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Abstract 
We introduce a new scalable cavity quantum electrodynamics platform which can be used for 
quantum computing. This system is composed of coupled photonic crystal (PC) cavities which 
their modes lie on a Dirac cone in the whole super crystal band structure. Quantum information is 
stored in quantum dots that are positioned inside the cavities. We show if there is just one quan-
tum dot in the system, energy as photon is exchanged between the quantum dot and the Dirac 
modes sinusoidally. Meanwhile the quantum dot becomes entangled with Dirac modes. If we in-
sert more quantum dots into the system, they also become entangled with each other. 

 
Keywords 
Cavity Quantum Electro Dynamics, Photonic Crystal, Dirac Cone, Quantum Computing  

 
 

1. Introduction 
After about seventy years from Purcell’s famous paper [1] which established cavity quantum electrodynamics 
(CQED), this field is still active and interesting for many researchers [2]. This is primarily due to a concept 
called coupling constant. It is a criterion to measure the strength of atom-cavity interaction. Atom interacts with 
cavity through exchange of energy quanta or photon. The stronger this interaction is, the faster the exchange of 
photon occurs. So we can say coupling constant measures the rate of photon exchange between atom and cavity. 

But why has this simple concept made this field so attractive? The answer is behind its role in quantum 
information and computation theory. We know quantum computers are powerful in solving some kind of pro- 
blems. This is due to an inherent parallel processing power in them that originates from quantum physics. In 
order to use this capability of quantum physics we have to create entangled states between qubits of the quantum 
computer. In other words, if we save information on qubits which are not entangled, our computer has no 
advantage over its classical counterparts. By increasing the rate of photon exchange between atom and cavity, 
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we can create entangled state of them. To measure this rate we need a criterion, that is, we have to compare it 
with an amount to determine if it is high or not. There are three criteria as follows: 

1) Presence duration of atom inside the cavity. In some cavity quantum electrodynamics systems atoms stay 
inside the cavity for a short period of time. In these systems atoms enter the cavity from an aperture and after 
interaction exit from the other side. If energy exchange occurs in a period of time longer than atom presence 
duration (Te), then the coupling constant is small and we say the coupling is weak. 

2) Photon decay rate. We know there is no lossless cavity. This loss has many causes among them we can 
mention leakage through cavity walls and cavity walls absorption. If we show photon annihilation rate by ξ, 
photon exchange rate must be larger than ξ to have strong coupling. 

3) Atom spontaneous emission rate. Another factor to be considered for measuring coupling strength is the 
time interval that atom can maintain photon before radiating it to vacuum modes outside the cavity via 
spontaneous emission. Spontaneous emission rate is shown by γ. So to have strong coupling we need photon 
exchange rate to be much larger than γ.  

The photon exchange rate between atom and cavity (coupling constant) is measured by Rabi frequency (g). So 
the last paragraph can be summarized as: If ( ), ,1 eg Tξ γ , then the atom-cavity system is in the strong 
coupling regime. Otherwise the coupling is weak. In many systems like the one analyzed here, quantum dots are 
used instead of real atoms or ions. Since quantum dots are always inside the cavity, we can assume eT ∞ . 
Hence in these systems we just need to compare g with γ and ξ to determine the coupling strength. Usually 
photon decay rate is greater than atom spontaneous emission rate [3], so it is usually sufficient to compare g 
with ξ. 

In strong coupling regime different phenomena occur. Among them is vacuum Rabi splitting in which upper 
atomic energy level splits into two close levels which result in two peaks in spontaneous emission spectrum of 
the atom that had only one otherwise [4]. 

Many reports of strong coupling attainment have been presented till now [5]-[11]. But in recent years some 
groups are trying to go beyond strong coupling and reach ultra-strong coupling regime [12]-[14]. In this regime 
Rabi frequency is comparable with photon frequency. It is predicted atom behaves chaotically in this regime 
[15]. 

CQED has many applications, but its capability to be used as a platform for quantum computing is much more 
attractive. Up to now different systems have been proposed to be used for quantum computing [16]-[21]. All of 
these systems have some limitations and shortcomings. One of their serous limitations is their hard scalability. 
In most of these systems we can have only a few numbers of qubits. Here we propose a new system which does 
not have this limitation and can be used as an alternative for the old CQED systems in quantum computation. 
This system is composed of coupled photonic crystal resonators array (CPCRA) where each resonator is a cavity 
that can contain a quantum dot. The cavities are arranged such that a Dirac cone appears in the super crystal 
band structure. 

In the remaining we first show how we can obtain Dirac cone by choosing appropriate position for the 
cavities, next we obtain Hamiltonian of the system that makes study of atom evolution due to interaction with 
Dirac cone modes possible. 

2. Dirac Cone Modes  
In one of our previous works we showed how we can design a photonic crystal that has Dirac point in its 
transverse electric (TE) band structure [22]. In this section we review it briefly. At first we designed a two 
dimensional (2D) crystal with Dirac point. We adopted the crystal lattice from graphene which has a honey 
comb lattice and Dirac point has already been observed in its band structure. So we chose a triangular lattice of 
air holes in a dielectric for the basis crystal and replaced Carbon atoms by cavities. Different patterns for cavities 
positions were tested to finally reach the pattern shown in Figure 1. We assumed the crystal to be made of 
Silicon with relative permittivity of 11.9rε = . Next we generalized our design to a photonic crystal slab. We 
used different methods to show Dirac point in its band structure but here we just explain tight-binding because 
we need it in subsequent sections. 

To utilize tight-binding method we should first obtain modes of a single cavity. Each of the designed cavities 
has two orthogonal degenerate modes that are shown in Figure 2. If we represent the electric fields of these 
modes at resonant frequency ν , by ( ), , 1, 2l lν =E , then according to Maxwell’s first and second equations we 
can write  
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Figure 1. Photonic crystal slab with Dirac point in band structure. Crystal dielectric is Silicon 
with = 11.9rε .                                                                            

 

 

Figure 2. Field distribution of (a) { }zℑ H  of first mode; (b) { }R E  of first mode; (c) 

{ }ℑ E  of first mode; (d) { }zℑ H  of second mode; (e) { }ℜ E  of second mode; (f) { }ℑ E  
of second mode for a single cavity.                                                               

 

( ) ( ) ( )
2

, ,2 .l r lcν ν
νε∇×∇× =r r rE E                                   (1) 

In this equation ( )rε r  is the relative permittivity profile of a single cavity and c is the speed of light in 
vacuum. Since eigen modes of the cavity are orthogonal we have  

( ) ( ) ( ), , d , , 1, 2,r l k lk l kν νε δ∗ ⋅ = =∫ r r r rE E                             (2) 

where we have normalized the modes. According to Bloch theorem, electric field in the super crystal can be 
written as  

( ) ( ) ( )1 2
2

, 1 2
, 1

e ,i n m
l l

n m l
b n mν

+∞
− ⋅ + ⋅

=−∞ =

− −∑ ∑

κ a κ a
κE r r a aE                          (3) 

where 1a  and 2a  are primitive vectors of the super crystal lattice, and 1b  and 2b  are constants to be 
determined. Similar to Equation (1) we can write  

( )
2

2= ,r c
ω

∇×∇× κ κE r E                                   (4) 

for the whole crystal field, where ( )r r  is the profile of the super crystal relative permittivity and ω  is the 
Bloch wave frequency. Now if we replace κE  in Equation (4) by its value from Equation (3) we reach  
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( ) ( )

( ) ( ) ( )

1 2

1 2

2

, 1 2
, 1

2 2

, 1 22
, 1

e

e .

i n m
l l

n m l

i n m
r l l

n m l

b n m

b n m
c

ν

ν
ωε

+∞
− ⋅ + ⋅

=−∞ =

+∞
− ⋅ + ⋅

=−∞ =

 ∇×∇× − − 

 = − − 

∑ ∑

∑ ∑

κ a κ a

κ a κ a

r a a

r r a a

E

E
                     (5) 

Replacing ( ), 1 2l n mν∇×∇× − −r a aE  by its value from Equation (1) and inner producting both sides of 
Equation (5) by ( ),kν

∗ rE  and integrating over the entire x y−  plane results in  

( ) ( )1 2 1 2
2 2

2 , 2 ,
, ,

, = =1 , = =1
e ei n m i n mk l k l

l n m l n m
n m l n m l

b bν α ω β
+∞ +∞

− ⋅ + ⋅ − ⋅ + ⋅

−∞ −∞

=∑ ∑ ∑ ∑κ a κ a κ a κ a ，                   (6) 

where  

( ) ( ) ( )
( ) ( ) ( )

,
, , , 1 2 1 2

,
, , , 1 2

d ,

d .

k l
n m k l r

k l
n m k l r

n m n m

n m
ν ν

ν ν

α ε

β ε

∗

∗

= ⋅ − − − −

= ⋅ − −

∫
∫

r r a a r a a r

r r a a r r

E E

E E
 

Using the approximations  
, ,
, , 0, 2 , ,k l k l

n m n m n mα β ≤   

which is valid for confined cavity fields and doing some simplification we finally obtain the following 
eigenvalue problem.  

( ) ( )1 12 2

2 2

.
b b
b b

ν ω
   

=   
   

 κ κ                               (7) 

The two bands which are shown in Figure 3 construct the Dirac cone and are obtained by solving this 
problem. 

3. System Hamiltonian  
Now we position a quantum dot inside one of the super crystal cavities. To find its behavior due to interaction 
with Dirac modes we have to determine the system Hamiltonian. We assume the quantum dot is at position 0r  
and an electron is inside it. The electron Hamiltonian equals  

( ) ( ) ( ) ( )
2 2

2 2
0 0

1 ,
2 2 2 2e e e e

e ee e e
m m m m

′ = − + = + − ⋅ + ⋅ +
         r r  

where em , e  and   are the electron mass, charge and momentum respectively,   is the magnetic vector 
potential,  

( )
2

a 0 ,
2 e

e
m

= +
  r  

 

 
Figure 3. The two bands of PC slab which construct the Dirac cone. They are calcu- 
lated using tight-binding method.                                                           



M. H. Aram, S. Khorasani 
 

 
1471 

is the electron Hamiltonian in the absence of the field,  

( )I ,
2 e

e
m

= − ⋅ + ⋅      

is the interaction of electron momentum with the field, and  
2

2
ff ,

2 e

e
m

=   

is the interaction of different field modes through coupling with electron. Because of 2e  term, ff  is much 
smaller than other Hamiltonians and can be ignored without significant error. 

We can write a  according to the quantum dot energy levels. If we show its energy states by  
( )1, , si i N= ,  we have  

a ,ii E i=  

where iE  is the energy of i’th state. Since energy eigen states create an orthonormal basis we can write  
ˆ .a a a i i ii

i i i
i i E i i ωσ= = = =∑ ∑ ∑                            (8) 

In this relation i iEω =   is the frequency related to the i’th energy level and ˆij i jσ =  is the atomic 
ladder operator. This operator has the following properties,  

†ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,ij jk ij ji ij kl jk il li jkk iσ δ σ σ σ σ δ σ δ σ = = = −   

where ijδ  is the Kronecker delta function. 
To write I  based on atomic and field operators, we have to write   based on atomic ladder operators. 

For this purpose we write  

, ,
ˆ .ij ij

i j i j i j
i i j j i j i j p σ

  = = = =  
   
∑ ∑ ∑ ∑       

Using the commutator relation  

[ ]a , ,
ei m

≡
    

between atom Hamiltonian and position operator,  , we can write  

[ ]

( )

ˆ ˆ,

,

e e
ij a k kk k kk

k k

e e
e i j ij ij ij

m m
p i j i i j i i j

m m
im i j i i e j i

e e

ω σ ω σ

ω ω ω ω

 = = = − 
 

= − = =

∑ ∑ 

 

d

    

 
           (9) 

where ij i jω ω ω= −  is the transition frequency between i’th and j’th energy levels and ij i e j= d  is the 

transition electric dipole between i  and j  states. Here we have replaced the value of a  from Equation 
(8). 

Now we should write magnetic vector potential operator based on photon annihilation, â , and creation, †â , 
operators. If there is only one cavity in the basis PC, then   can be written as [23]  

( ) ( ) ( ) ( )*ˆ,
2

t a t= +Ω∑r u r u r
  








( )†ˆ ,a t 

 

where the sum is over all the cavity modes, Ω


 is the frequency of the  th mode, ( )


u r  is the normalized 
 th mode function,   is the electric permittivity of space, and   is the reduced Planck constant. We know 
mode functions are orthonormal, that is  

( ) ( )* d .δ′ ′=∫   

u r u r r  
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In most of quantum optics texts, ( ) 2

max

u r  is shown by 1


  [23] [24], where 


  is called the effective 
volume of  th mode. So we can write vector potential operator as  

( ) ( ) ( ) ( )*ˆ,
2

t a t= +Ω∑r v r v r
  



 


 

( )†ˆ ,a t 

                      (10) 

where ( )


v r  is the mode function with its maximum limited to one. If there is more than one, say cN , cavity 
in the basis PC, then   becomes  

( ) ( ) ( )*ˆ
2 c

a t
N

= +Ω∑ v r v r
  



 


 

( )†ˆ .a t 

                        (11) 

Note that here we have obviously more modes than in the case of a single cavity which has only two modes. 
Therefore I  becomes  

( )I 2 e e

e e
m m

= − ⋅ + ⋅ = − ⋅        

( ) ( )*
0 0

,
ˆ

2i je c

e a
m N

= − +Ω∑∑ v r v r
  



 



 
†ˆ ˆe

ij ij ij
ma i
e
ω σ  ⋅    

d


              (12) 

( ) ( )*
0 0

,
ˆ ˆij ij ij

i j
i g a gσ= − −∑∑ r r

  





† †ˆ ˆ ,ija σ 

 

where  

( ) ( ) ,
2

ij
ij ij

c

g
N

ω
= ⋅

Ω 

 



  
r v r d                             (13) 

is the Rabi frequency. In Equation (12) we have used the fact that atomic and photonic operators commute with 
each other, that is  

†ˆ ˆ ˆ ˆ, 0, , 0 , , .ij ija a i jσ σ   = = ∀    

  

In rotating wave approximation (RWA), I  simplifies to  

( ) ( )*
I 0 0ˆ ˆij ij ij

i j
i g a gσ

>

= − −∑∑ r r
  



 † †ˆ ˆ ,ija σ 

                        (14) 

Finally Hamiltonian of the whole system becomes  

f ,t ′= +    

where  

( ) ( )2 2
f

1 d ,
2 2µ
 

= + 
 
∫   r r r  

is the Hamiltonian of the electromagnetic field and   and   are the electric field and magnetic field opera- 
tors respectively. By writing   and   in terms of   and using Equation (10), f  can be written as  

†
f

1ˆ ˆ .
2

a a = Ω + 
 

∑
  



  

Our system, in its simplest form, consists of a quantum dot with two energy eigen states inside one of the cN  
coupled cavities which their modes construct a Dirac cone. Hamiltonian of this system, considering RWA, 
becomes  

( ) ( ) ( )† *
1 11 2 22 21 0 21 21 0

, ,
ˆ ˆ ˆ ˆ ˆ ˆp p p p p p

p p
a a i g a gωσ ω σ σ= + + Ω − −∑ ∑κ κ κ κ κ κ

κ κ
r r    †

12ˆ ˆ ,pa σ κ        (15) 

where the sums are over all the confined Dirac modes, that is the modes which fall below the light cone of the 
super crystal. In this equation p = 1 and p = 2 denote the lower and upper parts of the cone respectively. We 
have neglected zero point energy of the field which only shifts all the system energy levels by a constant value. 
We have also assumed the interaction with other modes of the crystal is not very different from interaction with 
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vacuum and have omitted it in this equation. 
In the remaining, without losing the problem generality, we set 0 0=r . As said, a single cavity has two 

orthogonal modes that are shown in Figure 2. The electric fields of these two modes are orthogonal at the center 
of the cavity too. We now assume the quantum dot transition dipole is parallel to the first and perpendicular to  
the second. Hence considering Equation (3), we conclude 1 pκ  is approximately ( )1, pb κ  times of the case 
with just a single cavity. Again p marks lower and upper bands constructing Dirac cone. 

4. Atom Evolution  
For simplicity we assume there is initially no photon in the system and the atom is in a superposition state of its 
ground and exited states. So we can write the initial state of the system as  

( ) ( ) { } ( ) { }1 20 0 1, 0 0 2, 0 ,atom fieldt c cψ ψΨ = = ⊗ = +                  (16) 

where ( )1 0c  and ( )2 0c  can be written in the most general case as [25]  

( ) ( ) a
1 a 2 a0 cos , 0 e sin .ic c ϕθ θ= =                              (17) 

The state of the system in times 0t >  can be written as  

( ) ( ) { } ( ) { } ( ) ( ) { }11 2
1 2

,
e 1, 0 e 2, 0 e 1, 1 ,pi ti t i t

p p
p

t c t c t c t κωω ω
κ κ

κ

− +Ω− −Ψ = + +∑             (18) 

where the effect of  

( ) †
0 1 11 2 22

,
ˆ ˆ ˆ ˆ ,p p p

p
a aκ κ κ

κ
ω σ ω σ= + + Ω∑    

has been included in the state via exponential terms. By inserting the system ket state from Equation (18) and 
the system Hamiltonian from Equation (15) into Schrödinger equation  

( ) ( ) ,i t t
t
∂

Ψ = Ψ
∂
   

we reach  

( ) { } ( ) { } ( ) ( ) { }{ }
( ) ( ) { } ( ) ( ) ( ) { }

11 2

12

1 2
,

*
2 21 0 21 0

, ,

e 1, 0 e 2, 0 e 1, 1

e 1, 1 e 2, 0 .

p

p

i ti t i t
p

p

i ti t
p p p p

p p

i c t c t c t

i c t g r i c t g r

κ

κ

ωω ω
κ κ

κ

ωω
κ κ κ κ

κ κ

− +Ω− −

− +Ω−

 
+ + 

 

= −

∑

∑ ∑

  


 

 

By equating the coefficients of similar kets at both sides, we obtain the following system of equations.  

( )
( ) ( ) ( )

( ) ( ) ( )

1

2 21 0
,

*
2 21 0

0,

e ,

e .

p

p

i t
p p

p

i t
p p

c t

c t c t g

c t c t g

− ∆

∆

=

= −

=

∑






κ

κ

κ κ
κ

κ κ

r

r

 

The first equation indicates ( )1c t  do not change with time. To solve the next two equations we use Laplace 
transform. In Laplace domain these equations become  

( ) ( ) ( ) ( )2 2 21
,

0 0 ,p p p
p

sC s c C s i g− = − + ∆∑ κ κ κ
κ

                       (19) 

( ) ( ) ( ) ( )*
2 210 0 .p p p psC s c C s i g− = − ∆κ κ κ κ                          (20) 

By replacing ( )p pC s i+ ∆κ κ  from Equation (20) into Equation (19) we have  

( ) ( )
( ) ( )
2

2 2
21

,

0
.

0p p
p

c
C s

s g s i
=

+ + ∆∑ κ κ
κ

                         (21) 
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To calculate ( )2C s , we should first calculate ( ) ( )2
21, 0p pp g s i+ ∆∑ κ κκ . Since κ  is a continuous varia- 

ble we replace the sum by an integral as  

( )
2

2
, 1

d ,
2π S

p p
′

=

→∑ ∑∫


κ
κ  

where   is the area of the super crystal unit cell and S ′  is a region in reciprocal lattice which besides being 
in the first Brillouin zone, is on the Dirac cone and below the light cone. Since Dirac point is located on the high 
symmetry point K, at the corners of the Brillouin zone, S ′  regions can be approximated by two circles 
centered at K point and with radius δκ . This radius is a function of Dirac point frequency and Dirac cone shape. 
For the lower part of Dirac cone ( 1p = ), we have  

( )
( ) ( )

( )
( )

( )
( )

( )

( )
( )

( ) ( )

( )
( )

( ) ( )

22 2 2
1,121 1 21 21

2
1 0 1 1

2
2 2

1,121 21
2

1 1 210

2
2 2

1,121 21
2

D 1 210

2
2 2

1,121 21
2

D D0

0
d

22π

1 d
2 2π

d
2 2π

2 2π

S
c

S
c

S
c

S
c

bg d
s i N s i

bd
s iN

bd
s iN

bd
s iN

ω

ω
ω

ω
ακ ω

ω
ακ ακ

′

′

′

′

=
+ ∆ Ω + ∆

=
Ω  + Ω − 

=
 Ω − + Ω − 

=
Ω − + ∆ −  

∑ ∫

∫

∫

∫










 



 



 



 

κ

κ κ κ κ

κ κ

κ

κ
κ

κ
κ

κ
κ

κ
d .κ

             (22) 

In this equation DΩ  is the frequency of Dirac point, 21D D ω∆ = Ω − , κ  is the distance from K point and 

α  is the gradient of Dirac cone. Figure 4 shows the variation of ( ) 2
1,1b κ  and ( ) 2

1,2b κ  as constant con- 

tours in reciprocal lattice and in the regions below the light cone. Zooming in S ′  regions, we can see ( ) 2
1,1b κ  

 

 
(a)                                      (b) 

                 
(c)                                      (d) 

Figure 4. Variation of (a) ( ) 2

1,1b κ  and (b) ( ) 2

1,2b κ  as constant contours in reciprocal lattice and in regions 

below the light cone. S′  regions are shown as two circles in both figures. The upper S′  region in each of them 
is plotted after zooming in figures (c) and (d).                                                                      
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and ( ) 2
1,2b κ  depend mainly on azimuthal component (ϕ ), and a little on radial component (r). Therefore 

Equation (22) simplifies to  

( )
( ) ( )

( )
( ) ( ) ( )

( )
( )[ ]

( )
( ) ( )[ ]

( )[ ]

2 22 2 2 2 2 2
1,1 1,121 1 21 21 21 21

2 2
1 DD D0 0

2 2 2
2 221 21
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D0

2 2 2
21 21
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0 D

0 2 3
d d

2 2π 2π

2 3
| | d d

2π

3
d

4π

3

S S
c c

c

c

b bg d a d
s i s is iN N

a d b
s iN

a d
N s i

a

π δκ

δκ

ω ω
ακ ακακ ακ

ω κϕ ϕ κ
ακ ακ

ω κ κ
ακ ακ

′ ′
= =

+ ∆ Ω − −Ω − + ∆ −  

= ⋅
Ω − −

=
Ω − −

=

∑ ∫ ∫

∫ ∫

∫

 





κ

κ κ

κ κ
κ κ

   

 

 

( )
2 2 2 2

21 21 D
D2 2 2 2

0 DD

1 2 ln 2arctan ln ,
4π 2c

d ss i
N ss i s

ω αδκ
αδκα α δκ

     Ω  ⋅ Ω + − +      Ω −− Ω +         

 

(23) 
where we have used 22 3a=  and  

( ) ( )2π 2π2 2
1,1 1,20 0

d d π,b bϕ ϕ ϕ ϕ∫ ∫   

relations. We have also set D 0∆ =  for simplicity. If we go through the same process for the upper part of Dirac 
cone ( 2p = ), we obtain  
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( ) ( )
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(24) 
Using Equations (23) and (24) we get  

( )
( ) ( )

2 2
D2 D 2 2 2 2 2 22 2 2

21 D21 21
2

, 0 D

ln ln
0 3

,
4π
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sisg sa d
N s is i
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which results in  

( ) ( )
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with  
2 2 2

21 21
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3
.
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a d
N

ω
χ =

 
 

If we want to obtain ( )2c t , we have to calculate inverse Laplace transform of ( )2C s . This is feasible only 

numerically. In Figure 5 variathions of the real part of ( )2c t  is plotted with 21 100 Debyed = , 21 1.55 μmλ = ,  

D 21ωΩ = , K 10δκ = Γ , 75.38 10 m/sα = × , 7cN = , a 0ϕ =  , a 90θ =  , for two cavity mode volumes ( )  
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(a)                                               (b) 

Figure 5. ( ){ }2c tℜ  with 21 100 Debyed = , 21 1.55 μmλ = , D 21ωΩ = , K 10δκ = Γ , 75.38 10 m/sα = × , 

7cN = , a 0ϕ =  , a 90θ =  , for two cavity mode volumes and two time intervals.                              
 

and two time intervals. It is seen ( )2c t  alternates sinusoidally with a frequency that is inversely proportional to 
the cavity mode volume and an amplitude which decays very slowly with time. This shows photon is exchanged 
between the quantum dot and the Dirac modes sinusoidally. By increasing the frequency of this alternation, we 
hope to enter strong coupling regime and perform some quantum computing algorithms. 

5. Conclusion 
We proposed a new platform to be used for quantum computing. We first showed we could create Dirac cone in 
the band structure of a PC using coupled cavities inside a triangular lattice. Next we studied the evolution of a 
quantum dot positioned at the center of one of the cavities due to interaction with Dirac cone modes. We 
observed the quantum dot exchanged photon with Dirac modes sinusoidally and became entangled with them. 
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