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Abstract 
We analytically derived the complex Ginzburg-Landau equation from the Liénard form of the dis-
crete FitzHugh Nagumo model by employing the multiple scale expansions in the semidiscrete ap-
proximation. The complex Ginzburg-Landau equation now governs the dynamics of a pulse prop-
agation along a myelinated nerve fiber where the wave dispersion relation is used to explain the 
famous phenomena of propagation failure and saltatory conduction. Stability analysis of the pulse 
soliton solution that mimics the action potential fulfills the Benjamin-Feir criteria for plane wave 
solutions. Finally, results from our numerical simulations show that as the dissipation along the 
myelinated axon increases, the nerve impulse broadens and finally degenerates to front solutions. 
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1. Introduction 
Wave propagation and pattern formation in a variety of excitable media can be effectively described by 
reaction-diffusion equations. The FitzHugh Nagumo (FHN) model [1] [2] is one of the simple examples of a 
two-dimensional excitable dynamics that governs such systems. This model have been used as a simplified 
version of the Hodgkin-Huxley model [3] of neuron firing. The FHN model which is characterized by a 
recovery mechanism furnishes us with a better understanding of the essential dynamics of the interaction of 
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membrane potential and qualitatively captures the general properties of an excitable membrane. Even though its 
simplicity allows very valuable insight to be gained, the accuracy of reproducing real experimental results is 
limited. 

Myelinated axons modelled by discrete FHN equations incorporate a richer dynamics than its continuous 
counterparts. Also, the mathematical study of spatially discrete models is challenging because of special and 
poorly understood phenomena occurring in them that are absent if the continuum limit of these models is taken. 
For example, in the discrete FHN model, there exists a coupling threshold for its propagation while the con- 
tinuous system sustains propagation of all coupling strengths [4]-[7]. Enormous efforts to understand pro- 
pagation failure in FHN system were made by Booth et al. [6], in which they considered slow recovery and very 
special limiting values of the parameters characterizing the bistable source and the spatial diffusivity in the FHN 
system. By imposing some special boundary conditions, they studied the evolution of localized front from one 
cell to another until it failed to propagate. Also, by using the Morris-Lecar model for myelinated nerve fiber, 
Hastings et al. [8] demonstrated that travelling waves could be observed even though they had difficulties to 
extend their results to the FHN system. Our main focus is to capture the various profiles of nerve impulses along 
a myelinated axon when the dissipative effects is reduced to its minimum value. This will be experimentally 
very difficult to be realized, but we hope to theoretically investigate this effect by using perturbation techniques. 

The effects of dissipation is prominent in most physical and biological systems [9]-[11], such as the 
myelinated FHN fiber which is a discrete system made of periodic structures called Ranvier nodes [12]. 
Dissipative systems are spatiotemporally organized patterns that are far from a steady state configuration 
because of the dynamic imbalance between spatial interactions and temporal instabilities. This dissipative effect 
spread thoughout a neural network because of the spatially localized connectivity between adjacent group of 
neurons, leading to the diffusive transmissions to neighboring cells. In fact, from experimental and theoretical 
standpoint, waves travelling over dissipative neural network mostly vanish due to collision [13]-[15] and lack of 
an external energy source to take care of attenuation [16]. However, we still observe localized short excitations 
of nerve impulses [17], ultrashort pulses from passively mode-locked lasers, travelling waves in cortical 
networks, Bose-Einstein condensates in cold atoms [18], in various autonomous dissipative media, suggesting 
that more stable solitonic profiles can be observed provided measures are taken to minimize dissipation. 

The control of pulse propagation in dissipative media can also be achieved by subjecting the system to high 
frequency periodic perturbations. For a discrete system like myelinated axons, this method has the advantage 
that the external frequency can either suppress or enhance the pulse propagation [19]. The purpose of this study 
is to examine the evolution of a nerve impulse, responsible for carrying electrical signals along a weakly 
dissipative myelinated axon. This issue is brought into sharp focus because neurons effectively participate in a 
collective spatiotemporal sharing of vital information. For some conservative media like in optical fibers, such 
crucial signals are conveyed by trains of solitons [20]-[22] which are robust to external perturbations. We 
derived the Complex Ginzburg-Landau (CGL) equation from a weakly dissipative FHN model, where the pulse 
solution clearly depicts the action potential typical in neural networks. The linear stability analysis of the action 
potential generally shows that the nerve impulse is relatively unstable to small pertubations. 

The rest of the work is organized as follows; in Section 2, after a brief introduction of the FHN model, we 
derived the model CGL equation in a weak dissipative medium using the multiple scale expansion in the 
semi-discrete approach. The analytic solution of the CGL equation is obtained in Section 3 following the method 
highlighted in [23], to obtain the Pereira and Stenflo [24] pulse soliton solution. A linear stability analysis is 
carried out in Section 4 to check the robustness of the nerve impulse when subjected to a minimal perturbation. 
Consequently, the Benjamin-Feir criteria is satisfied from the qualitative analysis of the modulational instability. 
Numerical simulations of the CGL equation depict the evolution of the pulse soliton whose width increases as 
the dissipation increases. In the absence of dissipation, we observe a stable profile of the nerve impulse. Finally 
Section 5 gives a summary of the entire work.  

2. Model Equations  
We consider a one-dimensional chain of FitzHugh-Nagumo equations [1] [2]:   

( )
3

1 12
3
n

n n n n n n
u

u u v K u u u+ −= − − + − +                             (1a) 
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.n n nv a bu cv= + −                                     (1b) 

Here nu  and nv  are the membrane potential and the recovery variable respectively at the thn  excitable 
membrane site known as Ranvier node. The recovery variable nv  depicts the slow dynamics because the 
parameters , , 1.a b c  For Equation (1a), the first term, nu , accounts for the positive feedback, where depo- 
larization enhances more depolarization through the voltage-gated sodium channel. The second term, 3 3nu− , is 
a rapid negative feedback loop, corresponding to the auto-inactivation of the sodium channel. The third term 

nv−  represents a recovery process which may be physically responsible for regulating the outward potassium 
currents that oppose depolarization. The last term is the discrete diffusive term with coupling strength K, that is 
proportional to the difference in internodal currents through a given Ranvier node. The first term of (1b) i.e. a 
mainly measures the potassium leakage current while nbu  captures the activation of the voltage-gated po- 
tassium channel by the membrane potential nu , which increases the magnitude of nv . Lastly, ncv−  controls 
the pumping of potassium ions out of the neuron. 

Differentiating Equation (1a) with respect to time and substituting the value of nv  from (1b) yields  

( ) ( ) ( )2 2 3
0 2 1 0 0 1 1 1 1 12 2 ,n n n n n n n n n n nu u u u u D u u u D u u uγ γ γ + − + −+Ω + − − + = − + + − +                (2) 

where 0 0 1 2 0, , , ,Dγ γ γΩ  and 1D  are all constants. 
System (2) is the Liénard form of the FHN model of a myelinated nerve fiber which may be considered as the 

modified form of the van der Pol equation. For 0 1 0D D= = , Equation (2) becomes the cubic Liénard equation 
with linear damping and it is sometimes regarded as a generalization of damped oscillations. Furthermore, 
within the linear regime and when the dissipation is neglected, we obtain the well known linear harmonic 
oscillator that finds numerous applications in both classical and quantum physics. The Liénard type of equations 
have been intensively investigated from both mathematical and physical perspectives, and their study remains an 
active field of research in mathematical physics [25]-[28]. 

Equation (2) also mimics a one dimensional chain of atoms with unit mass, harmonically coupled to their 
nearest neighbors, characterized by dissipation and subjected to nonlinear on-site potential. A lot of difficulties 
is encountered to analytically solve this equation, however we will use a perturbation technique to minimize the 
effects of dissipation and also attempts to find appropriate solutions. In this light, all the dissipative coefficients 

2 1, Dγ  are perturbed to the order 2ε , where 1ε   is a slow variable parameter. Also, we greatly minimize 
the rate at which the leakage potassium ions are discharged from the neuron by perturbing 0γ  to order 3ε . 
Consequently keeping just terms up to order 2ε , Equation (2) is rewritten as  

( ) ( )2 2 3 2 2
0 0 1 1 1 1 1 1 22 2 .n n n n n n n n n n n nu u D u u u u u u D u u u uγ ε ε γ+ − + −+Ω − − + + − = − + +                 (3) 

There are always frequency limits within which normal propagation of nerve impulse signals are observed 
across the FHN myelinated axon. In order to define the appropriate frequency range, we employ a perturbative 
technique where a suitable solution of the FHN model containing ε  parameter is used. Upon substitution of 
this solution into the diffusive FHN model (3), the dispersion relation is obtained with terms at order of 0e niθε . 
Hence, we consider a simplified solution of our FHN model (3) of the form;  

( ) ( ) ( ) ( )* 3, e , e ,n ni i
nu t n t n tθ θεψ εψ ε−= + +                            (4) 

with n qn tθ ω= −  where q is the normal mode wave number and ω  is the angular frequency. 
In the semidiscrete approximation, ( ),n tψ  is supposedly independent of the “fast” variables t and n. Instead, 

it depend on the “slow” variables defined by i
iX xε=  and i

iT tε= , for 1i ≥ . A continuum limit approxi- 
mation is then made with the wave amplitudes while the discrete nature of the phase in maintained, details of 
this method is given in [25] [29]. 

Collecting terms at order 0e niθε  gives the dispersion relation  

2 2 2
0 04 sin ,

2
qDω  = Ω +  

 
                                   (5) 

which is plotted in Figure 1. From Equation (5), the linear spectrum has a gap min 0ω = Ω  and it is limited by  

the cut-off frequency ( )1 22
max 0 04Dω = Ω +  due to discreteness. 

The variation of the diffuseness of the plasma membrane through the dispersion coefficient 0D , physically  
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Figure 1. Linear dispersion curve of the nerve impulse for 0 0.04D =  and 2

0 0.032Ω = . There is a lower cutoff mode 

0q =  with frequency 0 0ω = Ω  and upper cutoff mode πq =  with frequency ( )1 22
max 0 04Dω = Ω + .                             

 
accounts for the alteration of ions movement across pumps and ion channels at the Ranvier nodes. Clearly for 
normal propagation of action potential across the myelinated axon, there exists a frequency range 0 maxf f f≤ ≤ ,  

where 0 0 2πf = Ω  (lower cutoff mode 0q = ) and ( )1 22
max 0 04 2πf D= Ω +  (upper cutoff mode πq = ). In  

this frequency range, the voltage-gated sodium ions channels are highly concentrated in the Ranvier nodes 
which are myelin free. When an action potential is generated at the axon hillock, the influx of sodium ions 
causes the adjacent Ranvier nodes to depolarize, resulting in an action potential at the node. This also triggers 
depolarization of the next Ranvier node and the eventual initiation of an action potential. Action potentials are 
successively generated at neighboring Ranvier nodes; therefore, the action potential in a myelinated axon 
appears to jump from one node to the next, a process called saltatory conduction. For 0f f< , the action 
potential initially generated from one Ranvier node jumps to the next in a discontinuous manner. This process 
allows the speed of conduction to be greatly increased and completely distorts switching between adjacent 
Ranvier nodes. Consequently, this leads to propagation failure because of the inability of the nerve impulse to 
move across the axon. Lastly, for maxf f> , the nerve impulse can not propagate because its amplitude 
exponentially decays to zero. However considering the nonlinearity of the medium, it may be possible to 
observe normal propagation along the axon provided the amplitude exceeds a certain threshold value. This mode 
of propagation called supratransmission has been realized in many physical systems [30]-[33]. 

Terms of order 1e niθε  gives  

1 1

0,gv
T X
ψ ψ∂ ∂

+ =
∂ ∂

                                      (6) 

where 0 sin
g

D q
v

ω
=  is the group velocity as depicted in Figure 2.  

Finally, we collect terms proportional to 2e niθε  to have  

( ) ( )

[ ]

2 2

0 02 2
2 21 1

2 2
1 1 2

2 cos 2 sin

3 4 sin .
2

i D q iD q
T XT X

qi i D

ψ ψ ψ ψω

γ ω ψ ψ ω γ ψ

∂ ∂ ∂ ∂
− = +

∂ ∂∂ ∂

  + + + −    

                   (7) 

By considering the reference mobile frame i i g iX v Tξ = −  and i iTτ =  with gv  being the group velocity of  
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Figure 2. Group velocity of the nerve impulse for 0 0.02D =  and 2

0 0.032Ω = .                                               
 
the wave, we obtain  

( )
2

2
2

2 1

0,
2 2r i
P Ri Q iQ iψ ψ ψ ψ ψ

τ ξ
∂ ∂

+ + + + =
∂ ∂

                           (8) 

where P, is the real dispersion coefficient, andr iQ Q  are respectively the real and imaginary parts of the 
nonlinear coefficient, while 0R <  is the dissipative coefficient that causes the attenuation of action potential 
because of lost of energy during propagation. These parameters are given by;  

( ) 2
0 cos

,gD q v
P

ω
−

=                                     (9) 

13
,

2rQ γ
ω

=                                         (10) 

1 ,
2iQ =                                          (11) 

2
2 14 sin .

2
qR Dγ  = − +  

 
                                  (12) 

Equation (8) is the CGL equation and generally speaking, it represents one of the most-studied nonlinear 
equations in the physics world today. This is because it gives a qualitative and quantitative description of a 
myriad of physical activities [11] [25] [34]. In neural networks, the propagation of modulated nerve impulses 
observed is governed by CGL equation, which clearly demonstrates how neurons participate in processing and 
sharing of information [25]. In this study which we focus on the propagation of action potential along a 
myelinated axon, it is incumbent on us to obtain appropriate solutions that depicts the asymmetric structural 
features of action potential. Physically in most conservative media [35], solitary waves are understood as 
carriers of energy, however in this our context where dissipation is still prominent we need to balance the energy 
outflow in order to observe stable nerve impulses.  

3. Solution of the Equation of Motion  
Since we are dealing with a CGL equation, it is incumbent on us to look for a propagating wave solution of the 
form:  

( ) ( ) ( )1 2
1 2 1, e ,i ia φ ξ ω τψ ξ τ ξ ′−=                                  (13) 
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which upon substitution into Equation (8) to obtain   

1 1 1

2 3 0,
2 2 r
P Pa a Q aξ ξ ξω φ ′ − + + = 

 
                             (14a) 

1 1 1 1

2 3 0.
2 2 i
R P a P a Q aξ ξ ξ ξφ φ + + + = 

 
                            (14b) 

Let us assume that  

( ) ( )1 0 1ln ,d aφ ξ φ ξ= +                                     (15) 

where d is the chirp parameter and 0φ  is an arbitrary phase which we set to zero (i.e. 0 0φ = ) without loss of 
generality. Equation (15) is obviously a constraint imposed on ( )1φ ξ  because the chirp could have a more 
general functional dependence on 1ξ . However this restriction allows us to find all possible analytic pulse-like 
solutions of the modified CGL Equation (8). Consequently, Equation (14) becomes   

1
1 1

2 2
3 0,

2 2 r

d aP Pa a Q a
a
ξ

ξ ξω′ + − + =                               (16a) 

1
1 1

2
3 0.

2 2 2 i

d aR P Pa d a Q a
a
ξ

ξ ξ+ + + =                              (16b) 

We now have two second order ordinary differential equations (ODE) relative to the same dependent variable, 
( )1a ξ . To have a common solution, the two equations must be compatible which generally in most systems is 

not the case. However, for this particular system, they can be made compatible by a proper choice of the 
parameters. 

The following procedure is employed in order to find the compatibility conditions of the two equations; 
initially we eliminate the first derivatives from Equation (16) to have  

1 1

3 0,
2 2 2

r
i

QPd P Ra a Q a
d d dξ ξ

ω′     + + + + + =          
                        (17) 

which upon integration and setting the integration constant to zero yields  

1

2 2 4
2

1 11 0.
2 2 2

r
i

QPd Ra a Q a
d dd ξ
ω′     + + + + + =          

                      (18) 

On the other hand, we eliminate the second derivative from Equation (16), obtaining  

( ) ( )
1

2 2 2 41 0.
2 2 i r

Pd Rd a d a Q Q d aξ ω ′+ + − + − = 
 

                       (19) 

Equations (18) and (19) must coincide, consequently leading to the following conditions:  

( )2
2

1
= 3 9 2 .

4r r

R d
d Q Q

d
ω

−
′− ± + =                            (20) 

In order for us to obtain pulse solutions with real amplitudes, we assume that 0, 0.50, 0,rR Q P< < >  and 
without loss of generality, we set 1d = , leading to 0ω′ = . The solution of CGL Equation (8) obtained by by 
Pereira and Stenflo [24] now reads  

( ) ( )
2

1

1 2 1, sech e ,
2 0.5 2

i

i

r

R R
Q P

ω τψ ξ τ ξ
+

′−
  − −

=    −   
                      (21) 

with the amplitude of the solution plotted in Figure 3. 
We now obtain the exact analytic solution of the nerve impulse propagating along the myelinated axon by 

substituting (21) into the FHN model solution (4) to have;  

( ) ( ) ( ) ( ) ( )1 1 1 12 sech cos ln sech cos 2 sech sin ln sech sin ,n n nu t A B A B A B A Bε ξ ξ θ ε ξ ξ θ   = −             (22) 
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Figure 3. Spatial solution (21) of the CGL Equation (9), for 2

0 0.032,Ω =  0 0.020,D =

1 2 10.020, 0.667, 0.001, 0.00D qγ γ= = = =  and 1.0d = .                                                                                                      
 
where  

( )
, .

2 0.5 2r

R RA B
Q P

− −
= =

−
 

Figure 4 depicts the spatial profile of this nerve impulse which may be considered as an electrical signal that 
propagates over a long distance without a change in amplitude. 

Also, when the parameter ε  is varied, the form of the wave is greatly distorted as in Figure 5. Finally, 
Figure 6 depicts the spatiotemporal 

4. Linear Stability and Numerical Analysis  
Stability is a very important property of a wave profile in a neural network, since it determines whether such 
patterns can be observed experimentally, or utilized for diagnostic purposes. Recall that the phenomenon of 
modulational instability results when a steady-state solution is subjected to a weak perturbation, which 
eventually leads to the exponential growth of its amplitude along the line of propagation due to the interplay 
between the nonlinearity and dispersive effects of the medium. Initially, we consider the stability of the trivial 
homogeneous solution ( )1 2, 0ψ ξ τ =  by substituting the perturbations of the form 1 2eiqξ λτ+  in the linearized 
part of Equation (8). This leads to the characteristic equation  

( ) 22 0,R iPqλ λΓ = + + =                                 (23) 

where q is a spatial wavenumber of the perturbation and λ  determines the growth rate. The corresponding 
dispersion relation reads  

( ) 22 ,q R iPqλ = − −                                    (24) 

and when all the eigenvalues ( )qλ  have negative real parts, the homogeneous solution is asymptotically stable. 
Clearly the stability depends on the dissipative coefficient R and we conclude that the trivial solution is unstable 
since 0R < . 

We now study the existence and stability of plane wave solutions ( )1 2
0ei qξ ωτψ ψ +=  of Equation (8). We 

obtain the relation between the unknown amplitude 0ψ , wavenumber q and frequency ω  of the plane wave 
solution as follows;  

( )2 2
0

1 1 .
2 2 r iPq iR Q iQω ψ= − + + +                              (25) 
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Figure 4. Spatial solution (22) of the FHN model (3), for 2

0 0 1 20.032, 0.020, 0.020, 0.667,D γ γΩ = = = =

1 0.001, 0.00, 1.0, 1.0D q t d= = = =  and 1.0ε = .                                                  
 

 
Figure 5. Spatial variation of solution (22) of the FHN model (3) as parameter ε  is varied. This is for 

2
0 0 1 2 10.032, 0.020, 0.020, 0.667, 0.001, 0.00, 1.0,D D q tγ γΩ = = = = = = =  and 1.0d = .                         

 
Due to the symmetry property of the CGL Equation (8) i.e. ,ψ ψ→ −  this equation is symmetric under the 

reflection 0 0ψ ψ→ − , and we restrict our analysis to the case 0 0ψ ≥ . The real and imaginary parts of Equation 
(25) give the expressions for the amplitude 2

0ψ  and the frequency ( )qω  at a given wavenumber q:  
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(a) 

 
(b) 

Figure 6. Spatiotemporal evolution of nerve impulse solution (22) for 2
0 00.032, 0.020,DΩ = =  

1 2 10.020, 0.667, 0.001, 0.00, 1.0D q dγ γ= = = = = . (a) 1.000ε =  (b) 0.100ε = .                                                                              
 

( ) 2 2 2
0 0

1 , 0.
2 2r i

Rq Pq Q Qω ψ ψ= − + + =                            (26) 

Figure 7 shows the amplitude of the plane wave solution 0ψ  as a function of the dissipative parameter R−  
(since 0R < ) for 0.50iQ = . 

We now perturb the plane wave solutions in order to have  

( ) ( ) ( )1 2
1 2 0, e ,i q

p
ξ ωτψ ξ τ ψ ψ += +                               (27) 

where  
1 2 1 2e e ,ik ik

p
ξ λτ ξ λτψ ψ ψ+ − +

+ −= +                                (28) 
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Figure 7. Amplitude of plane wave solution 0ψ  versus parameter R−  for 0.50iQ =  
according to Equation. (26).                                                           

 
is a small perturbation term with a growth rate λ . Here λ  and ψ−  denote complex conjugation, and k stands 
for different perturbation modes. Substitution of (27) into CGL Equation (8) and linearization in pψ  yields  

 

( ) ( )

( )( ) ( )

2
2

0 02
2 1

3 2 2 *
0 0 0 0

2
2

12 0.
2

p p
p p

r i p p p

Pi iq q
x

Q iQ iR

ψ ψψω ψ ψ ψ ψ
τ ξ

ψ ψ ψ ψ ψ ψ ψ

∂ ∂ ∂
− + + + − + 

∂ ∂∂ 

+ + + + + + =

                   (29) 

After substituting (28) into (29) and using Equation (25), we obtain an equation involving two linearly 
independent functions 1 2eikξ λτ+  and 1 2e ikξ λτ− + . Requiring that the coefficients of these functions are zero, we 
arrive at a system of linear equations for the unknowns ψ+  and ψ− :  

11 12

21 22

0
,

0
m m
m m

ψ
ψ

+

−

    
=    
   

                                (30) 

with  

( )2 2
11 0

1 ,
2 r im i Pk Pkq Q iQλ ψ= − − + +  

( ) 2
12 0 ,r im Q iQ ψ= +  

( ) 2
21 0 ,r im Q iQ ψ= −  

( )2 2
22 0

1 .
2 r im i Pk Pkq Q iQλ ψ= − − + + −  

Since we are looking for non-trivial solutions ( ),ψ ψ+ − , the characteristic equation for the perturbation 
growth rate ( )kλ  is obtained when the determinant of the coefficient matrix vanishes:  

( ) ( ) ( )2 2 2 2 2 4 2
0 02 2 4 0.i i rQ iPqk Pk iqQ kQ P k k qλ ψ λ ψ+ + + − + − =               (31) 

Solutions ( )kλ  can now be found explicitly and the maximum of their real parts determines the stability of 
plane waves. Consequently we solve Equation (31) to obtain  
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( ) ( )2
0 ,ik Q iPqkλ ψ= − + ± ∆                                (32) 

where 
2

2 4 2 2 2
0 02 ,

4
r

i
QkQ P k
P

ψ ψ
 

∆ = − − 
 

 is the discriminant of the quadratic Equation (31). It is a very useful  

component because it determines the nature of roots of the growth rate ( )kλ  which is purely complex. Since 
this discriminant depends on different perturbation modes k, it is therefore clear that ∆  is bound to have 
multiple values as will be demonstrated below. 

For 0,∆ =  plane waves are modulationally stable since 0.iQ >  

For 0,∆ <  implying that 
2

2
02 0

4
rQk

P
ψ− >  we have that ( )0 . 0r

r
Q i e PQ
P

< <  and the plane waves are  

always stable since 0.iQ >  

Lastly, for 0,∆ >  implying that 
2

2
02 0

4
rQk

P
ψ− <  we have that ( )0 . 0r

r
Q i e PQ
P

> > . The perturbation  

grows exponentially with time resulting to the instability of the plane waves which tend to self-modulate with a 
wave vector k. The plane wave solutions of the CGL Equation (8) clearly manifest the the classical Benjamin- 
Feir scenario where plane waves are unstable for positive rPQ , while they are stable for negative values. 
Consequently, one expects to find spatially localized nerve impulses along the myelinated axon, for any wave 
carrier whose wave vector is in the positive range of rPQ . 

The condition 0rPQ > , is also the condition for the existence of solitons, the study of the long-term 
evolution of a plane wave injected as initial condition in the neural network shows that, after a period during 
which the waves start to self-modulate as predicted by the linear stability analysis we just performed, this 
change persists until the amplitude of the plane waves vanishes in some regions. Sometimes, this modulational 
instability leads to a train of pulses [36], but for our case, this effect generates a single nerve impulse produced 
by the superposition of continuous waves oscillating at a constant frequency shift. 

We now perform the numerical simulations of the CGL Equation (8) by using a Runge-Kutta scheme with 
fixed step size and initial conditions obtained from the analytic solution (21) of the CGL equation to check the 
long term effects of modulational instability. Figure 8 depicts the spatiotemporal evolution of the nerve impulse 
along the myelinated axon as the dissipative parameter is varied. 

In the first case, i.e. Figure 8(a) where the dissipation is zero, we observe that the pulse conserves its shape, 
indicating that energy is not lost during propagation. This creates an ideal platform where vital information is 
transmitted along the myelinated axon with little or no distortion. As the dissipation increases as in Figure 8(b) 
& Figure 8(c), the nerve impulse becomes wider and flatter and may be termed a flat-top soliton. As time tends 
to infinity, the flat top solitons becomes unstable and decomposes into two fronts. 

The corresponding contour plot of the spatiotemporal evolution of the nerve impulse in Figure 8 is given by 
Figure 9. This numerical results clearly confirms the prediction of our linear stability analysis by demonstrating 
that solutions for 0rPQ >  are unstable, and furnishes us with the details beyond the linear limits. This shows 
that the nerve impulse degenerates to fronts which are also solutions of the CGL equation [37].  

5. Conclusions 
In this study, we addressed the issue of nerve pulse propagation along a weakly dissipative myelinated axon 
modelled by the discrete FHN model. The effect of dissipation is always a big nuisance during the transmission 
of electrical signals across a neural network, consequently crucial information is always lost. We transformed 
the FHN model to its Liénard form and minimized the effects of dissipation by perturbing the appropriate 
parameters to higher order. The proposed solution for the Liénard equation carried the ε  parameter, where the 
dispersion relation that governed the propagation of nerve impulse was obtained at the first order of terms in ε . 
The second and third order terms in ε  gave the group velocity and the CGL equation respectively. The pulse 
soliton solution of the CGL equation was derived analytically, and clearly mimiced the action potential typical 
in neural networks. We carried out liner stability analysis in Section 4, with results showing that the pulse 
soliton was generated as a result of modulational instability of the plane wave solution. By numerically 
integrating the CGL equation and varying the dissipation, we demonstrated that nerve impulses conserved its 
shape in a dissipative free medium. As the myelinated axon becomes more and more dissipative, the nerve impulse  
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Figure 8. Spatiotemporal evolution of nerve impulse when the dissipation is varied for 0.00064, 0.600, 0.50.r iP Q Q= = =  

(a) 0.000R = , (b) 0.6670R = − , (c) 3.0000R = − .                                                                                                                                 
 
becomes more unstable and degenerates to fronts. 

From this theoretical study carried on a dissipative myelinated axon, we believe it will furnish us with the 
appropriate knowledge of predicting the physiological state of real neurons. For instance, a sick neuron which is 
usually considered as dissipative can be clearly distinguished from a healthy neuron and consequently lead to  



N. O. Nfor, M. T. Mokoli 
 

 
1178 

 

 

 
Figure 9. Corresponding contour plot of the evolution of bright nerve impulse in 
Figure 8 when the dissipation is varied for 0.00064, 0.600, 0.50.r iP Q Q= = =  

(a) 0.000R = , (b) 0.6670R = − , (c) 3.0000R = − .                                  
 
the appropriate therapeutic action. 
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