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Abstract 
We study multi-quark systems in lattice QCD. First, we revisit and summarize our accurate mass 
measurements of low-lying 5Q states with J = 1/2 and I = 0 in both positive- and negative-parity 
channels in anisotropic lattice QCD. The lowest positive-parity 5Q state is found to have a large 
mass of about 2.24 GeV after the chiral extrapolation. To single out the compact 5Q state from NK 
scattering states, we use the hybrid boundary condition (HBC), and find no evidence of the com-
pact 5Q state below 1.75 GeV in the negative-parity channel. Second, we study the multi-quark po-
tential in lattice QCD to clarify the inter-quark interaction in multi-quark systems. The 5Q poten-
tial V5Q for the QQ- Q -QQ system is found to be well described by the “OGE Coulomb plus multi-Y 
Ansatz”: The sum of the one-gluon-exchange (OGE) Coulomb term and the multi-Y-type linear term 
based on the flux-tube picture. The 4Q potential V4Q for the QQ- QQ  system is also described by the 
OGE Coulomb plus multi-Y Ansatz, when QQ and QQ  are well separated. The 4Q system is described 
as a “two-meson” state with disconnected flux tubes, when the nearest quark and antiquark pair 
are spatially close. We observe a lattice-QCD evidence for the “flip-flop”, i.e., the fluxtube recombi-
nation between the connected 4Q state and the “two-meson” state. On the confinement mechanism, 
the lattice QCD results indicate the flux-tube-type linear confinement in multi-quark hadrons. Fi-
nally, we propose a proper quark-model Hamiltonian based on the lattice QCD results.  
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1. Introduction 
The Multi-quark physics is one of the new interesting fields in the hadron physics. So far, several new particles 
have been experimentally reported as the candidates of multi-quark hadrons. 

At first, the candidates of pentaquark (5Q) baryons were reported: a narrow peak identified as the ( )1540+Θ  

was found at SPring-8 [1], ITEP, JLab and ELSA [2]-[4]. The ( )1540+Θ  has the baryon number 1B =  and 

the strangeness 1S = + , and hence it is a manifestly exotic baryon and is considered to be a pentaquark ( uudds ) 
in the valence-quark picture. Other pentaquark candidate, the ( )1862−−Ξ  ( ddssu ), was reported at CERN [5],  
and also a charmed pentaquark, the ( )3099cΘ  ( uuddc ), was reported at HERA [6]. However, after high- 
energy experimental groups reported no evidence of the ( )1540+Θ  [7]-[9], these pentaquark candidates are no 
more credible experimentally at present. (For the recent experimental status of the ( )1540+Θ , see, e.g., Refs. 
[10] [11]). Nevertheless, the very ( )1540+Θ  gave an important trigger to open the new area of the multi- 
quark physics. 

As the next important stage, the candidates of tetraquark (4Q) mesons were experimentally observed. The 
X(3872) [12]-[15] was found in the process of ( )B K X 3872 K Jπ π ψ+ + + − +→ + → +  at KEK [12]. The 

X(3872) is much heavier than the J ψ , and its mass is close to the threshold of ( )0D cu  and ( )0*D uc . 
However, its decay width is very narrow as 2.3 MeVΓ <  (90% C.L.). These features indicate the X(3872) to 

be a tetraquark, e.g., a bound state of 0D  and 0*D . Similarly, the ( )sD 2317  [16] [17] is expected to be a 
tetraquark candidate. Also, quite recently, the LHCb experimental group has reported two candidates of the 
charmed pantaquark ( uudcc ), ( )cP 4380+  and ( )cP 4450+  [18], from a careful analysis of the decay product 
in the high-energy process, and this news has activated the multi-quark physics again. In any case, these 
discoveries of multi-quark hadrons are expected to reveal hidden aspects of hadron physics. 

In the theoretical side, the quark model is one of the most popular models to describe hadrons. In the quark 
model, mesons and baryons are usually described as qq  and 3q  composite particles, respectively. In more 
microscopic viewpoint, quantum chromodynamics (QCD) is the fundamental theory to describe the strong 
interaction. In terms of QCD, not only ordinary qq  mesons and 3q  baryons, but also exotic hadrons, such as 
multi-quark hadrons ( , ,qqqq qqqqq  ), hybrid mesons ( ,qqg  ), hybrid baryons ( ,qqqg  ) and glueballs  
( , ,gg ggg  ) are expected to appear. We here aim to study these multi-quark hadrons directly based on QCD. 
Even at present, however, it is rather difficult to deal with the low-energy region analytically in QCD owing to 
its strong-coupling nature. As an alternative way, the lattice QCD Monte Carlo simulation is established as the 
powerful method to treat non-perturbative nature of low-lying hadrons including exotic hadrons. In this paper, 
we perform the following two lattice QCD studies to clarify the properties of multi-quark systems. 

First, we investigate the mass and the parity of the 5Q system in lattice QCD. As for the parity assignment of 
the lowest-lying pentaquark, little agreement is achieved even in the theoretical side: the positive-parity 
assignment is supported by the chiral soliton model [19] and the diquark model [20], while the negative-parity 
assignment is supported by the nonrelativistic quark model [21], the QCD sum rule [22] and so on. For the 
exotic hadrons, most investigations have been done with model calculations, but these models were originally 
constructed only for ordinary hadrons. In fact, it is nontrivial that these models can describe the multi-quark 
system beyond the ordinary hadrons. To get solid information for the multi-quark systems, we study their 
properties directly from QCD by the lattice QCD simulation [23] [24], which is the first-principle calculation 
and model independent. 

Second, we study the inter-quark interaction in multi-quark systems in lattice QCD. The inter-quark force is 
one of the most important elementary quantities in hadron physics. Nevertheless, for instance, no body knows 
the exact form of the confinement force in the multi-quark systems directly from QCD. In fact, some 
hypothetical forms of the inter-quark potential have been used in almost all quark model calculations so far. 
Then, the lattice QCD study of the inter-quark interaction is quite desired for the study of the multi-quark 
systems. It presents the proper Hamiltonian in multi-quark systems and leads to a guideline to construct the 
QCD-based quark model. In this paper, to clarify the inter-quark force in the multi-quark system, we study the 
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static multi-quark potential systematically in lattice QCD using the multi-quark Wilson loop. We investigate the 
three-quark (3Q) potential [25]-[28], which is responsible to baryon properties, and perform the lattice-QCD 
study for the multi-quark potential, the tetraquark (4Q) and the pentaquark (5Q) potentials [29]-[33]. 

We show in Figure 1 our global strategy to understand the hadron properties from QCD. One way is the 
direct lattice QCD calculations for the low-lying hadron masses and simple hadron matrix elements, although 
the wave function is unknown and the practically calculable quantities are severely limited. The other way is to 
construct the quark model from QCD. From the analysis of the inter-quark forces in lattice QCD, we extract the 
quark-model Hamiltonian. Through the quark model calculation, one can obtain the quark wave-function of 
hadrons and more complicated properties of hadrons including properties of excited hadrons. 

This paper is organized as follows. In Section 2, we present an accurate mass calculation of low-lying 5Q 
systems in anisotropic lattice QCD [34] [34]. In Section 3, we perform the systematic study of the inter-quark 
interaction in multi-quark systems [28]-[33]. Section 4 is devoted for the summary and concluding remarks. 

2. Lattice QCD Study for Multi-Quark Hadrons  

There have been many theoretical studies for multi-quark systems in the context of X(3872) and ( )1540+Θ  

[36] [37]. As for the ( )1540+Θ , however, its existence as a low-lying pentaquark resonance is not credible 

experimentally. In fact, high-energy experimental groups reported no evidence of the ( )1540+Θ  [7]-[9]. 
Also in lattice QCD, there is no consensus on the existence and the parity assignment of the lowest-lying 

pentaquark system. Two early works supported the negative-parity state for the ( )1540+Θ  [38] [39], while one 
early work supported the positive-parity state [39]. We and another group indicated no evidence for the 
low-lying pentaquark narrow resonance [34] [41], and one study suggested a negative-parity pentaquark state in 
more highly-excited region around 1.8 GeV [42]. 

In this section, we perform the accurate mass measurement of the 5Q system in anisotropic lattice QCD, and 
apply hybrid boundary condition [34] [43] to distinguish a compact resonance and a scattering state. 

2.1. Strategy for High Precession Measurements in Lattice QCD  
As a difficulty on the lattice study of multi-quarks, even if a compact multi-quark resonance state exists, there 
appears a mixture with several multi-hadron scattering states, even at the quenched level. For instance, in the 
channel of +Θ , several NK scattering states appears. In this paper, we use the term of the +Θ  only for the 
compact 5Q resonance to distinguish it from the NK scattering state. In order to examine whether the low-lying 
5Q state appears as a compact resonance +Θ , we perform the accurate lattice QCD calculations with adopting 
the following three advanced methods [34]. 

 

 
Figure 1. Our global strategy to understand the hadron properties from QCD. One way is the direct lattice QCD calculations 
for the low-lying hadron masses and simple hadron matrix elements, although the wave function is unknown and the 
practically calculable quantities are severely limited. The other way is to construct the quark model from QCD. From the 
analysis of the inter-quark forces in lattice QCD, we extract the quark-model Hamiltonian. Through the quark model 
calculation, one can obtain the quark wave-function of hadrons and more complicated properties of hadrons including 
properties of excited hadrons.                                                                               
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2.1.1. Usage of Anisotropic Lattice QCD 
We use the anisotropic lattice, where the temporal lattice spacing ta  is much finer than the spatial one sa  as 
shown in Figure 2. In lattice QCD, hadron masses are calculated from the asymptotic temporal behavior of the 
hadron correlators. On the anisotropic lattice, we can get the detailed information on the temporal behavior of 
the 5Q correlator, and hence we can perform accurate mass measurements for the low-lying 5Q system. 

2.1.2. Usage of the Non-NK-type Interpolating Field Operator 
We use a non-NK-type interpolating field to extract the ( )1540+Θ  state. This choice of the interpolating field  
would be important and effective. For instance, in Ref. [41], the authors used the NK-type interpolating field and 
only obtained the NK scattering state instead of the compact 5Q state. However, their null result may be merely 
due to a small amount of the compact 5Q component in the NK-type interpolating field, because their 
calculation suffers from a large contamination of NK scattering states. 

We adopt the non-NK-type interpolating field [22],  

( ) ( ) ( )5 ,T T T
abc ade bfg d e f g cO u C d u Cd Csα α

γ≡                              (1) 

for the 5Q state with spin 1 2J =  and isospin 0I = . Here α  denotes the Dirac index, and roman indices 
a-g are color indices. 4 2C γ γ≡  denotes the charge conjugation matrix. Note that the non-NK-type operator in  
Equation (1) cannot be decomposed into N and K in the nonrelativistic limit and its coupling to the NK state is 
rather weak. Hence, the 5Q resonance state +Θ  can be singled out as much as possible in the present 
calculation, and the results are less biased by the contamination from NK scattering states. 

2.1.3. Application of the Hybrid Boundary Condition Method 
To distinguish compact resonances from scattering states, we have proposed a useful method with the “hybrid 
boundary condition” (HBC) [34] [43] instead of the ordinary periodic boundary condition. In the HBC, we 
impose the it anti-periodic boundary condition for u, d quarks, and the periodic boundary condition for s-quarks, 
as shown in Table 1. By applying the HBC on a finite-volume lattice, the NK threshold is raised up, while the 
mass of a compact 5Q resonance +Θ  is almost unchanged. Therefore, we can distinguish a compact 5Q state 

+Θ  from an NK scattering state by comparing between the HBC and the standard periodic boundary condition. 
In lattice QCD with the finite spatial volume 3L , the spatial momenta are quantized as 2 πi ip n L=  

( in ∈Z ) under the periodic boundary condition and ( )2 1 πi ip n L= +  under the anti-periodic boundary 

condition. In the periodic boundary condition, N and K can have zero momenta min 0=p  in the s-wave NK  
scattering state. The HBC imposes the anti-periodic boundary condition for u and d quarks and periodic 
boundary condition for s quark, while the periodic boundary condition is usually employed for all u, d, s quarks.  
In the HBC, the net boundary conditions of both N(uud,udd) and K( us , ds ) are anti-periodic. Then, under the  
HBC, N and K have minimum momenta 3 πip L=  in a finite box with 3L , and the threshold of the s-wave 

NK scattering state is raised up as 2 2 2 2
N min K minm m+ + +p p . In contrast to N and K, the compact 5Q resonance 

+Θ ( uudds ) contains even number of u and d quarks, and hence its mass does not shift in the HBC (see Table 2). 
 

 
Figure 2. Schematic figures of the isotropic lattice (left) and the anisotropic lattice (right). On the anisotropic lattice, the 
temporal lattice spacing ta  is taken to be smaller than the spatial one sa .                                           
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Table 1. The  hybrid boundary condition (HBC) to distinguish a compact multi-quark resonance and an two-hadron 
scattering state for the uudds  system. The standard boundary condition (BC) is also shown for comparison.                

 u quark d quark s quark 

HBC anti-periodic anti-periodic periodic 

standard BC periodic periodic periodic 

 
Table 2. The net boundary condition for +Θ  ( uudds ), N (uud or udd) and K ( ds  or us ) in the hybrid boundary 
condition (HBC) and in the standard boundary condition (BC).                                                       

 +Θ  ( uudds ) N (uud or udd) K ( ds or us ) 

HBC periodic anti-periodic anti-periodic 

standard BC periodic periodic periodic 

2.2. Lattice QCD Setup for the Pentaquark Mass 
To generate gluon configurations, we use the standard plaquette action on the anisotropic lattice as [34]  

( ){ } ( ){ }G G 4
, 3 , 3G

1 Re Tr 1 Re Tr 1 ,  ij i
s i j s ic c

S P s P s
N N
β β γ

γ < ≤ ≤

= − + −∑ ∑                (2) 

with 22 cN gβ ≡ , the plaquette ( )P sµν  and the bare anisotropy Gγ . 
For the quark part, we adopt the ( )O a -improved Wilson (clover) fermion action on the anisotropic lattice,  

( ) ( ) ( )F
,

, ,
x y

S x K x y yψ ψ≡ ∑                                (3) 

with the quark kernel ( ),K x y  as  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

†
ˆ ˆ, 4 4 4 44, 4,

†
ˆ ˆ, ,

4 4 , ,
<

ˆ, 1 1 4

ˆ

,

x y t x y x y

s i i i ix i y x i y
i

s E i i x y s B ij ij x y
i i j

K x y U x U x

r U x r U x i

c G r c G

δ κ γ δ γ δ

κ γ δ γ δ

κ σ δ κ σ δ

+ −

+ −

≡ − − + + −

− − + + −

− −

∑

∑ ∑

             (4) 

where sκ  and tκ  denote the spatial and temporal hopping parameters, respectively. Gµν  denotes the field 
strength, which is defined through the standard clover-leaf-type construction. The Wilson parameter r and the 
clover coefficients, Ec  and Bc , are fixed by the tadpole-improved tree-level values as ξ1/=r , ( )21E s tc u u=  

and 31B sC u= , where su  and tu  denote the mean-field values of the spatial and the temporal link-variables, 
respectively. 

For the lattice QCD simulation, we use 5.75β =  and 312 96×  with the renormalized anisotropy 
4s ta a = , which corresponds to G 3.2552γ = . In this calculation, the lattice spacing is found to be 

( ) 10.18 fm 1.1 GeVsa −
   and ( ) 10.045 fm 4.4 GeVta −

  . We adopt four values of the hopping parameter 

as ( )0.1210 0.0010  0.1240κ =  for u and d quarks, and use s-quark 0.1240κ =  for the s quark. We calculate 
typical hadron masses at each κ  as shown in Table 3, and find phys. 0.1261κ   corresponding to the physical 
situation of 0.14 GeVmπ  . 

2.3. Lattice QCD Results for the ( )1540+Θ   
Now, using anisotropic lattice QCD, we perform the accurate mass measurement of the low-lying 5Q states with  
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Table 3. The lattice QCD results for the masses of π , ρ , K and N at each hopping parameter κ  in the physical unit of 
GeV [43]. The phys. 0.1261κ   corresponds to the physical situation of 0.14 GeVmπ  .                                

κ  0.1210 0.1220 0.1230 0.1240 phys.κ  

mπ  1.005 (2) 0.898 (2) 0.784 (2) 0.656 (3) 0.140 

mρ  1.240 (3) 1.161 (3) 1.085 (4) 1.011 (5) 0.850 (7) 

Km  0.845 (2) 0.785 (2) 0.723 (2) 0.656 (3) 0.530 (4) 

Nm  1.878 (5) 1.744 (5) 1.604 (5) 1.460 (6) 1.173 (9) 

 
1 2J =  and 0I =  in both positive- and negative-parity channels from the correlator of the non-NK-type 5Q 

operator with parity projection [34]. 
In Figure 3, we show the lattice QCD results [34] for the masses of lowest positive- and negative-parity 5Q 

states under the standard periodic boundary condition. After the chiral extrapolation, the lowest positive-parity 

5Q state is found to be rather heavy as 5Q
1 2.24 GeV
2

m J π
+ 

=  
 

 , which seems to be too heavy to be 

identified as the ( )1540+Θ . 

On the other hand, we get a lower mass for the negative-parity 5Q state as 5Q
1 1.75 GeV
2

m J π
− 

=  
 

  after 

the chiral extrapolation. This value 5Q 1.75 GeVm   seems to be closer to the experimental result of 
1.54 GeVm +Θ
 . At this stage, however, this lowest negative-parity 5Q state may be merely an NK scattering 

state, although the non-NK-type 5Q operator used in this calculation includes only a small amount of the NK 
component. 

To clarify whether the observed low-lying 5Q state is a compact 5Q resonance +Θ  or an NK scattering state, 
we use the hybrid boundary condition (HBC) method, and compare the lattice results with the HBC and those 
with the standard periodic boundary condition (BC). Recall that, in the HBC, the NK threshold is largely raised 
up, while the mass of the compact 5Q resonance ( uudds ) is to be almost unchanged, as was mentioned in 
Section 2.1.3. 

In Figure 4, we show the mass of the lowest-lying negative-parity 5Q state in lattice QCD with the standard 
periodic BC and the HBC at each κ  [34]. The symbols denote the lattice QCD results for the 5Q state and the 
lines denote the NK threshold at each κ . The left and right figures show the results with the standard periodic 
BC and the hybrid boundary condition (HBC), respectively. Note that the NK threshold is estimated to be raised 
up about 200 - 250 MeV in the HBC. 

As a lattice QCD result, the mass of the 5Q state is largely raised in the HBC in accordance with the NK 
threshold, which indicates that the lowest 5Q state observed on the lattice is merely an s-wave NK scattering 
state. In other words, if there exists a compact 5Q resonance +Θ  below 1.75 GeV, it should be observed in this 
lattice calculation with the non-NK-type operator, and its mass should be almost unchanged also in the HBC. 
However, there is no such a 5Q state observed in the lattice calculation, which means absence of the compact 5Q 
resonance +Θ  below 1.75 GeV. 

To conclude, our lattice QCD calculation at the quenched level indicates absence of the low-lying compact 
5Q resonance +Θ  with 1 2J =  and 0I =  near 1.54 GeV [34]. 

2.4. Discussion on Null Result of ( )1540+Θ  in Lattice QCD  

Now, let us consider the physical consequence of the present null result on the low-lying 5Q resonance +Θ  in 
lattice QCD. One plausible answer is absence of the pentaquark resonance ( )1540+Θ , as was indicated by 
several experiments [7]-[11]. However, there may be some loopholes in the lattice calculation. 

First, the present lattice simulation has been done at the quenched level, where dynamical quark effects are 
suppressed. This quenching effect is not clear and then it may cause the 5Q resonance +Θ  to be heavier as an 
unknown effect. 
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Figure 3. The lowest mass 5Qm  of the positive- and negative-parity 5Q states plotted against 2mπ , taken from Ref. [34]. 
The open symbols denote the direct lattice QCD data for positive-parity (triangles) and negative-parity (circles). The solid 
symbols denote the results of the chiral extrapolation. The dotted lines indicate the NK thresholds for p-wave (upper) and 
s-wave (lower) cases.                                                                                          

 

 
Figure 4. Comparison between the standard periodic boundary condition (Standard BC) and the Hybrid Boundary Condition 
(HBC) for the lowest mass of the negative-parity 5Q system, taken from Ref. [34]. At each κ , the lattice QCD result (the 
solid symbol) is raised up in accordance with the corresponding NK threshold (the solid line). This behavior indicates that 
the low-lying negative-parity 5Q state observed in lattice QCD is an NK scattering state rather than a compact 5Q resonance 

+Θ .                                                                                                   
 

Second, we investigated the 5Q state with spin 1 2J =  and isoscalar 0I =  in this paper. However, the 

( )1540+Θ  may have other quantum numbers [44]-[46], e.g., spin 3 2J = , isovector 1I =  or isotensor 
2I = . Considering such a possibility, our group investigated the 5Q system with higher spin 3 2J =  in lattice 

QCD, and found no low-lying pentaquark also in this channel [43]. 
Third, we have used a localized 5Q interpolating field in this lattice QCD calculation. However, the actual 
( )1540+Θ  may have more complicated structure beyond the localized interpolating field. Such a possibility 

has been pointed out in the theoretical side. For instance, Karliner and Lipkin [47] proposed the diquark-triquark 
( -qq qqq ) picture for the Θ , and Bicudo et al. [48] pointed out the possibility of the heptaquark picture, where  

the +Θ  is described as a bound state of π , K and N. If the ( )1540+Θ  has such a complicated structure, we 
have to use the corresponding nonlocal interpolating field to get its proper information. 

2.5. Necessity of the Wave Function of Multi-Quarks  
So far, we have performed the direct mass measurement of 5Q states in lattice QCD, where the path integral 
over arbitrary states is numerically calculated on a supercomputer. In the path-integral formalism, however, it is 
rather difficult to extract the state information, such as the wave-function of the multi-quark state, and therefore 
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only limited simple information can be obtained in the direct lattice-QCD calculation. 
Actually, to distinguish the compact 5Q resonance +Θ  from NK scattering states was rather difficult in 

lattice QCD, and hence we had to develop a new method with the hybrid boundary condition (HBC). In this 
respect, if the wave function is obtained, one easily finds out whether it is a compact resonance state +Θ  or 
not. 

Indeed, to get the wave function is very important to clarify the further various properties of the multi-quark 
state such as the underlying structure and the decay width, which cannot be obtained practically only with the 
direct lattice-QCD calculation. 

Then, apart from the direct lattice-QCD calculation, we have to seek the way to obtain the proper wave 
function of the multi-quark state. To do so, we need a proper Hamiltonian for the multi-quark system based on 
QCD. One possible way in this direction is to construct the quark model from QCD, as was mentioned in 
Section 1. In the next section, we study the inter-quark interaction in multi-quark systems directly from QCD, 
and aim to construct the QCD-based quark-model Hamiltonian. 

3. Inter-Quark Interaction in Multi-Quark Systems in Lattice QCD  
In this section, we study the inter-quark interaction in multi-quark systems using lattice QCD [29]-[33], and seek 
for the QCD-based quark-model Hamiltonian to describe multi-quark hadrons. The quark-model Hamiltonian 
consists of the kinetic term and the potential term, which is not known form QCD in multi-quark systems. 

As for the potential at short distances, the perturbative one-gluon-exchange (OGE) potential would be 
appropriate, due to the asymptotic nature of QCD. For the long-range part, however, there appears the 
confinement potential as a typical non-perturbative property of QCD, and its form is highly nontrivial in the 
multi-quark system. 

In fact, to clarify the confinement force in multi-quark systems is one of the essential points for the 
construction of the QCD-based quark-model Hamiltonian. Then, in this paper, we investigate the multi-quark 
potential in lattice QCD, with paying attention to the confinement force in multi-quark hadrons. 

3.1. The Three-Quark Potential in Lattice QCD  

So far, only for the simplest case of static QQ  systems, detailed lattice QCD studies have been done, and the 
QQ  potential QQV  is known to be well described by the Coulomb plus linear potential as [23]-[26] [49]  

( ) QQ
QQ QQ QQ

A
V r r C

r
σ= − + +                                (5) 

with r being the inter-quark distance. 
To begin with, we study three-quark (3Q) systems in lattice QCD to understand the structure of baryons at the 

quark-gluon level. Similar to the derivation of the QQ  potential from the Wilson loop, we calculate the 3Q 
potential 3QV  from the 3Q Wilson loop 3QW  in SU(3) lattice QCD with ( 5.7β = , 312 24× ), ( 5.8β = , 

316 32× ), ( 6.0β = , 316 32× ) and ( 6.2β = , 424 ) at the quenched level. For more than 300 different patterns 
of spatially-fixed 3Q systems, we perform accurate and detailed calculations for the 3Q potential [25]-[28] [31] 
[33], and find that the lattice QCD data of the 3Q potential 3QV  are well described by the Coulomb plus Y-type 
linear potential, i.e., Y-Ansatz,  

3Q
3Q 3Q 3Q min 3Q

1 ,
i j i j

V A L Cσ
<

= − + +
−

∑ r r
                           (6) 

within 1%-level deviation [25]-[28] [31] [33]. Here, 3Q
minL  is the minimal total length of the color flux tube, 

which is Y-shaped for the 3Q system. 
To demonstrate the validity of the Y-Ansatz, we show in Figure 5 the lattice QCD data of the 3Q confine- 

ment potential conf
3QV , i.e., 3Q potential subtracted by the Coulomb part, plotted against Y-shaped flux-tube 

length 3Q
minL  [30]. For each β , clear linear correspondence is found between 3Q confinement potential conf

3QV   
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Figure 5. The lattice QCD result for the 3Q confinement potential conf

3QV , i.e., the 3Q potential subtracted by its Coulomb 

part, plotted against Y-shaped flux-tube length 3Q
minL  at 5.8β = , 6.0 and 6.2 in the lattice unit, taken from Ref. [30]. The 

clear linear correspondence between 3Q confinement potential conf
3QV  and 3Q

minL  indicates the Y-Ansatz for the 3Q potential.   

 
and 3Q

minL , which indicates the Y-Ansatz for the 3Q potential [30] [31] [33]. 
Here, we consider the physical meaning of the Y-Ansatz. Apart from an irrelevant constant, the Y-Ansatz, 

Equation (6), consists of the Coulomb term and the Y-type linear potential, which play the dominant role at 
short and long distances, respectively. The Coulomb term would originate from the one-gluon-exchange (OGE) 
process. In fact, at short distances, perturbative QCD is applicable, and therefore the inter-quark potential is 
expressed as the sum of the two-body one-gluon-exchange (OGE) Coulomb potential. 

The appearance of the Y-type linear potential supports the flux-tube picture [50]-[53] at long distances, where 
there appears the color flux tube linking quarks inside hadrons with its length minimized. In particular, the 
confinement force in baryons corresponds to the Y-shaped flux tube, which implies existence of the three-body 
interaction in baryons. 

In usual many-body systems, the main interaction is described by a two-body interaction and the three-body 
interaction is a higher-order contribution. In contrast, as is clarified by our lattice-QCD study, the quark 
confinement force in baryons is a genuinely three-body interaction [25] [26], which is one of significant features 
of QCD. In fact, the appearance of the Y-type junction and the three-body confinement force reflect the SU(3) 
group structure in QCD, e.g., the number of color, 3cN = , and is peculiar to QCD [25] [26]. In this sense, the 
study of the 3Q system is very important to get a deeper insight of the QCD physics. 

In lattice QCD, a clear Y-type flux-tube formation is actually observed for spatially-fixed 3Q systems [31] [33] 
[54]. Thus, together with several other analytical and numerical studies [55]-[57], the Y-Ansatz seems to be 
confirmed as the correct functional form of the static 3Q potential. This result indicates the color-flux-tube 
picture for baryons. 

3.2. The OGE Coulomb Plus Multi-Y Ansatz  
Now, we proceed to multi-quark systems. We first consider the theoretical form of the multi-quark potential, 
since we will have to analyze the lattice QCD data by comparing them with some theoretical Ansatz. 

By generalizing the lattice QCD result of the Y-Ansatz for the three-quark potential, we propose the 
one-gluon-exchange (OGE) Coulomb plus multi-Y Ansatz [29]-[33],  

2

min ,
4π

a a
i j

i j i j

T TgV L Cσ
<

= + +
−

∑ r r
                               (7) 

for the potential form of the multi-quark system. Here, the confinement potential is proportional to the minimal 
total length minL  of the color flux tube linking the quarks, which is multi-Y shaped in most cases. 

In the following, we study the inter-quark interaction in multi-quark systems in lattice QCD, and compare the 
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lattice QCD data with the theoretical form in Equation (7). Note here that the lattice QCD data are meaningful as 
primary data on the multi-quark system directly based on QCD, and do not depend on any theoretical Ansatz. 

3.3. Formalism of the Multi-Quark Wilson Loop  
Next, we formulate the multi-quark Wilson loop to obtain the multi-quark potential in lattice QCD [29]-[33]. 

Similar to the derivation of the QQ  potential from the Wilson loop, the static multi-quark potential can be 
derived from the corresponding multi-quark Wilson loop. We construct the tetraquark Wilson loop 4QW  [30] 
and the pentaquark Wilson loop 5QW  [29] in a gauge invariant manner as shown in Figure 6(a) and Figure 
6(b), respectively. 

The tetraquark Wilson loop 4QW  and the pentaquark Wilson loop 5QW  are defined by  

( )

( ) ( )

4Q 1 12 2 12

5Q 3 12 4 3 12 4

1 tr ,
3

1 ,
3!

bb ccabc a b c aa

W M R M L

W M R R R L L L
′ ′′ ′ ′ ′

≡

≡

   

      

                      (8) 

where M , iM , jL  and jR  (i = 1, 2, j = 1, 2, 3, 4) are given by  

( ){ } ( )c, , ,
, , , exp d SU 3 .

i j j
i j j M M R L

M M R L P ig x A xµ
µ≡ ∈∫                      (9) 

Here, 12R  and 12L  are defined by  

12 1 2 12 1 2
1 1, .
2 2

a a abc a b c bb cc a a abc a b c bb ccR R R L L L′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′≡ ≡                        (10) 

The multi-quark Wilson loop physically means that a gauge-invariant multi-quark state is generated at 0t =  
and annihilated at t T=  with quarks being spatially fixed in 3R  for 0 t T< < . 

The multi-quark potential is obtained from the vacuum expectation value of the multi-quark Wilson loop:  

4Q 4Q 5Q 5Q
1 1lim ln , lim ln .

T T
V W V W

T T→∞ →∞
= − = −                     (11) 

3.4. Lattice QCD Setup for the Multi-Quark Potential  
Here, we briefly summarize the lattice QCD setup in this calculation. For the study of the multi-quark potential, 
the SU(3) lattice QCD simulation is done with the standard plaquette action at 6.0β =  on the 316 32×  lattice 
at the quenched level. (The calculation for large-size multi-quark configurations are performed by identifying 

316 32×  as the spatial size.) 
 

 
(a)                                            (b) 

Figure 6. (a) The tetraquark Wilson loop 4QW  [30]. (b) The pentaquark Wilson loop 5QW  [29]. The contours 

( ), , , 1,2, 3,4i j jM M R L i j= =  are line-like and ( ), 1,2j jR L j =  are staple-like. The multi-quark Wilson loop physically 

means that a gauge-invariant multi-quark state is generated at 0t =  and annihilated at t T=  with quarks being spatially 
fixed in 3R  for 0 t T< < .                                                                                  
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In this calculation, the lattice spacing a is estimated as 0.104 fma  , which leads to the string tension 

( )2
QQ 427 MeVσ =  in the QQ  potential [31]. We use 150 gauge configurations for the 5Q potential  

simulation and 300 gauge configurations for the 4Q potential simulation. The smearing method is used for the 
enhancement of the ground-state component. We here adopt 2.3α =  and the iteration number smr 40N = , 
which lead to a large enhancement of the ground-state component [29]-[33]. 

3.5. Lattice QCD Result of the Pentaquark Potential  

We study the pentaquark potential 5QV  in lattice QCD for 56 different patterns of QQ- Q -QQ type pentaquark 
configurations, as shown in Figure 7. As the conclusion, the lattice QCD data of 5QV  are found to be well  
described by the OGE Coulomb plus multi-Y Ansatz, i.e., the sum of the OGE Coulomb term and the multi- 
Y-type linear term based on the flux-tube picture [29] [31]-[33]. 

We show in Figure 8 the lattice QCD results of the 5Q potential 5QV  [29] for symmetric planar 5Q 

configurations as shown in Figure 7, where each 5Q system is labeled by 1 2Q Q 2d ≡  and 1 3Q Qh ≡ . 
In Figure 8, we add the theoretical curves of the OGE Coulomb plus multi-Y Ansatz, where the coefficients 

( )5Q 5Q,A σ  are set to be ( )3Q 3Q,A σ  obtained from the 3Q potential [26]. (Note that there is no adjustable  

parameter in the theoretical Ansatz apart from an irrelevant constant.) In Figure 8, one finds a good agreement 
between the lattice QCD data of 5QV  and the theoretical curves of the OGE Coulomb plus multi-Y Ansatz. 

In this way, the pentaquark potential 5QV  is found to be well described by the OGE Coulomb plus multi-Y 
Ansatz as [29] [31]-[33].  

 

 
Figure 7. A QQ- Q -QQ type pentaquark configuration [29]. In the 5Q system, ( )1 2,Q Q  and ( )3 4,Q Q  form 3 repre- 

sentation of SU(3) color, respectively. The lattice QCD results indicate the multi-Y-shaped flux-tube formation in the QQ- Q
-QQ system.                                                                                             

 

 
(a)                                                  (b) 

Figure 8. Lattice QCD results of the pentaquark potential 5QV  for symmetric planar 5Q configurations in the lattice unit: (a) 

5QV  v.s. ( ),d h  and (b) 5QV  v.s. 5Q
minL , taken from Ref. [29]. The symbols denote the lattice QCD data, and the curves the 

theoretical form of the OGE plus multi-Y Ansatz.                                                                
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5Q
5Q 5Q 5Q min 5Q

12 34 15 25 35 45 13 14 23 24

1 1 1 1 1 1 1 1 1 1 1 1 ,
2 4

V A L C
r r r r r r r r r r

σ
       = − + + + + + + + + + + +      
       

      (12) 

where ijr  is the distance between Qi  and Q j . Here, 5Q
minL  is the minimal total length of the flux tube, which 

is multi-Y-shaped as shown in Figure 7. This lattice result supports the flux-tube picture for the 5Q system. 

3.6. Tetraquark Potential and Flip-Flop in Lattice QCD  

We study the tetraquark potential 4QV  in lattice QCD for about 200 different patterns of QQ- QQ  configu- 
rations, and find the following results [30]-[32]. 

1. When QQ and QQ  are well separated, the 4Q potential 4QV  is well described by the OGE Coulomb plus 
multi-Y Ansatz, which indicates the multi-Y-shaped flux-tube formation as shown in Figure 9(a).  

2. When the nearest quark and antiquark pair is spatially close, the 4Q potential 4QV  is well described by the 

sum of two QQ  potentials, which indicates a “two-meson” state as shown in Figure 9(b). 
We show in Figure 10 the lattice QCD results of the 4Q potential 4QV  [30] for symmetric planar 4Q 

configurations as shown in Figure 9, where each 4Q system is labeled by 1 2Q Q 2d ≡  and 1 3Q Qh ≡ . 
For large value of h compared with d, the lattice data seem to coincide with the solid curve of the OGE 

Coulomb plus multi-Y Ansatz,  

4Q
4Q 4Q 4Q min 4Q

12 34 13 14 23 24

1 1 1 1 1 1 1 ,
2

V A L C
r r r r r r

σ
     = − + + + + + + +    
     

 

 

 
        (a)                                      (b) 

Figure 9. (a) A connected tetraquark (QQ- QQ ) configuration and (b) A “two-meson” configuration [30]. The lattice QCD 
results indicate the multi-Y-shaped flux-tube formation for the connected 4Q system.                                    

 

 
(a)                                                   (b) 

Figure 10. Lattice QCD results of the tetraquark potential V4Q for symmetric planar 4Q configurations in the lattice unit, 
taken from Ref. [30]. The symbols denote the lattice QCD data. The solid curve denotes the OGE plus multi-Y Ansatz, and 
the dotted-dashed curve the two-meson Ansatz.                                                                
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where 4Q
minL  is the minimal total length of the flux tube, which is multi-Y-shaped as shown in Figure 9(a). Here, 

the coefficients ( )4Q 4Q,A σ  are set to be ( )3Q 3Q,A σ  obtained from the 3Q potential [26]. 
For small h, the lattice data tend to agree with the dotted-dashed curve of the “two-meson” Ansatz, where the 

4Q potential is described by the sum of two QQ  potentials as ( ) ( ) ( )13 24QQ QQ QQ2V r V r V h+ = . 

Thus, the tetraquark potential 4QV  is found to take the smaller energy of the connected 4Q state or the  
two-meson state. In other words, we observe a clear lattice QCD evidence of the “flip-flop”, i.e., the flux-tube 
recombination between the connected 4Q state and the two-meson state. This lattice result also supports the 
flux-tube picture for the 4Q system. 

3.7. Proper Quark-Model Hamiltonian for Multi-Quarks  
From a series of our lattice QCD studies [25]-[33] on the inter-quark potentials, the inter-quark potential is 
clarified to consist of the one-gluon-exchange (OGE) Coulomb part and the flux-tube-type linear confinement 
part in QQ -mesons, 3Q-baryons and multi-quark (4Q, 5Q) hadrons. 

Furthermore, from the comparison among the QQ , 3Q, 4Q and 5Q potentials in lattice QCD, we find the 
universality of the string tension σ ,  

3Q 4Q 5QQQ ,σ σ σ σ                                    (13) 

and the OGE result of the Coulomb coefficient A as  

3Q 4Q 5QQQ
1
2

A A A A                                    (14) 

in Equations (5), (6), (12) and (13). 
Here, the OGE Coulomb term is considered to originate from the OGE process, which plays the dominant role 

at short distances, where perturbative QCD is applicable. The flux-tube-type linear confinement would be 
physically interpreted by the flux-tube picture, where quarks and antiquarks are linked by the one-dimensional 
squeezed color-electric flux tube with the string tension σ . 

To conclude, the inter-quark interaction would be generally described by the sum of the short-distance 
two-body OGE part and the long-distance flux-tube-type linear confinement part with the universal string 
tension 0.89 GeV fmσ  . 

Thus, based on the lattice QCD results, we propose the proper quark-model Hamiltonian Ĥ  for multi-quark 
hadrons as  

2 2
OGE min

ˆ ˆ ,ij
i i

i i j
H M V Lσ

<

= + + +∑ ∑p                          (15) 

where minL  is the minimal total length of the flux tube linking quarks. OGE
ijV  denotes the OGE potential 

between ith and jth quarks, which becomes the OGE Coulomb potential in Equation (7) in the static case. iM  
denotes the constituent quark mass. The semi-relativistic treatment would be necessary for light quark systems. 

It is desired to investigate various properties of multi-quark hadrons with this QCD-based quark model 
Hamiltonian Ĥ . 

4. Summary and Concluding Remarks  
We have studied tetraquark and pentaquark systems in lattice QCD Monte Carlo simulations, motivated by the 
experimental discoveries of multi-quark candidates. 

First, we have performed accurate mass calculations of low-lying 5Q states with 1 2J =  and 0I =  in both 
positive- and negative-parity channels in anisotropic lattice QCD. We have found that the lowest positive-parity 
5Q state has a large mass of about 2.24 GeV after the chiral extrapolation. To single out the compact 5Q state 
from NK scattering states, we have used the hybrid boundary condition (HBC) method, and have found no 
evidence of the compact 5Q state below 1.75 GeV in the negative-parity channel. 

Second, we have studied the multi-quark potential in lattice QCD to clarify the inter-quark interaction in 
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multi-quark systems. We have found that the 5Q potential 5QV  for the QQ- Q -QQ system is well described by 
the “OGE Coulomb plus multi-Y Ansatz”: the sum of the one-gluon-exchange (OGE) Coulomb term and the 
multi-Y-type linear term based on the flux-tube picture. The 4Q potential 4QV  for the QQ- QQ  system is also  
described by the OGE Coulomb plus multi-Y Ansatz, when QQ and QQ  are well separated. On the other hand, 
the 4Q system is described as a “two-meson” state with disconnected flux tubes, when the nearest quark and 
antiquark pair is spatially close. We have observed a lattice-QCD evidence for the “flip-flop”, i.e., the flux-tube 
recombination between the connected 4Q state and the “two-meson” state. On the confinement mechanism, we 
have clarified the flux-tube-type linear confinement in multi-quark hadrons. Finally, we have proposed the 
proper quark-model Hamiltonian based on the lattice QCD results. 
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