2 2
2

1 11
2 2

w
w

q qµ
µ

µµ
 

Χ − = + 
 

.                            (C.17) 

Inserting Equation (C.11) into this equation provides 

( ) ( )2 2
2 2 11

4
w w

w w
w w

µ µ
µ µ µ

µ µ µ µ

 − Χ − Χ
 Χ − = +
 − − 

.                     (C.18) 

Rearranging this equation yields 
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( ) ( )
( )

3
1
2 8

w
w

w

µ µ
µ µ

µ µ
− Χ

= + Χ −
−

.                         (C.19) 

Since ( )1 aµ = Χ −  and ( )1w bµ = Χ − , we obtain 

( )
( )

2 211 1
2 4

a b
a b

b a
 Χ −

= −  − 
.                            (C.20) 

This formula was already derived by Wilson and Lissaman [62], but they used 1λ−Χ = , where λ  is, again, 
the tip speed ratio. A similar formula was also deduced by Glauert [10] for an engine-driven propeller. 
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