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Abstract 
It was shown earlier by Rahaman et al. that a noncommutative-geometry background can account 
for galactic rotation curves without the need for dark matter. The smearing effect that characte-
rizes noncommutative geometry is described by means of a Gaussian distribution intended to re-
place the Dirac delta function. The purpose of this paper is two-fold: 1) to account for the galactic 
rotation curves in a more transparent and intuitively more appealing way by replacing the Gaus-
sian function by the simpler Lorentzian distribution proposed by Nozari and Mehdipour and 2) to 
show that the smearing effect is both a necessary and sufficient condition for meeting the stability 
criterion. 
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1. Introduction 
That noncommutative geometry can account for galactic rotation curves without the need for dark matter has 
already been shown in Ref. [1]. The effect in question is a small effect, not only difficult to determine but also 
difficult to present in an intuitively appealing way. This paper uses a slightly different approach that may 
provide a clearer picture. This approach is introduced in Section 2 followed by the analysis in Section 3. It is 
shown in Section 4 that the noncommutative-geometry background is needed for stability. 

2. Noncommutative Geometry and Galactic Rotation Curves 
An important outcome of string theory is the realization that coordinates may become noncommuting operators 
on a D -brane [2] [3]. The commutator is ,x x iµ ν µνθ  =  , where µνθ  is an antisymmetric matrix. As dis-
cussed in Refs. [4] [5], noncommutativity replaces point-like structures by smeared objects. The smearing effect 
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is accomplished by using a Gaussian distribution of minimal length θ  instead of the Dirac delta function [6] 
[7]. A simpler but equally effective way is to assume that the energy density of the static and spherically 
symmetric and particle-like gravitational source has the form [8] [9] 

( )
( )22 2π

Mr
r

θρ
θ

=
+

                                   (1) 

Here the mass M  of the particle is diffused throughout the region of linear dimension θ  due to the 
uncertainty. The noncommutative geometry is an intrinsic property of spacetime and does not depend on any 
particular feature such as curvature. 

To connect the noncommutative geometry to dark matter and hence to galactic rotation curves, we need to 
introduce the metric for a static spherically symmetric spacetime: 

( ) ( ) ( )2 2 2 2 2 2 2d e d e d d sin dr rs t r rν λ θ θ φ= − + + +                         (2) 

For this metric, the Einstein field equations are 

2 2

1 1e 8π
r r r

λ λ ρ− ′ − + =  
                                (3) 

2 2

1 1e 8π rp
rr r

λ ν− ′ + − =  
                                (4) 

and 

( ) ( )21 1 1 1e 8π
2 2 2 tp

r
λ ν ν λ ν ν λ−  ′ ′′ ′ ′ ′ ′+ − + − =  

                       (5) 

One goal of any modified gravitational theory is to explain the peculiar behavior of galactic rotation curves 
without postulating the existence of dark matter: test particles move with constant tangential velocity vφ  in a 
circular path. It is noted in Ref. [10] that galactic rotation curves generally show much more complicated 
dynamics. For present purposes, however, the analysis can be restricted to the region in which the velocity is 
indeed constant. So taking the observed flat rotation curves as input, it is well known that, as a result, 

0e lB rν =                                     (6) 

where 22l v φ=  and 0B  is an integration constant [11]. Moreover, it is shown in Ref. [12] that in the presumed 
dark matter dominated region, 3300 km/s 10vφ −=  for a typical galaxy. So 0.000001l =  [13] (we are using 
units in which 1c G= = ). 

To address the issue of stable orbits, we first note that given the four-velocity d dU xα α τ=  of a test particle 
moving solely in the “equatorial plane” π 2θ =  of the galactic halo, the equation 2

0g U U mν σ
νσ = −  can be 

cast in the Newtonian form 

( )
2

2d
d

r E V r
τ

  = + 
 

                                (7) 

which results in 

( )
2

2 2
2

0

e e 1l

LV r E E
B r r

λ
λ

−
−  

= − + − + 
 

                         (8) 

Here the constants E  and L  are, respectively, the conserved relativistic energy and angular momentum 
per unit rest mass of the test particle [13]. We are going to define circular orbits by 0r R= , a constant. We now 
have 

0

0d d0    and    0
d d r R

R V
rτ =

= =                             (9) 
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From these conditions, we obtain [1] 

20
0 0

2
    and    

2 2
lBlL R E R

l l
= ± = ±

− −
                       (10) 

The orbits are stable if 

0

2

2

d 0
d r R

V
r =

<                                   (11) 

and unstable if 

0

2

2

d 0
d r R

V
r =

>                                   (12) 

3. The Solution 
The smeared gravitational source in Equation (1) leads to a smeared mass. More precisely, the Schwarzschild 
solution of the Einstein field equations associated with the smeared source leads to the line element 

( ) ( ) ( )
1

2 2 2 2 2 2 22 2
d 1 d 1 d d sin d

M r M r
s t r r

r r
θ θ θ θ φ

−
   

= − − + − + +   
   

            (13) 

The smeared mass is implicitly given by 

( ) ( ) ( )2 1
20

24π d tan
π

r M r rM r r r r
rθ

θρ
θθ

− 
′ ′ ′= = −  + 

∫                  (14) 

which can also be obtained from Equation (3) (Equations (4) and (5) also yield rp  and tp , as in Ref. [1], but 
are not needed for present purposes). Due to the smearing, the mass of the particle depends on θ , as one would 
expect. As in the case of the Gaussian model, the mass of the particle is zero at the center and rapidly rises to 
M . So from a distance, the smearing is no longer apparent and we get an ordinary particle. In other words, 

0lim M Mθ θ→ =                                 (15) 

so that the modified Schwarzschild solution reduces to the ordinary Schwarzschild solution (see Figure 1). 
 

 
Figure 1. The graph of the smeared mass ( )M rθ . 
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The mass M  could be a diffused centralized object. Since we are interested in galactic rotation curves at 
some fixed distance 0r R=  from the center, we will consider instead a thin spherical shell of radius 0r R= . 
So instead of a smeared object, we have a smeared spherical surface. We consider the smearing in the outward 
radial direction only, that being the analogue of the smeared particle at the origin. It follows that ( )rρ  in 
Equation (1) must be replaced by the translated function 

( )
( )

222
0π

Mr
r R

θρ
θ

=
 − + 

                              (16) 

Observe that the mass of the shell becomes 

( ) ( )
( )

01 0
2

0

2 tan
π

r Rr RMm r
r R

θ

θ θ
−

 −−
 = −
 − + 

                        (17) 

again dependent on θ  (Figure 2). Also analogous is ( )0lim m r Mθ→ = , where M  is now the mass of the 
shell. So in geometrized units, M  and ( )m r  are much less than 0R . 

At this point we can finally address the question of stability by examining the potential ( )V r  more closely. 
In view of line element (13), we now have 

( )2
e 1

m r
r

λ− = −                                     (18) 

So from Equation (8), 

( )
2

2 2
2

0

2 21 1 1
lr m m LV r E E

B r r r

−     = − + − − − +    
    

                      (19) 

To see the effect of the smearing, we first compute ( )V r′′ : 

( ) ( )2 2 2 2
0 0 0 0

2 4 1 2 3 2

22 2
0 0

3 2 3

2 1 6 8 81 2 1 2 1 11 1
2 2 2 2

4 1 2 2 1 2 2              2 1 .
2 2

l l

l

l

R l l lR lR lRm m rm m rm mV r
l r l r l lr r r r r r

R lRr m rm m r m rm m
l lr r r r

+ +

+ ′ ′− −   ′′ = − − − + −   − − − −   
 ′′ ′ ′′ ′− + − +

− + + 
− − 

    (20) 

 

 
Figure 2. The graph of ( )m r . 
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From Equation (17), 

( ) ( )
( )

2
0

22
0

4
π

r RMm r
r R

θ

θ

−
′ =

 − + 

                            (21) 

and 

( ) ( ) ( )
( )

3
0 0

32
0

8
π

r R r RMm r
r R

θ θ

θ

− − −
′′ =

 − + 

                        (22) 

It now follows directly that at 0r R= , only the first two terms in Equation (20) are nonzero: 

( ) ( )
( )

2
0 0

0 2 4 2
0 0 0

2 1 61 1 4 0
2 2 2

l

l

R l l lR lV R
l lR R l R+

+
′′ = − ≈ − <

− − −
                  (23) 

We therefore have a stable orbit at 0r R=  due to the noncommutative geometry. 

4. The Need for Noncommutative Geometry 
We saw in the previous section that the smearing effect in noncommutative geometry is responsible for the 
stable orbit at 0r R= . In this section we study the effect of reduced smearing (due to diminishing θ ), thereby 
approaching Einstein gravity. The idea is to show that in this limit, the stability criterion is no longer met. 

To this end, we return to Equation (20) and observe that the third term, 

( )
2
0

1 2

8 1,
2 l

lR rm mz r
l r r

θ +

′ −
=

−
                               (24) 

strongly dominates near 0r R=  since the denominator is much smaller than the denominator in all the other 
terms. As we saw, at 0r R= , both m′  and m  are equal to zero, but rm m′ −  is positive for 0r R>  and, as 
we will see later in Figure 3, sharply increasing near 0r R=  for any fixed θ . So the positive third term easily 
catches up with the (negative) sum of the first two terms. Given that the remaining terms are negligible, we can 
now say that there exists an 1r r=  (for every θ ) such that 

( )
( )

1

2
0

4, 0
2

r r

lz r
l R

θ
=

− =
−

                               (25) 

Hence ( )1 0V r′′ =  and (for every θ ), ( ) 0V r′′ <  in the interval [ ]0 1,R r  and ( ) 0V r′′ >  for 1r r> . 
These cases will be discussed separately. 

4.1. ( )′′ < 0V r  
As noted above, for 1r r< , we have ( ) < 0V r′′ , where θ  is assumed fixed. We wish to show that an ever 
smaller θ  results in an ever smalller interval [ ]0 ,R r  for which ( ) < 0V r′′ . 

To this end, we obtain from Equation (25), 

( ) ( )
1

2
0

1 2 2
0

8 4 0
2 2l

r r

lR rm m l
l r r l R+

=

′ −
− =

− −
                          (26) 

and hence from Equations (21) and (22), 

( )
( )

( )
( )
( ) ( )

1

22
0 010 0

1 2 2 22
000

282 4tan 0
π 2 2l
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θ θ

θ θθ

−
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=

 
− −− − + − = − −− + − +   

        (27) 
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Figure 3. Plot showing that if 0θ → , then 1 0r R→ . 

 
for every fixed θ . So to study the relationship between θ  and r  qualitatively, we can choose an arbitrary 
ray and consider the first term in Equation (27), 

( )
( )

( )
( )

( )
( )

22
0 010 0

1 2 22
00

282, tan
π 2 l

r r R r RlR r RMQ r
l r r Rr R

θ θ
θ

θ θθ

−
+

 
− −− = × − + − − + − +   

          (28) 

as a function of r  and θ  in rectangular coordinates. The condition in Equation (27) can now be viewed as the 
plane ( ) 2

04 2Q l l R= −  passing through the surface ( ),Q Q r θ= . The resulting relationship between θ  and 
r  in this plane is not a simple one-to-one correspondence because the intersection is oval-shaped. However, we 
know that for physical reasons, θ  is necessarily small and r  close to 0r R= . 

So, as a next step, we plot ( ),Q r θ  in Equation (28) for a few values of θ , intersected by the line 
( ) 2

04 2Q l l R= − , shown in Figure 3. For each curve, the intersection is at 1r r= . As already noted, there are 
indeed two values of r  for every fixed θ , but only the smaller value is physically relevant. Figure 3 shows 
that if 0θ → , then the left side of Equation (28) can remain fixed only if 1 0r R→ . By continuity, then, 

( ) 0V r′′ ≥  for 0r R≥ , i.e., the stability criterion is no longer satisfied. We conclude that noncommutative 
geometry is not only sufficient but also necessary for meeting the stability criterion. Without the noncommuta- 
tive-geometry background, the stability of the orbit would have to be attributed to another cause, such as dark 
matter. 

4.2. ( )′′ 0V r >  
Recall that ( ) 0V r′′ >  for 1r r> , for any fixed θ . So outside the smeared region, the stability criterion is no 
longer met, even though we have a stable orbit at 0r R= . The implication is that from a distance, the smearing 
is no longer apparent, even though it is still very much present. So, in a sense, the unseen dark matter is replaced 
by the unseen noncommutative geometry. 

5. Conclusions 
It is shown in Ref. [1] that a noncommutative-geometry background can account for galactic rotation curves 
without the need for dark matter. The smearing effect that characterizes noncommutative geometry is described 
by means of a Gaussian distribution of minimal length θ . The purpose of this paper is two-fold: 1) to confirm 
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the conclusions in Ref. [1] in a simpler and more intuitive way by using the distribution proposed in Ref. [8] 
instead of the Gaussian function, and 2) to show that the smearing effect is both a necessary and sufficient 
condition for meeting the stability criterion. 

That noncommutative geometry, which has all the appearances of a small effect and can account for the 
galactic rotation curves, is consistent with the corresponding situation in ( )f R  gravity: only a small change in 
the Ricci scalar is required to account for dark matter [10]. 
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