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Abstract 
Quantum Mechanics formalism remains difficult to understand and sometimes is confusing, espe-
cially in the explanation of ERP paradox and of Bell’s inequalities with entanglement photons. So a 
chart of conversion, in which elements are named differently, is proposed. Next, experiment about 
Bell’s inequalities violation is described in another way, and we hope a clearer one. Main result is 
Bell’s inequalities would not be violated! The explanation would come from confusion between 
the definition of the correlation function S1, and a property S2. And consequently, Einstein, Po-
dolski and Rosen would be right on the local “hidden” variable. 
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1. Introduction 
“God does not play dice” Einstein wrote. Where there appears to be random, there is only a cause we have not 
yet found or discriminated. EPR paradox [1] was formulated in 1935 by Einstein, Podolski, and Rosen to define 
a determinist theory, including local hidden variables which Quantum Mechanics would have missed. Then, in 
1964, the physician Bell demonstrated that this determinist theory obeyed the mathematical Bell’s in- equalities 
[2]. In the 1980s, some scientists’ teams showed Bell’s inequalities would be violated. Because Quantum Me-
chanics formalism is difficult to read, the purpose of this article is to propose another notation for some elements, 
and then to discuss this EPR paradox and the proofs of the Bell’s inequalities violation. The guide line of this ar-
ticle is a critical reading of Alexandre Moatti’s chapter about Quantum Physics [3], by using the proposed con-
version chart. 
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2. Proposed Formalism 
2.1. Quantum Mechanics Formalism 
Quantum Mechanics Formalism is difficult to understand [4]; it is also confusing. Some parameters can have 
two different meanings, and the same meaning can be called by different parameters. For example: 
• A (or B) can mean Photon and/or Separator 
• x (or y) can mean Photon and/or Axis 
• Alice (or Bob) can mean a detector and/or its complementary detector 
• The same axis can be called either (Ox’) or (Oa) 

Also some parameters are not precise enough, or are surprising. For example: 
• |x,x> symbolizes the polarization status of a photon pair. The first x is for the first photon, the second x is for 

the second photon. But there are twodifferent photons. So the idea will be to distinguish the two photons 
with the letters X and Y. 

• When a photon is detected, the value of the measure is +1. When it is not detected, it value of the no- 
measure is −1, which is quite surprising. Usually, when we cannot detect an object or a phenome, the value 
is 0. To avoid disturbing to much our reader, we will have here the convention to keep the convention −1 
when a photon is not detected. 

2.2. A Conversion Chart 
To correct the confusing term, we will use in this article the conversion Chart 1 hereafter. 

3. Bell’s Inequality 
3.1. The Wave Function 
Quantum mechanics introduces a wave function 

( ) ( )1; ; ;
2

X Y I I J Jψ = +                                  (1) 

with: 
- I,J: axes;  
- X,Y: photons; 

|I> characterizes the polarity of the photon X according to the axis I. 

3.2. The Polarization Status on a Single Side 
Let us have a simple set up with a single separator, as seen in Figure 1: 
1) First, separator A is adjusted with an angle 0α =   (which mean parallel to I). 

When we measure these photons on the detector DA, we will find {+} each time (and on the detector \DA, we 
will find nothing, i.e. {−}) 

So each time 1a = +  and \ 1a = − . This will occur to each photon polarized |I>. 
It is said in QM the polarization (of this photon) parallel to I is exactly defined. 

2) Then, separator A is adjusted with an angle 45α =  , 
And let us call L the axis which has an angle of 45˚ with the axis I 
These photons still have a polarity according to I (to simplify, we can say these are the same photons again) 
When we measure these photons on the detector DA (with the new value of angle 45α =  ), we will find 

{ }+  in 50% of the cases and { }−  in the other 50% cases (and on \DA we will find { }−  in 50% of the cases 
and { }+  in 50% of the cases). 

It is the said in QM the polarization (of the photons) parallel to L is not defined. 
Remark: it is “not” the polarization of the photons X which has changed; it is only the angle α to measure 

them which has changed. More generally, we can say that, except with the particular case of ( )0 or 180α =  , 
the polarization of these photons would not be (exactly) defined according to QM! 

3.3. The Experiment 
Let us now use the proposed formalism to check the experimental set up used to prove Bell’s inequalities violation  
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Chart 1. Chart of conversion.                                                                                         

Definitions QM Formalism Converted Formalism Value 

Axis x,y,z or a,b,z I,J,K  

Other axis a,b or x’,y’ or a’,b’ L,M  

Photon x X  

Photon pair x, x (X,Y)  

Rank  R {1}, {2}, {3}, ∙∙∙ 

Polarization of a photon parallel to the axis (I) |x> |I>  

Polarization of a photon parallel to the axis (J) |y> |J>  

Polarization of a photon parallel to the axis (L) |x’> |L>  

Polarization of a photon pair parallel to the axis (I) |x, x> |I, I>  

Separator A A  

Separator angle of A a (or a’) α (or γ)  

Separator B B  

Separator angle of B b (or b’) β (or δ)  

Detector, counter 
Alice 

DA  

Complementary detector \DA  

Detector, counter 
Bob 

DB  

Complementary detector \DB  

Photon detected +1 + {+} 

Photon non detected −1 − {−} 

Polarization measure from DA A (λ,a) a {+1} or {−1} 

Polarization measure from DB B (λ,b) b {+1} or {−1} 

Polarization measure from /DA A (λ,a’) \a or c {−1} or {+1} 

Polarization measure from /DB B (λ,b’) \b or d {−1} or {+1} 

Probability to find + on DA (with an angle α)  
and + on DB (with an angle β) P++ (a,b) Pα,β (+1; +1) From 0% to 100%: 

[0%; 100%] 

Probability to find - on DA (with an angle α)  
and- on DB (with an angle β) P−− (a,b) Pα,β (−1; −1) From 0% to 100%: 

[0%; 100%] 

Probability to find + on DA (with an angle α)  
and- on DB (with an angle β) P+− (a,b) Pα,β (+1; −1) From 0% to 100%: 

[0%; 100%] 

Probability to find - on DA (with an angle α)  
and + on DB (with an angle β) P−+ (a,b) Pα,β (−1; +1) From 0% to 100%: 

[0%; 100%] 

Quantum correlation coefficient E (a,b) E (α, β) From −1 to +1: 
[−1; +1] 

Quantum sum s (λ, a, a’, b, b’) qs (a, c, b, d) {−2} or {+2} 

Quantum correlation function S (a, a’, b, b’) 

S1 (α, γ, β, δ) 
(the definition) 

From −2.8 to +2.8: 
[−2.8; +2.8] 

S2 (a, c, b, d) 
(a property) 

From −1 to +1: 
[−1; +1] 

 
(Figure 2): 
with 
- a source which emits entangled pairs of photons (X,Y) in green; 
- two channels separators A and B which direct photons according their polarization toward the detectors; 
- detectors DA and DB which detect photons polarized according to α and β; 
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Figure 1. A single separator.                                               

 

 
Figure 2. Experimental principle.                                                                                             

 
- detectors \DA and \DB which detect photons polarized according to \α and \β; 
- a the measure done on DA; 
- \a the measure done on \DA; 
- b the measure done on DB; 
- \b the measure done on \DB; 

3.4. A Property of the Correlation Function 
As a consequence of the wave function, there is a property associated 

( ) ( )( )2 , , , , , , dS a c b d qs a c b d λ= ⋅∫                               (2) 

where 
, , ,a b c d  are the measures of the experiment; 
λ  is a local “hidden” variable. λ  cannot be measured. So how S2 can be calculated? 
Another author [5] explains “making measurements on a large number of pairs, it can measure the average 

value of”: 

( ) ( )2 , , , , , ,S a c b d Av qs a c b d= ⋅                                (2bis) 

A mathematical integral is nothing less than a sum (or an average sum). 
This sum (or this average sum) S2 is called by Quantum mechanics theory: a correlation function property! 
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3.5. The Quantum Sum 
What is qs ? The sum qs is defined as 

( ); ; ;qs a c b d ab ad cb cd= − + +                                (3) 

Remark: it is a bit confusing to call “sum” an operation with a subtraction (minus “−”) in the formula. But we 
keep this QMdesignation of “sum”, adding the term “quantum”. 

On the Chart 2 hereafter, we can check all the possible value for the quantum sum qs: 
The quantum sum qs  can only reach either the value {+2} or the value {−2} 
In practice, c is the complementary measure of a. In other word, \c a= . So when 1a = +  then 1c = − . And 

when 1a = − , then 1c = + . Idem for d and b. But there is no change in the result: the quantum sum qs  can 
only reach either the value {+2} or the value {−2}. 

3.6. Bell’s Inequalities 
We have seen on the previous paragraph on the quantum sum (§3.5) that qs  can only reach either the value 
{+2} or the value {−2}. So the integral sum, orthe average sum, can only reach a value included between −2 and 
+2: 

( )2 2 ; ; ; 2S a c b d− ≤ ≤ +                                    (4) 

By mathematical construction, S2 cannot be greater than 2. 
This property is called Bell’s inequalities 

4. The Correlation Function 
4.1. Definition of the Correlation Function S1 
The correlation function S1 is defined as 

( ) ( ) ( ) ( ) ( )1 ; ; ; ; ; ; ;S E E E Eα γ β δ α β α δ γ β γ δ= − + +                     (5) 

with 
( ); ; ;α γ β δ  angles of the set up; 
E(α,β) the correlation coefficient. 
We have to note that the correlation function is different of the correlation coefficient (and of the total corre- 

lation). To define the correlation coefficient, we first need to explain what the probabilities in Quantum Mecha- 
nics are. 

4.2. Entanglement 
Entanglement means the 2 photons of the pair emitted by the source have the same polarization. 

Because produced by the same source, photons pairs are entangled photons. 

4.3. Total Correlation 
1) Let us have a single photon pair (X, Y). 

 
Chart 2. Possible values of the quantum sum qs.                                                                                             

Quantum sum qs 
a= +1 a= −1 

c = +1 c = −1 c = +1 c = −1 

b = +1 
d = +1 qs = +2 qs = −2 qs = +2 qs = −2 

d = −1 qs = +2 qs = +2 qs = −2 qs = −2 

b = −1 
d = +1 qs = −2 qs = −2 qs = +2 qs = +2 

d = −1 qs = −2 qs = +2 qs = −2 qs = +2 
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It is supposed they have the polarity |I,I>. Because they have the same polarity (I = I), they are entangled 
photons. They would also be entangled photons when they have the polarity |J,J>. 

When we measure these photon pairson DA (with the value of angle 0α =  ) and on DB (with the value of 
angle 0β =  ), we will find results as described in Chart 3. 
2) Using a photons source, each pair of photons will have a different polarization (but the two photons of each 

pair have the same polarization). Because there is no preferential polarization at the source, 50% of these 
photons will be received on DA and 50% of these photons will be received on \DA. Please check Chart 4. 

It is the said in QM there is total correlation between the measures on DA and on DB. 
3) Then, when we measure these X photons on DA (with the new value of angle α = 45˚), we will find {+} in 

50% of the cases and {−} in the other 50% cases (and on \DA we will find {−} in 50% of the cases and {+} 
in 50% of the cases). On the same time, when we measure these Y photons on DB (with the new value of 
angle β = 45˚), we will find {+} in 50% of the cases and {−} in the other 50% cases (and on \DB we will 
find {−} in 50% of the cases and {+} in 50% of the cases). So we will find on DA and DB: 25% of [+1, +1], 
25% of [+1, −1], 25% of [−1, +1] and 25% of [−1, −1]. 

It is the said in QM there is total decorrelation between the measures on DA and on DB. 
It has been transcribed in Chart 5 the results with the same 8 photon pairs.  
 

Chart 3. Measure of a single pair.                                                                                             

Rank R Photon 
pair (X,Y) 

DA 
(α = 0) 

\DA 
(\α = 90°) 

DB 
(β = 0°) 

\DB 
(\β = 90°) (a, b) (a, \b) (\a, b) (\a, \b) 

1 |I,I> + − + − (+1; +1) (+1; −1) (−1; +1) (−1; −1) 

 
Chart 4. Measures with α = 0˚ and β = 0˚.                                                                                             

Rank R Photon  
pair (X,Y) 

DA 
(α = 0˚) 

\DA 
(\α = 90˚) 

DB 
(β = 0˚) 

\DB 
(\β = 90˚) (a, b) (a, \b) (\a, b) (\a, \b) 

1 |I,I> + − + − (+1; +1) (+1; −1) (−1; +1) (−1; −1) 

2 |J,J> − + − + (−1; −1) (−1; +1) (+1; −1) (+1; +1) 

3 |I,I> + − + − (+1; +1) (+1; −1) (−1; +1) (−1; −1) 

4 |J,J> − + − + (−1; −1) (−1; +1) (+1; −1) (+1; +1) 

5 |I,I> + − + − (+1; +1) (+1; −1) (−1; +1) (−1; −1) 

6 |J,J> − + − + (−1; −1) (−1; +1) (+1; −1) (+1; +1) 

7 |I,I> + − + − (+1; +1) (+1; −1) (−1; +1) (−1; −1) 

8 |J,J> − + − + (−1; −1) (−1; +1) (+1; −1) (+1; +1) 

 
Chart 5. Measures with α = 45˚ and β = 45˚.                                                                                             

Rank R Photon pair 
(X,Y) 

DA 
(α = 45˚) 

\DA 
(\α = −45˚) 

DB 
(β = 45˚) 

\DB 
(\β = −45˚) (a, b) (a, \b) (\a, b) (\a, \b) 

1 |I;I> + − + − (+1; +1) (+1; −1) (−1; +1) (−1; −1) 

2 |J;J> − + − − (−1; −1) (−1; +1) (+1; −1) (+1; +1) 

3 |I;I> + − − + (+1; −1) (+1; +1) (−1; −1) (−1; +1) 

4 |J;J> − + + + (−1; +1) (−1; −1) (+1; +1) (+1; −1) 

5 |I;I> − + + − (−1; +1) (−1; −1) (+1; +1) (+1; −1) 

6 |J;J> + − − + (+1; −1) (+1; +1) (−1; −1) (−1; +1) 

7 |I;I> − + − + (−1; −1) (−1; +1) (+1; −1) (+1; +1) 

8 |J;J> + − + − (+1; +1) (+1; −1) (−1; +1) (−1; −1) 
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Remark: we can do the same remark than this of the previous paragraph: it is not the polarization of the 
photons (X, Y) which has changed; it is only the angle α to measure them which has changed. More generally, 
we can say that, except with the particular case of α = 0 (or 180˚) and β = 0˚ (or 180˚), there would be between 
the measures on DA and DB decorrelation according to QM! 

4.4. Probability 
1) Let us first remind the definition of the probability of an event happening: it is the number of ways it can 

happen out of the total number of outcomes. In Quantum Mechanics, ( ), 1; 1Pα β + +  means the probability to 
get (+1; −1). 

2) If we take again the previous example of §4.3.b with 8 photon pairs, with the separators angles: α = 0˚ and 
β = 0˚ 

( )
( ) ( )

( )0 ;0

, 1;1 41; 1 50%
8,

a b
P

a b
=  + + = = =

  

∑
∑ 

                          (6) 

( )
( ) ( )

( )0 ;0

, 1; 1 41; 1 50%
8,

a b
P

a b
= − −  − − = = =

  

∑
∑ 

                         (7) 

( )
( ) ( )

( )0 ;0

, 1; 1 01; 1 0%
8,

a b
P

a b
= + −  + − = = =

  

∑
∑ 

                         (8) 

( )
( ) ( )

( )0 ;0

, 1; 1 01; 1 0%
8,

a b
P

a b
= − +  − + = = =

  

∑
∑ 

                         (9) 

3) If we take again the previous example of §4.3.b with 8 photon pairs, but with the separators angles: α = 45˚ 
and β = 45˚ 

( )
( ) ( )

( )45 ;45

, 1; 1 21; 1 25%
8,

a b
P

a b
= + +  + + = = =

  

∑
∑ 

                      (10) 

And then we cancheck that:   

( )45 ;45
1; 1 25%P − − =

 

                                 (11) 

( )45 ;45
1; 1 25%P + − =

 

                                 (12) 

( )45 ;45
1; 1 25%P − + =

 

                                 (13) 

That means that with exactly the same 8 pairs of photons, probabilities will be different according we take a 
separator angle or another separator angle. The event the probability measure here is not the photons polariza-
tion, but it is the effect on photons detector by the separator angle. 

4.5. Correlation Coefficient 
In QM, it is defined a quantum correlation coefficient E(α;β) such as: 

( ) ( ) ( ) ( ) ( ), , , ,, 1; 1 1; 1 1; 1 1; 1E P P P Pα β α β α β α βα β = + + + − − − + − − − +               (14) 

Remark: E(α,β) is different of the (mathematical) statistical correlation. E(α,β) can take any value in the 
interval [−1; +1] 

( )1 , 1E α β≤ ≤ +                                    (15) 

When we apply this coefficient to: 
- the first example (cf §4.4.b) with the 8 photons pairs: 

( )0 ;0 0.5 0.5 0 0 1E = + − − =                                (16) 
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it is said there is total “correlation” in QM. 
- the second example (cf §4.4.c) with the “same” 8 photons pairs 

( )45 ;45 0.25 0.25 0.25 0.25 0E = + − − =                          (17) 

it is said there is total “decorrelation” in QM. 
With the examples (b) and (c), it is the same 8 photons pairs, but QM says on one hand there is total correla-

tion and on the other hand there is total decorrelation about photons. In fact, it is depending of the angles of the 
separators. The quantum correlation coefficient E(α;β) does not measure the polarization of the photon, but the 
effect of the separators angles (α;β) on polarized photons. 

4.6. Property of the Correlation Coefficient 
1) Probability property 

A property found in QM is 

( ) ( )2
; 1; 1 1 2cosPα β β α+ + = −                                (18) 

Results are shown in Figure 3. 
2) Correlation coefficient property 

Due to the random sequence: 

( ) ( ); ;1; 1 1; 1P Pα β α β− − = + +                                 (19) 

So  

( ) ( )2
; 1; 1 1 2cosPα β β α− − = −                                (20) 

And due to mathematical property on the angle: 

( ) ( ) ( ) ( )2 2
; ;1; 1 1; 1 1 2 1 2 cos sinP Pα β α β β α β α+ − + − + = − ⋅ ⋅ − = −                   (21) 

And due to the randomsequence (remind −1 means no detection); by symmetry: 

( ) ( ); ;1; 1 1; 1P Pα β α β+ − = − +                                  (22) 

So 

( ) ( ) ( )2
; ;; ; 1 2sinP Pα β α β β α+ − = − + = −                            (23) 

By definition of the Quantum correlation coefficient 
 

 
Figure 3. Probability to get (+1; +1) in function of ( )β α− .                                               
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( ) ( ) ( )2 2; cos sinE α β β α β α= − − −                             (24) 

Due to mathematical property on the angles 

( ) ( ); cos  2E α β β α= −                                   (25) 

Results are shown in Figure 4. 
Application: When α = β or when α = β + 180˚, E(α,β) = 1; it is said in QMthere is correlation. 
Until here, all the results are determined; there is no uncertainty, no chance, no probabilities in the results. 

3) Consequence on the correlation function S1: 
Because, ( );E α β  is lower than 1 (cf Equation (15)), the “sum” (cf Equation (5)) to get ( )1 ; ; ;S α γ β δ  will 

be lower than 4. We will show hereafter that ( )1 ; ; ;S α γ β δ  is lower or equal to 2.8. 
  

4.7. Particular Angles of the Experiment 
Let us have the angles for the separator A which can take either the value 0˚, or the value 45˚. To clearly distin-
guish them, we will call the first possible value α = 0˚ and the second possible value γ = 45˚. Idem for the 
separator B with the angles: β = 22.5˚ or δ = 67.5˚. Please have a look on Figure 5 & Chart 6. 

If we use the property of Equation (25): 

( ) ( ) ( ); cos 2 cos 45 2 2E α β β α= − = =                          (26) 
 

 
Figure 4. Quantum correlation coefficient E in function of ( )β α− .                                               

 

 
Figure 5. Angles of the separators.                                                                                             
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Chart 6. Values of the quantum correlation coefficient E.                                                                    

Quantum correlation coefficient E 
Separator A 

α = 0˚ γ = 45˚ 

Separator B 

β = 22.5˚ 2
2

 2
2

 

δ = 67.5˚ 2
2

−  2
2

 

 

( ) ( ) 2; cos 130
2

E α δ −
= =                                (27) 

( ) ( ) 2; cos 45
2

E γ β +
= − =                                (28) 

( ) ( ) 2; cos 45
2

E γ δ +
= =                                 (29) 

So, 

( ) 21 ; ; ; 4 2.8
2

S α γ β δ = × =                                (30) 

4.8. The Combination 
Definition of 1S  is different of the characterization of 2S  property.  

It is only the QM theory which postulates that: 

( ) ( )2 ; ; ; 1 ; ; ;S a c b d S α γ β δ=                                (31) 

where (please check again the Conversion chart of §2.2) 
- ( ); ; ;a c b d  are measures of the detectors  
- ( ); ; ;α γ β δ  are angles of the separators (whatever the measures can be!) 

This Equation (31) is not argued, not justified, and so it appears for us to be wrong! 
Let us remind  

- Equation (30) : S1 can reach the value 2.8 
- Equations (2) and (4) called Bell’s inequality: S2 is equal or lower than 2 

Then, due to the unjustified Equality (31) where 2 1S S= , it has been concluded by Alain Aspect and other 
scientiststhat in consequence ( )2 , , , 2S a c b d >  and so that the Bell’s inequalities would be violated [6]. We 
reasonably can be surprised by Equation (31) postulate and we can ask the question if Bell’s inequality were not 
violated? [7] 

5. Conclusions 
It is here proposed a conversion chart in order to better distinguish elements when necessary.  

The main result of this paper is to distinguish the correlation function: the definition itself S1(α,γ,β,δ) on one 
side, and a property S2(a,c,b,d) on the other side. The equality between S1 and S2 is not obvious, not argued and 
maybe wrong. 

The demonstration of the Bell’s inequalities violation could come from confusion between the definition S1 
and a property S2 of the correlation function. And so it would mean that Bell’s inequalities violation is not 
strictly justified. Consequently, Albert Einstein, Boris Podolsky and Nathan Rosen with the ERP paradox could 
be right on the local hidden variable. 
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