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Abstract 
After a brief reference to the quantum Zeno effect, a quantum Zeno paradox 
is formulated. Our starting point is the usual version of Time Dependent Per-
turbation Theory. Although this theory is supposed to account for transitions 
between stationary states, we are led to conclude that such transitions cannot 
occur. Paraphrasing Zeno, they are nothing but illusions. Two solutions to the 
paradox are introduced. The first as a straightforward application of the post-
ulates of Orthodox Quantum Mechanics; the other is derived from a Sponta-
neous Projection Approach to quantum mechanics previously formulated. 
Similarities and differences between both solutions are highlighted. A com-
parison between the two versions of quantum mechanics, supporting their 
corresponding solutions to the paradox, shines a new light on quantum 
weirdness. It is shown, in particular, that the solution obtained in the frame-
work of Orthodox Quantum Mechanics is defective. 
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1. Introduction and Outlook  

The Greek philosopher Zeno of Elea (ca. 490-430 BC) supported Parmenide’s 
doctrine. This philosophy states that, contrary to the evidence of our senses, the 
belief in plurality and change is mistaken; in particular motion is nothing but an 
illusion. 

The most popular Zeno paradoxes concerning motion are “Achilles and the 
Tortoise” and the “Arrow Paradox”. In the latter it is assumed that for motion to 
occur, an object must change the position which it occupies. In the case of an 
arrow in flight, Zeno argues that “the flying arrow is at rest, which result follows 
from the assumption that time is composed of moments… he says that if every-
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thing when it occupies an equal space is at rest, and if that which is in locomo-
tion is always in a now, the flying arrow is therefore motionless. (Aristotle Phys-
ics, 239b. 30) Zeno abolishes motion, saying ‘What is in motion moves neither in 
the place it is nor in one in which it is not’. (Diogenes Laertius Lives of Famous 
Philosophers, ix.72)” [1]. 

In 1977 Baidyanath Misra and George Sudarshan studied the behavior of an 
unstable particle continuously observed to see whether it decays or not [2]. The 
resulting effect have previously been described by Alan Turing in the following 
terms: “it is easy to show using standard [quantum] theory that if a system starts 
in an eigenstate of some observable, and measurements are made of that ob-
servable N times a second, then, even if the state is not a stationary one, the 
probability that the system will be in the same state after, say, one second, tends 
to one as N tends to infinity; that is, that continual observations will prevent 
motion…” [3]. Initially this argument received the name of Turing paradox.  

In their 1977 paper, Misra and Sudarshan referred to the behavior of a quan-
tum system subjected to frequent ideal measurements. They considered the 
process of continuing observation as the limiting case of successions of (practi-
cally) instantaneous measurements as the intervals between successive mea-
surements approach zero. They argued that, “since there does not seem to be any 
principle, internal to quantum theory, that forbids the duration of a single mea-
surement or the dead time between successive measurements from being arbi-
trarily small, the process of continuous observation seems to be an admissible 
process in quantum theory” [2]. They concluded that an unstable particle which 
is continuously observed to see whether it decays or not will never be found to 
decay and named this phenomenon the quantum Zeno paradox [2].  

Misra and Sudarshan article stimulated a great deal of theoretical and experi-
mental work. The possibility that the decay of an unstable particle could be pre-
vented by continued observation was, however, considered an alarming result by 
some physicists. In particular, as early as in 1983, Mario Bunge and Andrés 
Kálnay explicitly dealt with the suspicion that the quantum Zeno paradox must 
be a fraud [4] [5] [6]. 

In 1990 Wayne Itano et al. published a paper entitled Quantum Zeno effect. In 
its abstract they assert: “The quantum Zeno effect is the inhibition of transitions 
between quantum states by frequent measurements of the state. The inhibition 
arises because the measurement causes a collapse (reduction) of the wave func-
tion. If the time between measurements is short enough, the wave function 
usually collapses back to the initial state. We have observed this effect in an rf 
transition… Short pulses of light, applied at the same time as the rf field, made 
the measurements” ([7]; emphases added). 

In 2009, Itano published a revision of different opinions regarding the quan-
tum Zeno effect. He acknowledges that “there has been much disagreement as to 
how the quantum Zeno effect should be defined and as to whether it is really a 
paradox, requiring new physics, or merely a consequence of ‘ordinary’ quantum 
mechanics” [8]. For instance, according to Asher Peres, the quantum Zeno effect 
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has nothing paradoxical: “What happens simply is that the quantum system is 
overwhelmed by the meters which continuously interact with it” ([9], p. 394).  

The theoretical and experimental work dealing with the quantum Zeno effect 
is exciting. But its relation with Zeno’s arrow paradox is questionable: Zeno’s 
purpose was not to stop the flying arrow; it was to show that motion is an illu-
sion. By contrast, both Turing’s argument and Misra and Sudarshan’s contribu-
tion aim to stop transitions between quantum states by frequent measurements; 
let alone the experiment by Itano et al. (and many others we have not mention 
for brevity) where transitions between quantum states seem to have been truly 
inhibited, at least partially. 

Differing from other references to the quantum Zeno effect, the present paper 
highlights a True Quantum Zeno paradox (TQZ paradox for short): we show 
that the usual version of Time Dependent Perturbation Theory (TDPT) leads to 
the conclusion that transitions between stationary states cannot happen. They 
are nothing but illusions. 

The outlook of this paper is as follows: In Section 2, we formulate the TQZ 
paradox. In Section 3 we introduce and compare two different solutions to the 
paradox: an orthodox solution results from a straightforward application of the 
postulates of Orthodox (Ordinary, Standard) Quantum Mechanics (OQM); the 
other is derived from a Spontaneous Projection Approach to quantum mechan-
ics (SPA) previously formulated. Section 4 contrasts the main traits of SPA and 
OQM. In particular, similarities and differences between both solutions to TQZ 
paradox are highlighted. Section 5 sums up the conclusions of the present work. 

2. Formulation of TQZ Paradox 

The aim of TDPT is to calculate the transition probability between stationary 
states induced by a time dependent perturbation. In the following we sketch the 
essential features of TDPT. For more details see for instance: D. R. Bes ([10], 
Chapter IX); C. Cohen-Tannoudji et al. ([11], Chapter XIII); P. A. M. Dirac 
([12], Chapter VII); W. Heitler ([13], Chapter IV); E. Merzbacher ([14], Chapter 
XIX); and/or A. Messiah ([15], Chapitre XVII). Notes: Symbols used by these 
authors may have been changed for homogeneity. All the states referred to in 
this paper are normalized.  

Consider a system with Hamiltonian E  which does not depend explicitly on 
time. It will be called the unperturbed Hamiltonian of the system. Its eigenvalue 
equations are 

n n nEφ φ=E                          (1) 

where ( )1,2,nE n =   are the eigenvalues of E  and nφ  the corresponding 
eigenstates. For simplicity we assume E  spectrum to be entirely discrete and 
non-degenerate.  

We shall suppose that at initial time 0t =  the system is in the stationary 
state jφ . If for 0t ≥  the Hamiltonian were E , the state vector at time t 
would be 

( ) ( )e 0 ej jiE t iE t
jtψ ψ φ− −= =                 (2) 
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where ħ is Planck’s constant divided by 2π  and i is the imaginary unity. The 
kets ( )tψ  and jφ  differ only by the global phase factor e jiE t−  . So all the 
kets ( )tψ  given by Equation (2) represent one and the same eigenstate cor-
responding to the eigenvalue Ej. 

A system in a stationary state (i.e. an eigenstate of the unperturbed Hamilto-
nian E ) will remain in that state forever. Nevertheless, TDPT establishes that by 
applying a time dependent perturbation, transitions between different eigens-
tates of E  can be induced and determines the probability corresponding to 
every particular transition.  

If at 0t =  a time dependent perturbation ( )tW  is applied, for 0t ≥  the 
total, perturbed Hamiltonian will be 

( ) ( )t t= +H E W                           (3) 

The perturbation ( )tW  causes the state ( )0ψ  to change. According to 
TDPT, the Schrödinger evolution leads the initial state ( )0 jψ φ=  to the 
state 

( ) ( ) ( ) ( ) ( ),0 0 ,0 jt t t tψ ψ ψ φ= = =W U U              (4) 

where ( ),0tU  is, by definition, the evolution operator corresponding to the 
Hamiltonian ( )tH . We have written ( ) ( )t tψ ψ= W  to stress that the state 
vector depends on the perturbation ( )tW  through the evolution operator 
( ),0tU .  
Let us underline the difference between the state vector at time t when no time 

dependent perturbation is applied and the state vector at time t resulting from 
the application of ( )tW  during the time interval ( )0, t . In the former case, the 
state vector coincides with the stationary state jφ ; see Equation (2). In the lat-
ter, the state vector will in general not be stationary but a linear superposition of 
several (at least two) stationary states; one of them being jφ . 

At this point the probability of a transition taking place from state jφ  to 
state kφ  during the time interval ( )0, t  is introduced. In the words of Paul 
Dirac, “at time t the ket corresponding to the state in Schrödinger’s picture will 
be ( ),0 jt φU  according to Equation (4). The probability of the nE ’s then 
having the values kE  is 

( ) ( )
2

0, ,0t j k k jE E tφ φ=P U                   (5) 

For k j≠ , ( )0,t j kE EP  is the probability of a transition taking place from 
state jφ  to state kφ  during the time interval ( )0, t , while ( )0,t j jE EP  is 
the probability of no transition taking place at all. The sum of ( )0,t j kE EP  for all 
k is, of course, unity” ([12], pp. 172-173; emphases added). 

TDPT deals with processes having two clearly different stages [16]. In the 
first—during the time interval ( )0, t —a Schrödinger evolution leads the state 
vector from ( )0ψ  to ( )tψ  given by Equation (4) with certitude. In the 
second an instantaneous projection of ( )tψ  to a stationary state kφ  is 
ruled by probability laws [16]. ( )tψ  can collapse either to a state kφ  where 
k j≠ , or to the initial state jφ . According to Dirac, in this last case no transi-
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tion takes place at all. This does not mean that the system stays in the initial state 

jφ  during the whole process. It means: during the interval ( )0, t  the system 
follows a Schrödinger evolution and at instant t, when the state vector is ( )tψ  
given by Equation (4), it jumps to jφ . 

A collapse at t implies that the process is discontinuous at this instant. Since 
the sum of probabilities of a transition from jφ  to kφ  with k j≠ , plus the 
probability of no transition takes place at all during the time interval ( )0, t  is 

( ) ( )0, 0, 1t j k t j jk j E E E E
≠

+ =∑ P P                  (6) 

there is no room for a non-null probability corresponding to a process conti-
nuous at time t. 

Let us now consider the following argument: 
(a) A system initially in the state ( )0 jψ φ=  follows a Schrödinger evolu-

tion during ( )0, t . For that to happen, the state vector must be continuous at 
every instant of this interval. Under these conditions ( ) ( ),0 jt tψ φ=U  with 
certitude. 

(b) The interval ( )0, t  can be divided into the intervals ( )0, t′  and ( ),t t′ , 
where 0 t t′< < . If the initial state is jφ , a Schrödinger evolution during the 
interval ( )0, t′  leads the initial state to ( ) ( ),0 jt tψ φ′ ′=U  with certitude. 

(c) Taking into account the validity of Equations (5) and (6) during the inter-
val ( )0, t′  we are forced to conclude that the probability corresponding to a 
process continuous at time t′  is null. But if the state vector is not continuous at 
t, the system cannot follow a Schrödinger evolution during the interval ( )0, t . 
This conclusion contradicts (a). 

With the noticeable exception of Albert Messiah, neither Dirac nor any other 
author known to us imposes any particular condition on the interval ( )0, t ; the 
condition imposed by Messiah will be discussed in the next section. In the usual 
version of TDPT it is assumed that Equations (5) and (6) are valid during every 
time interval ( )0, t . The resulting contradiction is TQZ paradox.  

Let us review what happens in a small time interval ( )0, dt . The infinitesimal 
evolution operator between 0 and dt can be written 

( ) ( ) ( ),0 0 0i idt dt dt= − = − +  
 

U I H I E W           (7) 

where I  is the identity operator ([11], p. 309). Should the system follow a 
Schrödinger evolution during the interval ( )0, dt , the operator ( ),0dtU  would 
lead it from jφ  to 

( ) ( )0 j
idt dtψ φ = − +    

I E W               (8) 

For k j≠  the probability of a transition taking place from state jφ  to 
state kφ  during the time interval ( )0, dt  would be 

( ) ( ) ( ) ( )2
2 2

0, 2,0 0dt j k k j k j
dt

E E dtφ φ φ φ= =


P U W         (9) 

the sum of these probabilities for all k j≠  would be 
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( ) ( ) ( )2
2

0, 20dt j k k j
k j k j

dt
E E φ φ

≠ ≠

=∑ ∑


P W             (10) 

and the probability of no transition taking place at all would be 

( ) ( ) ( )2
2

0, 21 0dt j j k j
k j

dt
E E φ φ

≠

= −∑


P W            (11) 

Always assuming that the process is a Schrödinger evolution during the inter-
val ( )0,dt , we see that if 0dt →  the probability for a transition between dif-
ferent stationary states becomes negligible while the probability for no transition 
taking place at all approaches unity. In colloquial speech we would conclude: as 
soon as the state vector becomes different from the initial state jφ  a projec-
tion forces it to return to the starting point. 

We have shown, nevertheless, that according to the usual version of TDPT the 
system cannot follow a Schrödinger evolution during any time interval. There-
fore, the state vector at time t cannot be ( ),0 jt φU  and transitions between 
stationary states during the time interval ( )0, t  as referred to in TDPT cannot 
take place. Paraphrasing Zeno, these kinds of transitions between stationary 
states are nothing but an illusion. 

3. Solving TQZ Paradox 

First solution: While remaining in the framework of OQM, Messiah version 
of TDPT differs somewhat from the usual one. In his words: “Supposons qu’à 
l’instant initial 0t =  le système se trouve dans l’un des états propres de E , 
l’état jφ  par exemple. Nous nous proposons de calculer la probabilité de le 
trouver à l’instant t dans un autre état propre de E , l’état kφ  par exemple, 
dans l’éventualité d’une mesure à cet instant. Soit ( )0,t j kE EP  cette quantité, 
c’est par définition la probabilité de transition de jφ  en kφ ” ([15], p. 621; 
emphases added). 

In Section 2 we pointed out that, except Messiah, neither Dirac nor any other 
author known to us imposes any particular condition on the interval ( )0, t . This 
is why we could say that both Equation (5) and Equation (6) are valid during 
every interval ( )0, t . By contrast, Messiah imposes the condition that an ins- 
tantaneous measurement be performed at time t, as demanded by a straightfor- 
ward application of the postulates of OQM. If this condition is not fulfilled, the 
Schrödinger evolution follows and the probability of a transition taking place 
from jφ  to kφ  during the interval ( )0, t  is null. The same applies to the 
sum of probabilities appearing at the l.h. of Equation (6): it is not unity but 0. 

Even if the notion of instantaneous measurement is questionable ([5]; [17], p. 
200), Messiah successfully eludes TQZ paradox through this concept. We shall 
call it the orthodox solution to TQZ paradox. Figure 1 illustrates the case where 
the non-perturbed Hamiltonian E  has only two eigenvalues: Ej and Ek; we 
suppose both of them non-degenerate. In the first stage no measurement is per- 
formed. As a consequence, during the time interval ( )0, t  a Schrödinger evolution 
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(a)                                              (b) 

Figure 1. The Orthodox Solution to TQZ paradox: (a) During the first stage a Schrödin-

ger evolution leads the state vector from ( )0 jψ φ=  to ( ) ( ), 0 jt tψ φ= U . (b) In 

the second stage an instantaneous measurement is performed. As a consequence ( )tψ  

jumps either to kφ  or to jφ . 

 
leads the state vector from ( )0 jψ φ=  to ( ) ( ),0 jt tψ φ=U  with certi-
tude. In the second stage an instantaneous measurement is performed. It is 
worth noting that ( )tψ  cannot remain continuous at time t. It jumps either 
to kφ  with probability ( )

2

k tφ ψ ; or to jφ  with probability ( )
2

j tφ ψ . 
Second solution: SPA provides another solution to TQZ paradox. According 

to this approach [18] [19] [20]: 
(i) Two kinds of processes, irreducible to one another, occur in nature: the 

strictly continuous and causal ones; and those implying discontinuities, where 
the system’s state ( )tψ  collapses. (ii) The system’s state ( )tψ  has the ten-
dency to jump (collapse, be projected, be reduced) to the eigenstates of operators 
representing conserved physical quantities. (iii) A postulate ensures that projec-
tions of ( )tψ  are possible only in cases where they do not violate the statis-
tical sense of conservation laws. The compromise between the tendency ( )tψ  
has to jump to the eigenstates of operators representing conserved physical 
quantities and the limitations imposed by the postulate ensuring the statistical 
sense of conservation laws is at the basis of the definition of preferential states. 
(iv) If a system in the state ( )tψ  with Hamiltonian E  (which does not de-
pend explicitly on time) has the preferential states ( )1,2,q qϕ =  , then: 

( ) ( )q q
q

t tψ γ ϕ=∑                       (12) 

where ( ) ( ) 0q qt tγ ϕ ψ= ≠ . (v) If the Hamiltonian is ( ) ( )t t= +H E W  
(where ( )tW  depends explicitly on time), the preferential states of the system 
in the state ( )tψ  coincide with those the system has for ( ) 0t =W . (vi) If 

( )tψ  does not have preferential states, the Schrödinger evolution follows. By 
contrast, if the preferential states are 1 2, ,ϕ ϕ  , during the small interval 
( ),t t dt+  the state ( )tψ  can undergo the following changes 

( ) ( ) qt t dtψ ψ ϕ→ + =                    (13) 

with probability 
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( ) ( ) ( )
2

q q
dtd t t

t
γ

τ
=P                         (14) 

or 

( ) ( ) ( ) ( ),t t dt t dt t tψ ψ ψ→ + = +U U                (15) 

with probability  

( ) ( )
1 dtd t

tτ
= −PU                          (16) 

Here  

( ) ( )
2

t tτ ∆ =E
ħ                           (17) 

and 

( ) ( ) ( ) ( ) ( )
22 2t t t t tψ ψ ψ ψ ∆ = −    E E E            (18) 

Changes (13) are projections to one of the preferential states with probabilities 
given by Equation (14). As ( )tψ  is normalized, the sum of probabilities for  

jumps like ( ) 1tψ ϕ→ , or ( ) 2tψ ϕ→ , etc., to occur is 
( )
dt

tτ
. The change 

(15) is a Schrödinger evolution with probability given by Equation (16). The sum 
of probabilities corresponding to all the possibilities is 

( ) ( ) 1q
q

d t d t+ =∑ UP P                       (19) 

Except (v), all these points have been introduced and discussed in previous pa-
pers [18] [19] [20]. For more details on points (ii) and (iii) leading to the defini-
tion of preferential states see Appendix A; for examples of the determination of 
preferential states see Appendix B.  

For simplicity we assume E  spectrum to be entirely discrete and non-dege- 
nerate. The state vector can be written 

( ) ( )k k
k

t c tψ φ=∑                      (20) 

where ( ) ( )k kc t tφ ψ= . At 0t = , ( )0 jψ φ= , ( )0 1jc =  and ( )0 0kc =  
for k j≠ . The perturbation ( )tW  causes ( )0ψ  to change: for 0t > , 

( )jc t  decreases and at least one of the ( )kc t  becomes non-null. Even if not 
every stationary state is a preferential state, and not every preferential state is a 
stationary state [18], in the particular case where E  has discrete non-degene- 
rate spectrum, every preferential state is a stationary state; see Appendix B. 

If ( )dt tτ , the dominant process is the Schrödinger evolution [18]. As 
soon as the condition ( ) 0kc t ≠  is fulfilled for k j≠  the corresponding kφ  
becomes a preferential state of the system in the state ( )tψ  and a transition 
from jφ  to kφ  during the time interval ( )0, t  is possible. Hence the sys-
tem does not remain stuck to the initial state jφ . This is the SPA solution to 
TQZ paradox. 
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Figure 2 illustrates SPA solution in the case where the non-perturbed Hamil-
tonian E  has only two eigenvalues: Ej and Ek; we suppose both of them non- 
degenerate. If no spontaneous projection happens in the time interval ( )0, t  a 
Schrödinger evolution leads the state vector from ( )0 jψ φ=  to 

( ) ( ),0 jt tψ φ=U . During the small interval ( ),t t dt+  the state ( )tψ  can 
undergo the following changes: either it jumps to one of its preferential states 
( kφ  and jφ ), or it follows a Schrödinger evolution which leads it from 

( )tψ  to ( ) ( ) ( ),t dt t dt t tψ ψ+ = +U . The probabilities are, respectively, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22

; ; and 1 .k k j j
dt dt dtd t t d t t d t

t t t
φ ψ φ ψ

τ τ τ
= = = −UP P P  

Differing from what happens in the framework of OQM there is always room 
for a Schrödinger evolution in SPA. There is, however, a complete agreement 
between SPA solution and orthodox solution to TQZ paradox in which concerns 
the ratio of probabilities corresponding to jumps to kφ  and to jφ : in both  

cases it takes on the value 
( )

( )

2

2
k

j

t

t

φ ψ

φ ψ
. 

4. SPA versus OQM 

OQM was first formulated by Dirac in 1930 [12]. It refers to individual systems 
and imposes two laws of change of the state vector ( )tψ . Spontaneous 
processes are governed by the Schrödinger equation, a deterministic law. Mea-
surement processes are ruled by probability laws through Born’s postulate and 
the projection postulate. Measurement processes require either the intervention 
of an observer or the interaction of the quantum system with a macroscopic ob-
ject playing the role of measuring device [20]. It has been pointed out that the 
projection postulate introduces a subjective element into the theory; it  
 

 
(a)                                               (b) 

Figure 2. SPA Solution to TQZ paradox: (a) If no spontaneous projection happens during 
the time interval ( )0, t , a Schrödinger evolution leads the state vector from 

( )0 jψ φ=  to ( ) ( ),0 jt tψ φ=U . (b) In the small interval ( ),t t dt+  the system’s 

state ( )tψ  has three possibilities: either it follows a Schrödinger evolution which leads 

it to ( ) ( ) ( ),t dt t dt t tψ ψ+ = +U , or it jumps to one of its preferential states: kφ  

and jφ . 
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conflict with the Schrödinger equation; and it implies a kind of action-at-a-dis- 
tance ([17], pp. 191-205; [20]). 

The presence in parallel of two different, irreducible to one another laws ac-
counting for the change of the state vector ( )tψ  calls for a rule to decide 
which one should be applied in every particular case. But OQM does not provide 
such a rule. Concerning this issue John Bell complains: “during ‘measurement’ 
the linear Schrödinger evolution is suspended and an ill-defined ‘wave-function 
collapse’ takes over. There is nothing in the mathematics to tell what is ‘system’ 
and what is ‘apparatus,’ nothing to tell which natural processes have the special 
status of ‘measurements.’ Discretion and good taste, born from experience, allow 
us to use quantum theory with marvelous success, despite the ambiguity of the 
concepts named above in quotation marks’’ ([21], p.160; emphasis added). 

OQM marvelous success in the area of experimental predictions is mostly 
based on TDPT. It is agreed that the method provided by this theory must be 
used to solve all problems involving time, including time dependent spontane-
ous processes. Should TDPT be discarded, OQM and many of its extensions 
would lose almost completely their power of explanation and prediction [16]. At 
the same time, TDPT is a good example of the ambiguities OQM confronts. In 
Section 2 we pointed out that TDPT deals with processes having two clearly dif-
ferent stages [16]. In the first—during the time interval ( )0, t —a Schrödinger 
evolution leads the system’s state from ( )0 jψ φ=  to ( ) ( ),0 jt tψ φ=U . 
In the second an instantaneous projection of ( )tψ  to a stationary state kφ  
is ruled by probability laws [16]. Both laws are necessary for TDPT to work, but 
the fact that TDPT requires the application of postulates concerning measure-
ments to account for processes supposedly spontaneous is at the very heart of 
OQM incoherence [16]. 

SPA, a version of quantum mechanics previously introduced [18] [19] [20], 
deals with these issues. Our motivation to formulate this approach is the restora-
tion of philosophical realism as the basis of quantum mechanics. Albert Einstein 
was right when he proclaimed: “the belief in an external world independent of 
the perceiving subject is the basis of all natural science” [22]. We have also taken 
into account Bunge’s notion of epistemological realism: “The main epistemolog-
ical problem about quantum theory is whether it represents real (autonomously 
existing) things, and therefore whether it is compatible with epistemological 
realism. The latter is the family of epistemologies which assume that (a) the 
world exists independently of the knowing subject, and (b) the task of science is 
to produce maximally true conceptual models of reality…” ([17], pp. 191-192). 

Other approaches aiming to confront quantum weirdness are close to, but 
different from OQM. By contrast, SPA does not introduce substantial changes 
into the theory. It does not modify the Schrödinger equation and recovers a ver-
sion of Born’s postulate where no reference to measurement is made. The expo-
nential decay law is obtained in cases where the Hamiltonian does not depend 
explicitly on time [18]. Differing from OQM, SPA yields an expression for the 
probability of transitions to the continuum which is valid for every time and, 
except for some minimal restrictions, for every added potential. This prediction 
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could be tested by experiment [19]. 
It has been pointed out that some theories of spontaneous state reduction are 

incompatible with the attainment of equilibrium [23]. This is obviously not the 
case of SPA where stationary states are not only possible: they play a fundamen- 
tal role. We should also stress the radical difference between SPA and theories of 
quantum measurement based in the concept of decoherence. According to these 
theories, the off-diagonal elements of the density matrix should progressively 
vanish; it is not clear, however, why all diagonal elements but one should vanish 
[24]. By contrast, SPA states that a spontaneous projection to a preferential state 
instantaneously deletes as well the off-diagonal elements of the density matrix as 
all diagonal elements but one, as established by OQM when a measurement is 
performed. 

The orthodox solution to TQZ paradox obtained in Section 3 results from a 
straightforward application of the postulates of OQM. But let us perform a close 
examination of this solution in the particular case where the perturbation ap- 
plied at 0t =  does not depend explicitly on time. For 0t <  the Hamiltonian 
representing the energy of the system is E . The corresponding eigenvalue equa- 
tions are 

n n nEφ φ=E                        (21) 

where ( )1, 2,nE n =   are the eigenvalues of E  and nφ  the corresponding 
eigenstates. For 0t ≥  the Hamiltonian representing the energy of the system is 

= +K E W . The corresponding eigenvalue equations are 

mm mEξ ξ′=K                       (22) 

where ( )1,2,mE m′ =   are the eigenvalues of K  and mξ  the corresponding 
eigenstates. For simplicity we assume both E  and K  spectra to be entirely 
discrete and non-degenerate.  

According to the postulates of OQM the only possible result of the measure- 
ment of a physical quantity is one of the eigenvalues of the operator which 
represents it. So a measurement of the energy performed at 0t ≥  must yield 
one of the eigenvalues of K , v.g. rE′ . As a consequence, ( )tψ  must jump to 

rξ , which is not an eigenstate of E  but an eigenstate of K  [19]. Hence, even 
if the orthodox solution to TQZ paradox allows us to conclude that the system 
does not remain stuck to the initial eigenstate jφ , it does not follow that the 
system performs transitions between eigenstates of the non-perturbed Hamilto- 
nian E . In this sense, this solution to TQZ paradox is defective. It is not evident 
that this defect will disappear in cases where the perturbation applied at 0t =  
depends explicitly on time. 

By contrast, SPA solution to TQZ paradox makes no reference to measure- 
ments. Transitions between eigenstates of E  are possible as long as these ei- 
genstates are preferential states of the system in the state ( )tψ . The preferen- 
tial states do not change when a perturbation ( )tW  which depends explicitly 
on time is applied (see Section 3). Nevertheless, if the perturbation is constant in 
time, the preferential states may change.  
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5. Conclusions 

In the framework of OQM, there are no projections without measurements. So it 
is necessary to invoke measurements even in spontaneous processes where 
measurements should obviously be absent. This is v.g. the case of absorption and 
emission of light and of processes occurring in semiconductors. 

Both our Critical Review of TDPT [16] and the orthodox solution to TQZ pa-
radox introduced in Section 3 highlight that in OQM the notion of measurement 
and consequent projections are ad-hoc. By contrast, in SPA projections are not 
surreptitious but explicitly included in the formalism. The same is true of the 
rule necessary to decide whether the system will forcibly follow a Schrödinger 
evolution or not. This is why SPA enjoys of a coherence which is absent from 
OQM [16] and allows us to provide a satisfactory solution to the True Quantum 
Zeno Paradox. 
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Appendix A: The Concept of Preferential States 

Let A  be the self-adjoint operator representing the physical quantity A  re- 
ferred to the physical system S . We assume that the Hamiltonian, denoted by 
E , does not depend explicitly on time t. If A  fulfills the conditions 

0
t

∂
=

∂
A

                              (A1) 

and 

[ ], 0=A E                              (A2) 

the state vector ( )tψ  which represents the state of S  has the tendency to 
jump to the eigenstates of A . We have shown, however, that this tendency is 
seldom realized [18] [19] [20]. 

In addition to the problems referred to in Section 4, OQM conflicts with con- 
servation laws. Let us briefly review this issue which has been largely ignored [25] 
[26] [27] [28] [29]. By definition the mean value (also called expectation value) 
of A  is 

( ) ( ) ( )t t tψ ψ=A A                      (A3) 

In Schrödinger evolutions the validity of Equation (A1) and (A2) ensures that 

( )tA  remains a constant in time for every state ( )tψ . It is said that A  is 
a constant of the motion and that the physical quantity A  is conserved. By 
contrast, in processes ruled by another, different law from Schrödinger equation, 
the validity of Equation (A1) and (A2) does not guarantee that ( )tA  remains 
a constant in time. Hence the assertions “ A  is a constant of the motion” and 
“ A  is conserved” are not justified [29]. 

It has been shown that in processes involving projections (like OQM mea- 
surement processes) the mean value ( )tA  may change even if Equation (A1) 
and (A2) are fulfilled [20] [28]; this is the case of a process starting at t0  
and ending at tf which yields ( ) ( )0ft t≠A A  [29]. Nevertheless, the average 

of the changes ( ) ( )0ft tδ = −A A A  obtained by repeating the process  

many times is close to zero [29]. These remarks justify the adoption of a post-
ulate ensuring the statistical sense of conservation laws [18] [19] [20]. 

Let us consider a set of N  orthonormal vectors: 21 , , ,u u u N  ({ }uN  
for short) such that we can write 

( ) ( )j j
j

t c t uψ =∑                      (A4) 

where ( ) ( )j jc t u tψ=  and 1,2, ,j =  N . The mean value of A  at time 
t is ( )tA  given by Equation (A3); in particular, if ( ) jt uψ =  the mean 
value of A  is j ju uA . Then, if Equations (A1) and (A2) are satisfied, we 
shall require the validity of 

( ) ( ) ( ) 2
j j j

j
t t c t u uψ ψ =∑A A            (A5) 

for the state ( )tψ  given by Equation (A4) may collapse to the vectors of the 
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set { }uN , i.e. for jumps like ( ) 1t uψ → , or ( ) 2 ,t uψ →  , etc., may 
occur [18] [19] [20]. In previous papers we have introduced this requirement as 
a postulate ensuring the statistical sense of conservation laws [18] [19] [20]. 
Needless to say that this postulate forbids projections of the state ( )tψ  to the 
vectors of many sets { }uN . 

If there is a unique set of 2≥N  orthonormal vectors: 1 2, , ,ϕ ϕ ϕ N  
({ }ϕN  for short) such that (I) the state of S  at time t can be written 

( ) ( )j j
j

t tψ γ ϕ=∑                       (A6) 

where ( ) ( ) 0j jt tγ ϕ ψ= ≠  for every 1,2, ,j =  N ; (II) at least ( )1−N  
vectors belonging to the set { }ϕN  are eigenstates of the Hamiltonian E  (i.e. 
stationary states); and (III) every self-adjoint operator A  for which Equations 
(A1) and (A2) are valid satisfies the relation 

( ) ( ) ( ) 2
j j j

j
t t tψ ψ γ ϕ ϕ=∑A A               (A7) 

we shall say that { }ϕN  is the preferential set of S  in the state ( )tψ  and 
the members of { }ϕN  will be called its preferential states. The preferential set 
depends on the system’s state ( )tψ . Note: Differing from the definition of 
preferential set previously introduced [18] [19] [20], the present one imposes the 
condition ( ) ( ) 0j jt tγ ϕ ψ= ≠  for every 1,2, ,j =  N . 

The concept of preferential states plays a paramount role in SPA for ( )tψ  
can jump only to these states; if the system in the state ( )tψ  does not have 
preferential states, the Schrödinger evolution follows. 

Appendix B: Some Examples 

(a) The simplest case is that where the Hamiltonian E  is a complete set of 
compatible operators with entirely discrete spectrum. The eigenvalues will be 
denoted by nE  where 1,2,n =  ; and the corresponding eigenvectors by nφ . 
The state vector of the physical system S  can be written 

( ) ( )n n
n

t c tψ φ=∑                      (B1) 

Since E  is a constant of the motion, ( )tψ  has the tendency to collapse to 
the eigenvectors nφ . As the relation 

( ) ( ) ( ) 2
n n n

n
t t c tψ ψ φ φ=∑E E               (B2) 

is valid, the requirement (III) established in Appendix A is satisfied for every 
( )tψ . In the particular case where the state vector of S  at time t1 is 

( ) ( ) ( )1 1 1j j k kt c t c tψ φ φ= +                 (B3) 

where ( )1 0jc t ≠  and ( )1 0kc t ≠ , conditions (I) and (II) of Appendix A are also 
fulfilled. Hence the preferential set of S  in the state ( )1tψ  is { },j kφ φ , a 
subset of the set of stationary states. This is a general rule in case E  is a con- 
stant of the motion and a complete set of compatible operators with discrete 
spectrum. 
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(b) We assume that the operators E , A  and B , respectively representing 
the physical quantities energy, A  and B  are constants of the motion and 
have discrete spectra. In addition, we suppose that the set { }, ,E A B  is the 
unique complete set of compatible operators of the system. The eigenvectors of 
its common basis will be denoted by j k lE a b , where jE , ka  and lb  are re- 
spectively the eigenvalues of E , A  and B , and 1,2,j =  ; 1,2,k =  ; 

1,2,l =   The system’s state has tendency to jump to the eigenvectors of E , to 
the eigenvectors of A , and to the eigenvectors of B . Since the relations 

( ) ( ) ( ) 2
jkl j k l j k l

jkl
t t c t E a b E a bψ ψ =∑E E            (B4) 

( ) ( ) ( ) 2
jkl j k l j k l

jkl
t t c t E a b E a bψ ψ =∑A A           (B5) 

and 

( ) ( ) ( ) 2
jkl j k l j k l

jkl
t t c t E a b E a bψ ψ =∑B B           (B6) 

are satisfied for 

( ) ( )jkl j k l
jkl

t c t E a bψ = ∑                   (B7) 

condition (III) stated in Appendix A is fulfilled for every state of the system. In 
the particular case where the state vector at t0 is 

( ) ( ) ( )0 111 0 1 1 1 212 0 2 1 2t t E a b t E a bψ γ γ= +            (B8) 

where ( )111 0 0tγ ≠  and ( )212 0 0tγ ≠ , it is easily verified that conditions (I) and 
(II) established in Appendix A are also satisfied. So the preferential set of S  in 
the state ( )0tψ  is { }1 1 1 2 1 2,E a b E a b . As in the previous case, every prefe-
rential set is a subset of the set of stationary states. 

(c) We assume, as in case (b), that E , A  and B  are constants of the mo- 
tion and have discrete spectra but [ ], 0≠A B . Hence A  and B  do not have a 
common basis. Let us suppose, however, that { },E A  and { },E B  are two com- 
plete sets of compatible operators. In the basis of the former, every state can be 
written 

( ) ( )jk j k
jk

t c t E aψ =∑                   (B9) 

while in the basis of the latter we have 

( ) ( )jl j l
jl

t d t E bψ =∑                  (B10) 

Collapses to the vectors of the basis { }j kE a  violate the statistical sense of 
the conservation of B  while reductions to the vectors of the basis { }j lE b  
violate the statistical sense of the conservation of A  [18]. By contrast, jumps 
to the normalized projection of ( )tψ  into the eigensubspace of E  corres- 
ponding to the eigenvalue jE  are in compliance with both the statistical sense 
of the conservation of the physical quantity A  and the statistical sense of the 
conservation of B  [18]. Also in this case every preferential set is a subset of 
the set of stationary states. 
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