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Abstract 
After a straightforward general relativistic calculation on a modified flat-spacetime metric (de-
veloped from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued 
covariant and contravariant energy momentum tensors emerged analogous to quantized raising 
and lower operators. Detaching these operators from the general relativistic field equations, and 
then transporting them to act on extreme spacetimes, these operators were able to generate fun-
damental particle boson masses. In particular, the operators precisely generated Higgs mass. Then 
by applying a consistency approach to the gravitational field equations—similar to how Maxwell 
applied to the electromagnetic ones—it allowed for the coupling of spin-to-mass, further restrict-
ing the particle mass to be in precise agreement with CODATA experimental values. Since this is a 
massless field approach integrated discretely with a massive one, it overcomes various renorma-
lizing difficulties; moreover it solves the mass hierarchal problem of the Standard Model of par-
ticle physics, and generates its spin and therefore shows quantum physics to be a subset of Gener-
al Relativity, just as Einstein had first imagined. 
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1. Introduction 
The overall purpose of this paper is to demonstrate a general relativistic methodology (based on a consistent- 
Lagrangian approach) capable of generating mass-to-spin values for elementary particles, thereby completing 
the Standard Model of particle physics with gravity:  

( )( ) ( ) ( )( )21 1 1
16 4 2

L g R F F D W D V
G

µν
µν γ φ ψ φ φ = − + − + − − 

π 
ψ                (1) 

In particular, we apply a general relativistic consistency formulation to gravity—similar to James Clerk 
Maxwell’s consistent approach for electricity and magnetism, to precisely calculate the mass, and then spin, of 
the Higgs’ particle recently discovered at CERN. This approach can then be applied to any Standard Model Par-
ticles. To accomplish this in general, 
1) We determine the free Lagrangian parts, for various spin particles from a group theoretical approach (not 

shown in this paper). Next we determine the spin interaction terms with gravity through a consistency condi-
tion (CC) first conceived by M. Fierz and W. Pauli in the 1930s, and then developed further over the next 
fifty years by many prominent researchers [1]-[11] (see appendices for mathematical details). This CC gra-
vitational-spin procedure allows for the construction of the interaction Lagrangian terms, order-by-order, in 
flat spacetime (or in curved spacetime); moreover the CC formulation is able to test the validity of each re-
sulting wave equation term—or the entire wave equation—(analogous to how Maxwell applied a divergence 
to electromagnetic equations to correct Ampere’s Law. Please note that the gravitational CC form was put 
into its final and complete form by J. Fang, and so is referred to as the Maxwell-Fang Consistency Condi-
tion MFCC [12]).  

2) More specifically, after varying the corrected Lagrangian for gravity interacting with spin particles, the 
Einstein part of the wave equation ( Gµν ) was separated out from the interaction spin-terms—interpreted as 
the spin energy momentum tensor. In this paper we focus on the spin-0 particle interacting with gravity. 
Upon applying the MFCC approach to spin-0 particles interacting with gravity, it produced the following 
general relativistic wave equation:  

( ) ( )( ) ( )( ) ; ;
1 1 1 2 2
2 2 2

L R g R g g f g f
dg f

µν µν µ ν µν λ µν λ µλ ν
λ λ λ

δ ϕ φ φ φ
φ

   → − = ∂ ∂ − ∂ ∂ − −      
        (2) 

3) Having calculated the spin-2, coupled to spin-0 covariant wave equation, we next considered the wave equa-
tion in flat spacetime (negligible spin-0 particles present). This allowed us to temporarily switch off the in-
teraction terms on the right-hand-side of the equation, representing interaction with gravity (i.e. the energy 
momentum tensor for spin-0 particle interaction with gravity).  

4) Having determined the interaction Lagrangian (where it structurally expresses spin-0, but not particle mass), 
we then produce this same energy momentum tensor Tμν from a secondary approach (This energy momentum 
tensor turns out to be n-valued). To accomplish this secondary equivalent tensor, we evaluate Einstein’s 

wave equation:
 

1
2

G R g Rµν µν µν≡ − , in flat spacetime, but specifically at the microscopic level where va- 

cuum energy fluctuations induce graviton oscillations. This means at the local level, spacetime is no longer 
Minkowski, and requires construction of a modified flat-spacetime-metric based on a field of oscillating gra-
vitons (as we shall discuss in some detail in subsequent sections).  
After a straightforward general relativistic calculation on the modified flat spacetime metric, a pair of n-va- 
lued covariant and contravariant energy momentum tensors emerged analogous to quantum raising and low-
er operators. Since General Relativity, in its essence, is a mass-energy covariant theory, and its metric con-
structed upon fluctuating vacuum energy, the resulting n-valued energy operators Tμν, is expected to generate 
Standard Model particle mass (in this paper the boson mass-energy), which turns out to be the case. Conse-
quently, when the interaction terms (ghostly-coupled to Gµν ) were switched back on in a region rich in the 
spin-particles, the n-valued operators Tμν correspondingly became elevated in energy and in turn could gen-
erate fundamental particle mass. Then by equating the two energy momentum tensors, allowed us to couple 
spin-to-mass [13].  
What must be made clear here, is, that flat spacetime at the microscopic level (represented by a modified 
flat-spacetime metric gμν) can be energized (massless gravitons into massive n-valued ones, which then de-
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cay, releasing their n-valued gravitational energy into the vacuum energy to generate fundamental particles 
with definitive mass and spin (if this gravitational energy is not absorbed by vacuum energy, then it expands 
outward, causing accelerated spacetimes). The lower bound mass for any fundamental particle, can is easily 
be calculated from the covariant and contravariant energy momentum tensors Tμν, when n = 1. For the upper 
bound particle mass, we expect the n-value to be close to the ground state mass (n = 1). Moreover though not 
yet completely understood, the spin number of the each Standard Model particle must also restrict what n 
values may be generated to produce the various fundamental particle masses. Hence the mass hierarchal 
problem coupled to spin is solved in large part. 

5) As an example to what we are expressing in this manuscript, we will first determine boson mass, (including 
Higgs) from the n-valued energy momentum operators (decoupled from the general relativistic wave equa-
tions and transported into extreme spacetimes where these operators can be excited into higher n-states). 
Once boson mass is calculated, the next step is to determine the energy momentum tensor in a second way 
via the Maxwell-Fang Consistency Formulation (MFCC). The first method provides the fundamental mass 
of the Standard Model particles, the second the spin of these particles coupled to gravity. Since these terms 
represent, in effect, the same energy momentum tensor, we simply set them equal, thereby forming equation 
that correlates spin-to-mass of all Standard Model particles; however we will focus exclusively on spin-0 
particles coupled to gravity.  
Some of the preceding ideas were formulated from Fronsdal and Fang ideas developed from a Gupta pro-
gram: “The only naturally available symmetric, divergence free source is the total energy-momentum tensor 
of a closed system of fields, such as the fields of Maxwell-Dirac electrodynamics. But such a system ceases 
to be closed the moment it provides the source for our spin-2 field, unless it includes the spin-2 field itself. 
Therefore we must replace the external source t by t + δt, where δt is the energy-momentum tensor of the 
spin-2 field.” 

6) Overall, the preceding results fulfill Einstein’s vision of showing quanta arising from the gravitational field 
equations [14] [15]. On the other hand, this would not have been possible without the development of the 
Standard Model of particle physics. 

2. Mathematical and Physical Development of the Modified Flat Spacetime Metric 
Part of this section (and part of others) was developed in our previous paper [16]; its mathematics is essential in 
understanding the overall approach taken in this paper, which is to complete the Standard Model of particle 
physics by advancing the Higgs boson concept into a full general relativistic framework (well-beyond the Mex-
ican hat explanation). This is done through the concept of fluctuating vacuum energy inducing graviton oscilla-
tions in the general relativistic wave equations. 

Our goal in this section is to construct a modified flat spacetime metric at the microscopic level, where va-
cuum energy fluctuations induce graviton oscillations. Under such a general relativistic scenario, no longer is 
spacetime Minkowski:  

gµν µνη≠                                           (3) 

Instead, we construct a spacetime metric based on graviton oscillations induced by vacuum energy fluctua-
tions. Our mathematical starting point is to apply the classical Lagrangian representing a vibrating system of 
particles about a point of equilibrium: 

( )1
2 ij i j ij i jL T Vηη ηη= −                                      (4) 

The iη ’s represent small deviations from the generalized coordinates 0iq , and expressed by the equation: 
0i i iq q η= + . The iη ’s subsequently become the generalized coordinates for the equations of motion, wherein 

the kinetic energy has only diagonal components:  

( )0 no sum over i i ij jT V iη η− =                                 (5) 

The solution to this equation has the form of normal coordinates [17] given by:  

e i t
i C κω

κη −=                                         (6) 

To simplify matters, and for purposes of clarification, let the coefficients Cκ  be set equal to one, also let 
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negative one-half be introduced into the natural exponent. These small changes allow for the physics—the mo-
tion and energy of gravitons undergoing oscillations—to become mathematically and physically apparent [Of 
notable importance, should the resulting covariant and contravariant energy momentum tensors—calculated 
from the modified flat spacetime metric—be in accordance with the vibrational motion of the gravitons that we 
imagined flat spacetime to be undergoing, it will further substantiate the approach taken in this paper. After a 
straightforward, but lengthy, general relativistic calculation, this turns out to be the case, refer to our previous 
paper.  

Next we apply Rayleigh’s principle [18] [19] to the coordinate frequencies κω  to reduce them to their fun-
damental mode of oscillation ω having the greatest intensity. This implies the average kinetic energy T  be-
comes equal to the average potential energy U . Joining these normal coordinate concepts together, allows us 
to construct a basis for the general relativistic coordinate system; moreover it allows computation of the mod-
ified flat-spacetime-metric (representing graviton oscillation): 

i t i te eg e eµν ν µν
ω µ ω

µ ν δ η≡ ⋅ = =                                (7) 

We introduce the n  into the natural exponent for physical and mathematical reasons: 
( )e 0,1,2,3,n i tg nω

µν µνη= =                                 (8) 

At first we did not understand the importance of placing the n  into the spacetime metric; that occurred 
later when we observed the contravariant energy momentum tensor undergoing cyclic phasing from real to im-
aginary energies, as a function of n.  

In closing this section we mention that when: n = 0, or when ( ) πn t mω =  (where m and n are natural 
numbers), the modified flat-spacetime metric reduces to Minkowski, implying flat spacetime-nodes dynamically 
appear throughout the cosmos. Hence particle physics at its foundation, is a massless continuous spacetime 
theory, joined discretely to a massive one having certain de Broglie wave-like characteristics.   

3. Energy Operators from Pure Gravity 
After acting on the modified flat spacetime metric with the Einstein Tensor Gμν, it leads directly to the following 
energy momentum tensors: 

2

2
4

2

2

3 0 0 0
2

10 0 0
2

116π 0 0 0
2

10 0 0
2

ncT
Gµν

ω

ω

ω

ω

 − 
 
 
 

=  
 
 
 
 
 

                          (9) 

2

2
2 4

2

2

3 0 0 0
2

10 0 0
2

116π 0 0 0
2

10 0 0
2

n cT
G

µν

ω

ω

ω

ω

 − 
 
 
 

=  
 
 
 
 
 

                         (10) 

We now assume these operators can be detached from the general relativistic field equations, without losing 
their structural integrity, or energy-relationship to the spin-0 interaction terms that were previously switched off. 
Once the spin is switched back on, this allows fundamental particle mass to gain spin. Physically, this is accom-
plished by transporting the covariant and contravariant energy momentum tensors to regions of spacetime, 
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which are rich in the particular spin-particle.  
In closing this section, we note that the covariant and contravariant energy momentum tensors are related via 

raising and lowering properties of the spacetime metric: 
2e i tT g g T Tµν µα νβ ω µα νβ

αβ αβη η−= =                              (11) 

Since the covariant tensor is completely real, and the contravariant tensor complex, (each contributing to fun-
damental particle mass), yet both tensors are acting on the same point in spacetime, this suggests a superposition 
principle for spacetime itself. Moreover, it offers an explanation as to why ordinary matter dominates in the un-
iverse. Finally we note that the two energy tensors obey conservation of energy. 

; ; 0T Tµν
ν µν ν= =                                       (12) 

Under MFCC, this implies the modified flat spacetime metric developed in this paper, and resulting energy 
momentum tensors, are consistent and valid, in the same way as were the electromagnetic equations made con-
sistent, (and a correct and beautiful expression of nature), after James Clerk Maxwell added a single term to 
Amperes’ law. 

4. Boson Mass Calculations 
In this section we calculate the boson masses for the time component of the energy momentum operators:  

2 4 2 2 4
00

00
3 3, and
2 16π 2 16π

n c n cT T
G G

ω ω
= − = −                            (13) 

Part of this section was developed in our previous paper; the reader may refer to that paper for clarification 
and details. From the covariant and contravariant energy momentum tensors, and number density of particles 
approximated in extreme spacetimes (near black holes), we calculate the energy per particle: 

( )

4
2

1100
31

3
2 16π

1.425801587 10 particle
1.00 10

g

D

c
GT

n nE n J
N

ω
−

  
  

  = = = ×
×

,              (14) 

( )

4
2

00
2 2 11

31

3
2 16

1.425801587 10 particle
1.00 10

g

D

c
GT n n E n J

N

ω
π −

  
  

  = = = ×
×

              (15) 

where gω  is the graviton angular frequency calculated in our precursor paper [20]: 

( )12 12π 2π 1.000000000 10 sg gω ν − −= = ×                           (16) 

with 299,792,458 m/sc =  and ( ) 116.67428 67 10G −= × . This is the base energy in the creation of both the 
mass and spin of a particle formulated from the General Theory of Relativity. By dividing this energy by 
Planck’s constant will provide us with the energy-to-spin ratio necessary to not only generate mass but the spin 
of all particles (including spin-0 Higgs particle.  

11
22

34

1.425801587 10 particle 2.151805941 10 Hz
6.6260695(29) 10s m

Jn
J s

ν
−

− −

×
= = ×

× ⋅
                 (17) 

This is the fundamental spin-mass frequency required to generate massive particles from excited gravitons re-
leasing their gravitational energy into the vacuum energy. This associated wavelength is: 

14
22

299792458 m/s 1.393213265 10 m
2.151805941 10 Hzs m

s m

cλ
ν

−
−

−

= = = ×
×

                  (18) 

Equation (18) is in the gamma ray range. We might therefore expect to find gamma rays produced in extreme 
spacetimes, and in the hottest and most energetic objects in the universe, where the energy momentum operators 
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reflect elementary particle creation and annihilation. For example with neutron stars, pulsars, supernova explo-
sions, and regions around black holes. On Earth, gamma waves are generated by nuclear explosions, lightning, 
and the less dramatic activity of radioactive decay—which suggests that graviton excitation and elementary par-
ticle creation is gravitationally involved in formation of the strong force. 

Next we convert the energy operators T00 into mass generators: 

( )28
2 1.586418216 10 kgB

Em n n
c

−= = ×                             (19) 

( )2 28
2 1.586418216 10 kgB

Em n n
c

−= = ×                            (20) 

Applying superposition to the two mass generators, we are able to generate the n-valued boson masses. We 
calculate the W-boson mass first, by setting n = 7, for the covariant mass, and n = 30 for the contravariant mass. 
This leads to the following bosonic results:  

( )28 27
1 2 7 1.586418216 10 kg 1.110492751 10 kgB

Em n x
c

− −= = = ×                 (21) 

The contravariant mass is calculated to be: 

( )2 2 28 25
2 2 30 1.586418216 10 kg 1.427776395 10 kgB

Em n
c

− −= = × = ×               (22) 

Adding the generated masses together yields the theoretical W-boson mass value of: 

1 2
27 25 251.110492751 10 kg 1.427776395 10 kg 1.438881318 10 kg

W W WM m m
− − −

= +

= × + × = ×
            (23) 

Comparing the theoretical W-boson mass to the empirically measured mass of 80.403(29) GeV/c2, as reported 
in CODATA [21], (converted to SI units via: 2 271 GeV/c 1.782661845(39) 10 kg−= × ), leads to a CODATA W- 
boson mass of: ( ) 251.433 32 10 kg−× . Indeed, the theoretical and empirical W-boson mass value are in precise 
agreement. 

Next we compute the Z0 boson mass by setting n = 1 for the covariant operator and n = 32 for the contrava-
riant operator.  

( )( )28 28
1 2 1 1.586418216 10 kg 1.586418216 10 kgZ

Em n
c

− −= = × = ×                (24) 

( ) ( )2 28 25
2 2 32 1.586418216 10 kg 1.626078671 10 kgZ

Em n
c

− −= = × = ×               (25) 

Combining the n-valued masses, we have: 

0 1 2

28 25 251.586418216 10 kg 1.6244992253 kg 1.626078671 10 kg
Z Z ZM m m

− − −

= +

= × + = ×
             (26) 

This mass value is in precise agreement with the CODATA (2013) report on the Z0 boson mass value of: 
91.1876(21) GeV/c2 (1.6255(66) × 10−25 kg). Again theoretical and empirical particle mass values are in strong 
agreement.  

Finally, we compute the Higgs mass by selecting n = 32 for the covariant contribution, and n = 37 for the 
contravariant mass contribution: 

( )( )28 27
1 2 32 1.586418216 10 kg 5.076538291 10 kgH

Em n
c

− −= = × = ×                (27) 

The contravariant mass contribution is given by: 

( ) ( )2 28 25
2 2 37 1.586418216 10 kg 2.171806538 10 kgH

Em n
c

− −= = × = ×               (28) 
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Combining these two masses via superposition of the two energy operators, we determine the theoretical mass 
value for the Higgs-boson: 

1 2
27 25 255.07653829 10 2.171806538 10 kg 2.2222571921 10 kg

H H HM m m
− − −

= +

= × + × = ×
             (29) 

The mass result for the Higgs particle is in precise agreement that reported by CERN 2.246153925 × 10−25 kg 
[22]. 

We have shown for the W-boson mass, n takes on the values of n = 7 for the covariant mass, and n = 30 for 
the contravariant mass. Similarly, for the Z0 boson mass, n takes on the value of n = 1 and n = 32. Finally for the 
Higgs boson particle mass, n = 32 for the covariant contribution and n = 37 for the contravariant contribution. 
We now see that the general relativistic wave equations, representing gravitons interacting with the vacuum 
energy, produce fundamental boson masses, from a very restricted range of n-values, as predicted. 

5. Mass-Spin from Space-Time 
In this section, we forge elementary particle mass to its spin, thereby solving the mass hierarchal problem, pro-
viding physical explanation beyond group theory, as to why elementary particle mass has its associated spin 
value. To demonstrate this approach, we chose the spin-0 particle. We begin by calculating the variation with 
respect to each particle field: 

( ) ( )d
0

d
fL D Rν

ν

φδ φ
δφ φ

= ∂ − =                                 (30) 

( ) ( )( ) ( )( ) ; ;
1 1 1 2 2 0
2 2 2

L R g R g g f g f
dg f

µν µν µ ν µν λ µν λ µλ ν
λ λ λ

δ ϕ φ φ φ
φ

   = − + ∂ ∂ − ∂ ∂ − − =      
       (31) 

Applying this equation in flat spacetime, we can switch off the spin-0 interaction terms and replace Gµν  by 
its equivalent operator form: 

2

2
4

2

2

3 0 0 0
2

10 0 01 2
12 16π 0 0 0
2

10 0 0
2

ncR g R T
G

µν µν
µν

ω

ω

ω

ω

 − 
 
 
  − → =      
 
 
 
 

                  (32) 

This implies we can precisely predict the spin-0 particle energies and masses by substituting this last result 
into the previous:  

( ) ( ) ( )( ) ( )( ) ; ;

2

2
4

2

2

1 1 2 2
32π 2

3 0 0 0
2

10 0 0
2

116π 0 0 0
2

10 0 0
2

g g f g f
G f

nc
G

µ ν µν λ µν λ µλ ν
λ λ λϕ φ φ φ

φ

ω

ω

ω

ω

 ∂ ∂ − ∂ ∂ − −  

 − 
 
 
 

=  
 
 
 
 
 

               (33) 

As we previously showed (boson mass calculations), we could convert these two operators into mass cova-
riant and contravariant mass generators to determine the n-valued boson masses. In particular by setting n = 32 
for in covariant generator, and n = 37 for the contravariant mass generator, we were able to calculate the Higgs 
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boson mass: 

( )( )28 27
1 2 32 1.586418216 10 kg 5.076538291 10 kgH

Em n
c

− −= = × = ×                (34) 

The contravariant mass contribution is given by: 

( ) ( )2 28 25
2 2 37 1.586418216 10 kg 2.171806538 10 kgH

Em n
c

− −= = × = ×               (35) 

Combining these two masses via superposition of the two energy operators, yields the theoretical Higgs-boson 
mass in precise agreement as reported by CERN of 126.0 GeV or 2.246153925 × 10−25 kg: 

1 2
27 25 255.07653829 10 2.171806538 10 kg 2.2222571921 10 kg

H H HM m m
− − −

= +

= × + × = ×
             (36) 

Though further investigation is needed, this last Higgs result implies we may eliminate the potential function: 
( )V ϕ−  shown in equation [1].  

Inclosing this section, out of respect we refer to various fundamental particles (including Higgs) generated 
from MFCC and RQP theory, as Veltman and t’Hooft elementary particles [VHP]. 

6. Conclusions 
Though not well-known, it was Einstein who first endeavored to manifest quanta from his gravitational field 
equations (rather than quantizing gravity). By elevating the Standard Model into a general relativistic frame-
work, it was shown in this paper that such mass-energy quanta were indeed generated in correspondence with 
their elementary particle spin values. It is important to note that the Relativized Quantum Physics approach 
(RQP) applied in this paper is a massless field approach discretely coupled with a massive one; consequently it 
overcomes various renormalizing difficulties. Furthermore, by applying a similar consistency approach to the 
gravitational field equations, as Maxwell did to the electromagnetic ones, we were able to couple spin-to-mass, 
thereby restricting the particle mass in precise agreement with experimental values. Moreover this approach in 
theory solves the mass hierarchal problem of the Standard Model of particle physics (and verified empirically 
for three boson masses), implying quantum physics is a subset of General Relativity, as first imagined by Eins-
tein. We have shown for boson mass the n-values do not exceed n = 37 for the upper limit mass, and has a lower 
limit mass n = 1. To make RQP theory a massless theory, we simply set n = 0. Antiparticle masses may be 
achieved by setting “n” to negative integer values.  

In the future we hope to apply the RQP method to determine all elementary particle mass and spin. 
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Appendix I: Maxwell’s Consistency Approach  
Rather than starting with the four electromagnetic field equations, as Maxwell did, we begin from the modern 
approach of the action S, where: 

4dS L x= ∫                                         (37) 

Here, L represents the Lagrangian density for any system under consideration. Specifically, the Lagrangian 
for electromagnetic fields interacting with matter, and is given by: 

emL L j Aµ µ= −                                       (38) 

Identical indices are understood to be summed. The free part of the Lagrangian density (self -interaction) is 
given by: 

( ), , , ,
1 1

16π 8πemL F F A A A Aµν µν µ ν µ ν µ ν ν µ= − = − −                        (39) 

The interaction Lagrangian density term is given by: 

intL j Aµ µ= −                                        (40) 

 [Note: Only partial derivatives are being used here. Also keep in mind the structure of the Lagrangian is a 
scalar product of the electromagnetic field Aμ with the electric current density jμ. In a like manner our interaction 
Lagrangian for gravity under CC considerations will have the gravitational field coupled to its source.]  

The Euler-Lagrange equations of motion, for an arbitrary field component ϕ, is given by1: 

, ,

0L L L

µ µ

δ
δφ φ φ

 ∂ ∂
= − =  ∂ ∂ 

                                  (41) 

Substituting Lem into the Euler-Lagrange equation of motion, yields the four well-tested Maxwell’s electro-
magnetic equations: 

( ), , , , , ,
0j A Aµ µ µ ν ν ν µ ν µ

= − =                                 (42) 

The above result is key to our understanding of how to build a consistent field theory for gravity. By examin-
ing the left hand side of this divergent equation, we see it is simply the equation of continuity and must physi-
cally, as well as mathematically, equal zero (unless conservation of charge fails). The right hand side of the eq-
uation is designed so that the terms Aμ, in the equation of motion, have zero divergence identically (this re-
quirement will also be fundamental to the CC gravitational approach, and though a gauge approach may yield a 
similar result, it does not do so as viscerally and so we are not led to the correct theory for gravity and dark mat-
ter). Hence, we have shown the electromagnetic field equations are consistent.  

Appendix II: Maxwell-Fang Consistency Approach 
If we are to build any viable theory in physics, its foundation must be based on those successful traditions from 
both physics and mathematics. For example, the ideas for special relativity were established when young Eins-
tein considered the consequences of James Clerk Maxwell’s electromagnetic equations from various inertial 
coordinate frames. Likewise, to build a consistent theory for gravity, we again turn to the seminal work of James 
Clerk Maxwell, in which he demanded the divergence of the source for electromagnetism equal zero. That is: jμ,μ = 
0; which led to the discovery of the composition of light. By this successful example, we too will require the di-
vergence of the source for gravity-the energy momentum tensor (Tμν) equals zero:  

, 0Tµν ν =                                          (43) 

However, a consistent theory for gravity is not as straightforward as it was for the electromagnetic equations. 
For one thing, gravity interacts with itself. Not only this, but the source for gravity includes a variety of other 
sources beyond current density, such as: mass-energy, momentum and radiation (just to name a few). In short, 

 

 

1This mathematics leading to a consistent approach for gravity was developed by E. Huggins in his dissertation see pages 8 - 10. 
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Maxwell’s consistent condition points us in the right direction, but needs modifications if we are to produce an 
analogous theory for gravity. So what then is the next step? Since we are seeking a gravitational approach, our 
theory has to be constrained by Einstein’s requirement that the gravitational field ultimately must have a geome-
trical interpretation. Fortunately, R. Feynman showed the gravitational equations of motion, obtained from flat 
spacetime, from an action principle on the Lagrangian, is equivalent to Einstein’s geometric requirement2.  

Developing a theory for pure gravity is one thing, but what do we do when gravity interacts with matter? In 
theory, one could build infinitely many Lagrangians, but which of them would represent real nature? Especially 
when there are so many particles that were not even known during the development of general relativity? The 
answer is to continue on with the modern approach to gravity through linearization of the gravitational field [23], 
and to treat gravity as a spin-2 particle hμν (graviton). And that is just what occurred historically, until R. Feyn-
man imposed that the interaction Lagrangian represent a coupling to gravity in the following manner: 

int 2
KL h Tµν µν= −                                      (44) 

From the form of the coupling above, the gravitational field, hμν must be symmetric on μν. The scalar product 
of the anti-symmetric part of hμν with symmetric tensor Tμν is then zero, implying that the anti-symmetric part of 
hμν would not couple to matter and therefore never be seen. The full Lagrangian for gravity proposed by Feyn-
man is composed of the free part Lg, as well as the interaction Lagrangian. That is: 

2
m

g
KL L h Tµν µν= −                                     (45) 

The Euler-Lagrange equations of motion for gravity are then given by:  

0
2

g mLL K T
h h µν
µν µν

δδ
δ δ

= − =                                 (46) 

To have the same type of consistency for the gravitational field equations, as with the electromagnetic field 
equations, Feynman demanded that the divergence of the free part of the Lagrangian equals zero; that is:  

0gL
hν
µν

∂
∂ ⋅ =

∂
                                     (47) 

This automatically forces the divergence of interaction part of the Lagrangian to be zero; otherwise the total 
divergence of Einstein’s field equations would not equal zero, implying we would lose any sense of conserva-
tion of the source. This leads us to the founding principle for gravity: 

, 0mTµν ν =                                        (48) 

In terms of the consistency formulation, the gravitational field equations must satisfy the condition: 

{ };
0

v
G Tµν µν+ =                                     (49) 

Conceptually this gravitational condition on the field equations, is no different to the consistent formulation 
imposed on the electromagnetic equations by James Clerk Maxwell. 

From the proceeding we develop a general consistent approach for gravity. 
Here we provide additional information about the consistency formulation for particle fields interacting with 

gravity first developed by M. Fierz and W. Pauli in the 1930’s. Based on their seminal work, subsequent re-
searchers (all luminary) contributed to the gravitational consistency formulation. Then after R. Feynman work in 
this field in the 1960’s, the consistency formulation was put into its final and complete form by J. Fang. In this 
paper we refer to this gravitational consistency formulation interacting with all particle fields, as the Max-
well-Fang consistency condition (MFCC). The main condition of Fang’s consistency condition, is that the di-
vergence of the wave equation must equal zero; not identically, nor by particular solutions, but rather by col-
lecting various divergent terms into numerous forms of the wave equations, and then setting them all to zero. 

 

 

2The Lagrangian approach to gravity first had its origin in curved spacetime and was introduced by the eminent mathematician David Hil-
bert, a few days after Einstein completed his wave equations for the general theory of relativity. 
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Only in this way can the correct Lagrangian (leading to a set of consistent set of field equations for gravity) be 
determined. Schematically, the consistency condition is written as a variation on the Lagrangian followed by a 
divergence on the field equations: 

0 0L Lδ δ
δφ δφ

= ⇒ ∂ ⋅ =                                     (50) 

To understand the basic idea behind the consistency condition formulation for linearized gravity, let us con-
sider a system of coupled fields, Φ, under variation given by: 

0Lδ
δ

=
Φ

                                          (51) 

Let the subset Φ’ be that of the massless gauge fields. Such field equations can always be decomposed into 
linear (L) and nonlinear (NL) parts, in which variation of the fields, yields: 

0
L NLL Lδ δ

δ δ
   + =   ′ ′Φ Φ   

                                   (52) 

For reasons previously given, the divergence of linear part of the wave equation must equal zero: 

0
LLδ

δ
 ∂ ⋅ = ′Φ 

                                      (53) 

The above condition, together with gauge invariance, imposes a strict requirement on the nonlinear parts, so 
that the divergence must also equal zero (otherwise the field equations would be inconsistent mathematically): 

0
NLLδ

δ
 ∂ ⋅ = ′Φ 

                                     (54) 

It was J. Fang, who first understood that the nonlinear divergence can go to zero in three distinct ways:  
1) The divergences on the nonlinear parts of the massless gauge field equations are zero identically (that is they 

vanish as mathematical identities-without referring to the field equations). However, such an approach pro-
vides no physical content. 

2) The divergences of the nonlinear parts of the massless gauge field equations are zero neither identically, but 
only analytically for some particular solutions (not general enough), which happen to satisfy the consistency 
condition: 

0
NLLδ

δ
 ∂ ⋅ = ′Φ 

                                    (55) 

3) The divergences of the nonlinear parts of the massless gauge field equations are equal to the sum of various 
terms, where each of these is proportional to the original field equations or various contracted field equations. 
Therefore, the divergence of the nonlinear parts of the massless gauge field equation vanish by field equa-
tions, and is expressed mathematically by:  

0
NLL L L LA B Cδ δ δ δ

δ δ δ δ
     ∂ ⋅ = + + ∂ ⋅ + ⋅⋅ ⋅ =    ′Φ Φ Φ Φ     

                     (56) 

where A, B, C are some structure functions for the field equations, or for various contracted field equations 
(trace, differentiation, etc.), which could depend on the field Φ itself, and derivatives of the fields. 

Let us reexamine the three cases above more carefully: Case (1) is simply too strong a condition and must re-
jected because it would exclude many well established theories such as electrodynamics; SU (2) Yang-Mills 
gauge theory and Einstein’s theory of gravitation. Case (2) is not general enough to provide criteria for con-
structing the Lagrangian describing gravity coupled to particles of various spin; and so case (2) is also rejected. 
Case (3) has just the right condition to allow one to build up the Lagrangian order-by-order in flat spacetime 
representing the gravitational system. This same criteria may also be applied to curved spacetime to determine if 
the chosen Lagrangian produces inconsistent field equations. Furthermore, case (3) has been shown to be com-
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patible with other established theories, such as general relativity; Scherk-Schwarz dual model for string theory 
and Yang-Mills theory. Finally, it allows the massless gauge fields Φ’ to maintain the freedom of the deformed 
gauge transformation: 

( )χ′ ′Φ →Φ + ∂ Γ                                     (57) 

where χ stands for a set of gauge parameters, which are a function of xμ. And Γ is some structure function. Thus 
the gauge is modified, but not lost.  

Instead of using Case 3 in the given form and postulating the structure functions A, B, C, ∙∙∙ , it is more feasi-
ble, and equivalent, to use the consistency condition (CC) in the form: 

0 0L Lδ δ
δ δ

= ⇒ ∂ ⋅ =
′Φ Φ

                                  (58) 

where δL/δΦ = 0 represents the set of all field equations and δL/δΦ’ = 0 refers only to the subset of field equa-
tions for Φ’ that are massless gauge fields. In this approach, the nonlinear part of the Lagrangian of the system 
L(Φ) is the yet-unknown Lagrangian to be determined by CC. Whereas, the lowest order term in L(Φ) is the 
usual Fierz-Pauli type free-field Lagrangian constructed from the standard group theoretical approach [24].  

Although other attempts at a consistency formulation are valid, without Fang’s subtle understanding and 
completion of the consistency formulation, all previous attempts are incomplete and so lead to Lagrangians that, 
in general, inaccurately represent real nature. 

Appendix III: MFCC Example 
In this section we provide an example of how the Maxwell-Fang Consistency Condition (MFCC) can generate 
String Theory (Scherk and Schwarz), both on flat and curved spacetime.  

How exactly then does a flat spacetime approach work to determine the Lagrangian for some unknown sys-
tem of spin particles interacting with gravity? In particular, for the spin-0 (2-form) particles denoted by “a”, in-
teracting with gravitational spin-2 particles, denoted by “h”, described by dual-string model Lagrangian. We be-
gin by forming all possible combinations of the two fields up to third expanded order. Symbolically this is writ-
ten as: 

( ) ( ) ( ) ( ) ( )2 2 3 3 2 3 3( )L L a L h L a L a h L hΦ = + + + ⋅ +                      (59) 

The metric is expanded as: 

g hµν µν µνη= +                                    (60) 

Here µνη  is recognized as flat spacetime or Minkowski metric, and hµν  represents the graviton field. Note, 
that any derivatives on the expanded metric gμν leaves only derivatives of hµν . Variation on the linearized La-
grangian up to third order, with respect the spin-0 field “a” (two-form) and spin-2 fields “h”, is given by: 

( ) ( )3 22

0
L a hL aL

a a aµν µν µν

δδδ
δ δ δ

⋅
= + =                            (61) 

( ) ( ) ( )3 2 3 32

0
L a h L hL hL

h h h hµν µν µν µν

δ δδδ
δ δ δ δ

⋅
= + + =                        (62) 

The variation produces the linearized wave equation with both correct and incorrect terms. To get rid of the 
unwanted terms, or to show the Lagrangian is already correct, the next step of the consistency condition is to 
take the divergence of the wave equation. Then terms are grouped together in such a way as to form structures of 
the wave equation. By the consistency condition these grouped wave equations are set to zero. The remaining 
terms must cancel algebraically. If this occurs, then the order-by-order Lagrangian correctly represents gravity 
interacting with particles. If not, terms must be added to make this main condition of CC hold. This is exactly 
what was done with a general form of a Lagrangian representing spin-0 particles interacting with gravity. Note 
this is not yet the Scherk-Schwarz dual model Lagrangian. However, without prejudice, we discovered (after 
many pages of calculations), the dual-string Lagrangian was sifted out via CC. To show this, we choose for the 
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sake of the reader to develop a schemata that indicates what occurs to various Lagrangian terms. Note that we 
use unspecified coefficients to produce the most general Lagrangian. Part of the consistency condition is to solve 
for these coefficients up to a single coefficient, which can only be determined experimentally. Put another way, 
mathematics alone cannot yield the values to fundamental constants.  

The CC applied to spin-0 particles interacting with spin-2 graviton particles, is given in schemata form, where 
each interaction and free Lagrangian term ( ) ( ) ( ) ( ) ( ) ( )2 2 3 3 2 3 2 3 3( )L L a L h L a L a h L a h L hΦ = + + + ⋅ + ⋅ + + ⋅⋅⋅  
is shown under the CC term to either go to zero or not. If it goes to zero it is not a correct expanded Lagrangian 
term:  

( ) ( )3
1 , , 0CCL a a a a aµν λν µ λσ σ= →                             (63) 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2 , , 3 , , 4 , , 5 , ,

6 , , 7 , , 8 , , 9 , ,

10 , , 11 , , 12 , , 13 , ,

14 ,

L a h

a ha a a ha a a ha a a h a a

a h a a a h a a a h a a a h a a

a h a a a h a a a h a a a h a a

a h
µν

µν ν µλ λ µν λ µν λ µν λ λν µ µν λµ µ λσ σ

µν νλ λ µσ σ µν νλ σ µλ σ µν νλ σ µσ λ µν νλ σ σλ µ

µν λσ ν λσ µ λσ σ µν µν λ λ µν µν λ λσ σ λν µ

λ

⋅

= + + +

+ + + +

+ + + +

+ ( ) ( ) ( ) ( ), 15 , , 16 , , 17 , ,
CCa a a h a a a h a a a h a aµν λν µ λν µ µν λσ σ µλ λ µν νσ σ µλ σ µν νλ σ+ + + →

      (64) 

( )( ) ( )( )

( )( ) ( )
( )( ) ( )
( )

15 17 , , 10 14 15 17 , ,

10 14 15 17 , , 15 , , , ,

10 15 , , 10 , , , , , .

12 14 15 17

1 1
2 2

1 2 2
2
2 2 4

1 2
2

a a ha a a a a a ha a

a a a a ha a a h a a h a a

a a h a a a h a a h a a h a a

a a a a

µν ν µλ λ µν λ µν λ

µν λ λν µ µν λµ µ λσ σ µν νλ λ µσ σ

µν νλ σ µλ σ µν νλ σ µσ λ µν νλ σ σλ µ µν λσ ν λσ µ

+ − + + +

+ + + + − +

+ + + − − +

− + + + ( ) ( ) ( )( )
( ) ( ) ( )

( )

, , 12 , , 15 17 , ,

14 , , 15 , , 17 , , , ,

.
10 12 14 15 171 parameter Lagrangian 0; 0 .F R

h a a a h a a a a h a a

a h a a a h a a a h a a h a a

a a a a a

λσ σ µν µν λ λ µν µν λ λσ σ µν λν µ

λ µν λν µ λν µ µν λσ σ µλ λ µν νσ σ µλ σ µν νλ σ

+ + +

+ + − −

→ ≅ − ≠ = = = =

 

Hence L(a2∙h) reduces to:  

( )
( )( ) ( )( ) ( )( )
( )

2

10 , , 10 , , 10 , ,

10 , , , , , .

1 2
2

2 4

L a h

a ha a a ha a a h a a

a h a a h a a h a a

µν λ µν λ µν λ λν µ µν νλ σ µλ σ

µν νλ σ µσ λ µν νλ σ σλ µ µν λσ ν λσ µ

⋅

= − + +

+ − − +

               (65) 

Please note this third order Lagrangian term has been reduced to a single coefficient a10, and is thus a valid 
Lagrangian term. The remaining third order interaction Lagrangian is examined under CC and field redefinition 
FR. The result shows this interaction Lagrangian is not allowed. Under CC schemata this is shown as follows: 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

2

18 , , 19 , , 20 , , 21 , ,

22 , , 23 , , 24 , , 25 , ,

26 , , 27 , ,

18 , , , ,

CC

L a h

a h h a a h h a a h h a a h h a

a h h a a h h a a h ha a h h a

a h h a a h h a

a h h a h h a

µ µν λ λν µν ν µλ σ σλ µλ ν µν σ σλ µλ µ σ σλ

µν ν µλ λσ σ µ µλ λσ σ µλ µ λσ σ µλ ν µν λσ σ

µλ µ νσ σλ ν µλ ν µσ σλ ν

µ µν λ λν µν ν µλ σ σλ

⋅

= + + +

+ + +

+ + →

− +( ), , , , , , , , 0FRh h a h h a h h a h h aµν ν µλ λσ σ µ µλ λσ σ µλ µ νσ σλ ν µλ ν µσ σλ ν− + − →

    (66) 

The consistency condition, with field redefinition, has revealed that L(a∙h2) does not partake in gravity inte-
racting with spin-0 particles.  

Finally, to clarify what is meant by field-redefinition (FR) in the schemata immediately above, is to say that 
two infinite series polynomial type Lagrangians: L({a}∙Φ) and L({b}∙Φ), having the same linear parts but each 
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containing a different set of free parameters {a} and {b} specifying their non-linear parts, are regarded as com-
pletely equivalent if L({a}∙Φ) transforms into L({b}∙Φ) under field redefinition FR: 

{ } { }higher termscΦ→Φ+ ⋅Φ ⋅Φ +                              (67) 

Here the polynomial {c∙Φ∙Φ} contains terms from all possible combinations contracted out of any two fields 
in Φ, without derivatives. The most general form of FR for the case above is as follows: 

( ) ( ) ( ) ( )1 2 3'h h c h h c a a c a a c h a h aµν µν µλ νλ µν λσ λσ µλ νλ νλ µλδ→ + ⋅ ⋅ + + + +               (68) 

( ) ( )4 5a a h c a h c a h a hµν µν µν µλ νλ νλ µλ→ + + −                          (69) 

Dual tensors, like εμνλσ aλσ h and εμνλσ (aλκaσκ – aσκhλκ) are allowed for, but not included here because of their 
odd parity under space inversion. 

Appendix IV: String Theory in Curved Spacetime MFCC Approach 
In this section we show the Scherk-Schwarz Lagrangian satisfies the consistency condition in curved spacetime. 
This is a two-step procedure: 1) Variation of the Lagrangian with respect to each of the fields {gμν, aμν, ϕ}, the-
reby generating three distinct wave equations. 2) Apply the divergence to each of these wave equations, and 
show they equal zero; if so we have correct gravitational theory, just as we have shown with theory. 

Step 1) Rather making many tedious variational calculations with full covariant derivatives, we simply show 
the final result of the dual-string wave equations: 

( ) ( ); ; ; ; ; ;
; ; ; ; 0L a a a f a a a f

a
βγ α γα β βα γ βγ α γα β βα γ

α α α α
δ
δ

= + − + + − =                (70) 

( ) ( ) ( )d d
0

d d
f fL D R aF Fν αβγ

ν αβγ

φ φδ φ
δφ φ φ

= ∂ − − =                       (71) 

( ) ( )( ) ( )( ) ; ;

2 ; ; ; ; ; ; ; ;
; ; ; ;

1 1 1 2 2
2 2 2

1 1 1 1 0
2 2 2 2

L R g R g g f g f
dg f

a g F a a a a a a a a a a a a

µν µν µ ν µν λ µν λ µλ ν
λ λ λ

µν ν βγ µ µ νγ α ν βµ α βγ ν µ βµ α ν νγ α µ
βγ γ α β α β γ βα α γ

δ ϕ φ φ φ
φ

   = − + ∂ ∂ − ∂ ∂ − −      

 + − + + + − − − =  

    (72) 

The constant “a” equals 1/6 and F2 is given by: 
2F F Fαβγ

αβγ≡                                      (73) 

Step 2) Apply the divergence to these wave equations and show they equal zero: 

;
;

0
v

L G T
dg µν µν ν

δ 
 = + =   

 
                               (74) 

Note the two terms are the free part of the gravitational field and the interactions terms, which is also the 
energy momentum tensor. Let us now expand the right hand side to make more visible the divergence. 

( ) ( )( ) ( )( ) ; ;
;

2 ; ; ; ; ; ; ; ;
; ; ; ;

;

1 1 1 2 2
2 2 2

1 1 1 1
2 2 2 2

R g R g g f g f
f

a g F a a a a a a a a a a a a

µν µν µ ν µν λ µν λ µλ ν
λ λ λ

ν

µν ν βγ µ µ νγ α ν βµ α βγ ν µ βµ α ν νγ α µ
βγ γ α β α β γ βα α γ

ν

ϕ φ φ φ
φ

   − + ∂ ∂ − ∂ ∂ − −      
 + − + + + − − −   

      (75) 

By analogy to the electromagnetic equation, the divergence of the free part of the wave equation must vanish, 
hence:  

;

1 0
2

R g Rµν µν

ν

 − =  
                                  (76) 
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What is then left is to show that the divergence of the interaction part of the wave equation, vanishes as well:  

; 0T µν
ν =                                          (77) 

For the Scherk-Schwarz dual model, the divergence of the interaction terms (which are really the energy mo-
mentum tensor) must vanish. Hence: 

( ) ( ) ( )( ) ( )( ) ; ;;

2 ; ; ; ; ; ; ; ;
; ; ; ;

;

1 1 2 2
2 2

1 1 1 1 0
2 2 2 2

T g g f g f
f

a g F a a a a a a a a a a a a

µν µ ν µν λ µν λ µλ ν
λ λ λν

µν ν βγ µ µ νγ α ν βµ α βγ ν µ βµ α ν νγ α µ
βγ γ α β α β γ βα α γ

ν

ϕ φ φ φ
φ

  = ∂ ∂ − ∂ ∂ − −   
 + − + + + − − − =  

  (78) 

After bringing in the covariant derivative with respect to “ν,” and then cancelling hundreds of terms algebrai-
cally, as well as setting divergent structures of the wave equation to zero (main CC requirement to be given fur-
ther discussion), we discover, indeed, the divergence of the interaction terms, that is, the divergence of the 
energy momentum tensor for the Scherk-Schwarz string theory, does indeed go to zero. Then, by the same as-
sumption made by J. Maxwell, R. Feynman, and then J. Fang, the Scherk-Schwarz Lagrangian representing 
spin-0 particles interacting with gravity produces consistent field equations. This means the dual string model is 
a viable representation of nature; however, nature is the final judge.  

Appendix V: Identities from the Maxwell-Fang Consistency Formulation 
During the development of QED, at first there were many infinities that could not be mathematically accounted 
for until Feynman absorbed some of these infinities into the mass and charge. Nevertheless it was not until the 
Ward-Takahashi identity [25] was developed, did QED become a renormalizable theory. The Ward-Taka- hashi 
identity is a quantum version of the classical Noether’s theorem. Recall previously in this paper, T. Yoneya [26] 
discovered that all the known string theories included a massless spin-two particle, which obeyed the correct 
Ward identities. Other examples exist, such as the identities associated QED and Einstein’s gravity, respectively: 

( ) ( ) ( ),
im ieA im ieAµ µ

ψγ ψ ψ ψ ψ ψ≡ ∂ + + + ∂ − −
 

                        (79) 

And 

,G G Gσ σ
µν µν σν νν µσ≡ Γ Γ                                    (80) 

In our paper the consistency condition produces to new identities. One identity associated with the Callan- 
Coleman-Jackiw Lagrangian corresponding to the massless gauge field hµν . And two identities associated with 
the Scherk-Schwartz Lagrangian corresponding to the two fields hµν  and aµν . For the Callan-Coleman- 
Jackiw Lagrangian we define the following symbolism in order to present the associated identity in compact no-
tation: 

( ), ;
2L g aRµν

ν µ
φ φ φ≡ −                                   (81) 

The field equations generated from this Lagrangian are given as follows: 

( ) 0G T µν+ =                                       (82) 

0Lφ =                                          (83) 

And the energy momentum tensor is given by: 

( ) ( )( ) ( ) ( ) ; ;
1 1 2 2

2 2
T g g g f g f

f
µν µ ν µν µλ ν µν λ

λ λφ φ φ φ
φ

 = ∂ ∂ − ∂ ⋅ ⋅ ∂ + −  
               (84) 

( ) 21f aφ φ= +                                       (85) 

f fλ λ= ∂                                         (86) 
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After a lengthy calculation the generalized Fang identities for the Callan-Coleman-Jackiw Lagrangian [27] is 
given as: 

( ) ( ) ( )( ) ( )( )( ); 2

1 4
2 1

G T L a G T
a

µν µνµ
νν φ φ φ φ

φ
 + ≡ ∂ − ∂ + +

                  (87) 

Note that all the terms on the right-hand side of the identity involve the field equations. For the Scherk- 
Schwarz Lagrangian again we define the following symbolism: 

( ) ; ; ;
; ; ;La a a aµν µν α να µ µα ν
α α α= + −                                 (88) 

The Scherk-Schwarz field equations are as follows: 

( ) 0G T µν+ =                                       (89) 

And 

( ) 0La µν =                                        (90) 

The Fang current density for the Scherk-Schwarz Lagrangian is given by: 

( ); 0La µν

ν
≡                                        (91) 

The final identity is: 

( ) ( );
;;

116π
2

G T G a a Laµν νσµ µ
ν σ νσν

 + ≡ − 
 

                          (92) 

 
 
 
 


	Completing the Standard Model with Gravity by General Relativizing Quantum Physics (RQP) (Coupling Spin-2 Gravitons with Spin-0 Particles to Generate Higgs Mass)
	Abstract
	Keywords
	1. Introduction
	2. Mathematical and Physical Development of the Modified Flat Spacetime Metric
	3. Energy Operators from Pure Gravity
	4. Boson Mass Calculations
	5. Mass-Spin from Space-Time
	6. Conclusions
	Acknowledgements
	References
	Appendix I: Maxwell’s Consistency Approach 
	Appendix II: Maxwell-Fang Consistency Approach
	Appendix III: MFCC Example
	Appendix IV: String Theory in Curved Spacetime MFCC Approach
	Appendix V: Identities from the Maxwell-Fang Consistency Formulation

