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Abstract 
The spin-magnetic moment of the electron is revisited. In the form of the relativistic quantum 
mechanics, we calculate the magnetic moment of Dirac electron with no orbital angular-momen- 
tum. It is inferred that obtained magnetic moment may be the spin-magnetic moment, because it 
is never due to orbital motion. A transition current flowing from a positive energy state to a 
negative energy state in Dirac Sea is found. Application to the band structure of semiconductor is 
suggested. 
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1. Introduction 
The spin and the spin-magnetic moment are basic and the most important concepts in the spintronics [1] that is 
new research field in considerable expansion. In the previous work [2], we found that the spin-magnetic moment 
seems to be caused from well-known definitional equation of magnetic moment. Such a case never happen in 
the non-relativistic quantum mechanics. In the relativistic quantum mechanics, however, the electron has 
another degree of freedom called Zitterbewegung [3]-[5] that is trembling motion of relativistic electron. Some 
physical connection between the spin-magnetic moment and Zitterbewegung was implied in the previous work [2].  

In this paper, we investigate a question about the origin of the spin-magnetic moment of the electron and roles 
of Zitterbewegung relating to it. The use of Heisenberg picture will make hidden roles of Zitterbewegung more 
clear than previous work. On the other hand, Zitterbewegung in solid state physics [6]-[8] has been a subject of 
great interest in recent years, since observable Zitterbewegung-like dynamics of band electron was predicted [9] 
[10] for electron moving in narrow-gap semiconductors [11], graphene sheets [12], carbon nanotube [13], and 
super conductor [14]. Our research in this paper is therefore worthwhile on both sides of science and technology. 
As a result, we obtain  
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,11 2z
p

e c
E

µ =
                                          (1) 

more easily than the previous work [2], where ,11zµ  denotes expectation value of z-component of spin-mag- 
netic moment of a free Dirac electron in positive energy state.  

2. Relation between Spin and Spin-Magnetic Moment 
It is well known that the relativistic electron put in the external magnetic field gives interaction energy with the 
magnetic field extH . This term [15] [16]  

2
exte

mc
′− H σ                                          (2) 

was understood as the interaction energy ext− ⋅Hµ  between an external magnetic field extH  and the magnetic 
moment µ . Then, physicists concluded that  

2
e
mc

′=
µ σ                                           (3) 

must be the spin-magnetic moment of the electron in comparison with Equation (2). However, Equation (3) 
provided merely the relation of the spin-magnetic moment µ  and the spin operator 2′σ  by the analogy 
with classical electrodynamics. We do not still know how the spin-magnetic moment is generated, and what the 
spin-magnetic moment is. In order to clarify the origin of the spin-magnetic moment, we must deduce it without 
the external magnetic field which always leads to the interaction energy of the form − ⋅Hµ . Generally, the 
magnetic moment for a charged particle moving with the velocity v  and the charge e  is defined as [17] [18]  

,
2
e
c

= ×r vµ                                         (4) 

in the classical electrodynamics, where c  is speed of light. In the non-relativistic quantum theory, the above 
equation can be expressed as  

2
e
mc

= Lµ                                          (5) 

by using m=v p  and = ×L r p .  
In relativistic quantum theory, however, we should mind that we can not use Equation (5) for Dirac electron, 

because the velocity v  and the momentum p  are independent variables to each other (i.e. m≠v p ) in this 
case [2]. 

3. Zitterbewegung 
As to Zitterbewegung, we briefly show all equations that are needed later. The velocity v  of Dirac electron is 
given [19] by Heisenberg equation,  

[ ]1 , ,H c
i

≡ = =v r r



α                                    (6) 

where ( ), ,x y zα α α=α  are the Dirac matrices in Dirac Hamiltonian  
2 .H c mcβ= +pα                                     (7) 

The 4 4×  matrices α  and β  are defined as  

0 1 0
, ,

0 0 1
β

   
= =   −   

σ
α

σ
                                (8) 

where ( ), ,x y zσ σ σ=σ  are the Pauli matrices. These matrices satisfy the following relations:  

( )2 2 1 , ,i i x y zα β= = =                                  (9) 
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{ } { },, 2 , , 0i j i j iα α δ α β= =                               (10) 

In order to clarify the role of Zitterbewegung, we use Heisenberg picture hereafter to calculate the time 
evolution of any operator. We first investigate the behavior of matrix ( )i tα  as an operator ( )iv t c . Making 
use of Equation (10), we easily find [4]  

( ) ( ) ( )2 2 , , ,i i ii t t H cp i x y zα α= − =


                        (11) 

where ( )0iα  is the original matrix iα  of Equation (7) in schrödinger picture. Differentiation of both sides of 
Equation (11) by t  gives  

( ) ( )2 .i it t H
i

α α= 



                                  (12) 

The solution of the above differential equation is  

( ) ( ) 20 exp .i i
Htt
i

α α  =  
 

 



                               (13) 

We substitute Equation (13) into Equation (11) to obtain  

( ) ( ) 1 120 exp .
2i i i
i Htt H cp H

i
α α − − = + 

 






                         (14) 

Taking 0t = , we have the above relation in another form.  

( ) ( )( )20 0 .i i iH cp
i

α α= −



                              (15) 

We finally obtain  

( ) ( )( )1 120 expi i i i
Htt cp H cp H
i

α α − − = − + 
 

                       (16) 

from Equations (15) and (14). 

4. Solutions of Dirac Equation 
For reader’s convenience, we summarize all equations in the following; they are necessary for our calculation. 
The Dirac equation  

( )2c mc Eβ ψ ψ+ =pα                                 (17) 

has four eigen-solutions. We name these solutions ( ) ( )1,2,3,4sE p s =  defined as  

( )

( )
( )
( )
( )

, 1

, 2
,

, 3

, 4

p

p
s

p

p

E s

E s
E

E s

E s

 + ↑ =

 + ↓ == 
− ↑ =


− ↓ =

p                             (18) 

where pE  is the energy of a free Dirac electron with momentum p ,  
2 2 2 4 .pE p c m c= +                                   (19) 

Two arrows ↑  and ↓  denote ‘Up Spin’ and ‘Down Spin’ respectively. The explicit forms of eigen- 
solutions in Heisenberg picture are given by  

( ) ( ) ( )1 exp ,s s s
iE u

V
ψ  ≡ =  

 

prr r p p


                       (20) 

where V  is normalization volume, and )( pus  are expressed as follows [16];  
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( )1
2

1 ,

p

cu
N mc E

χ

χ

↑

↑

 
 =  
 + 

pp σ                                     (21) 

( )2
2

1 ,

p

cu
N mc E

χ

χ

↓

↓

 
 =  
 + 

pp σ                                     (22) 

( ) 2
3

1 ,p

c
mc Eu

N

χ

χ

↑

↑

− 
 +=  
  

p
p

σ
                                    (23) 

( ) 2
4

1 .p

c
mc Eu

N

χ

χ

↓

↓

− 
 +=  
  

p
p

σ
                                    (24) 

with normalization factor  

2

2
.p

p

E
N

mc E
=

+
                                       (25) 

and eigen states of “Up Spin” and “Down Spin”,  
1 0

, ,
0 1

χ χ↑ ↓

   
= =   
   

                                    (26) 

respectively. The momentum p  takes discrete values in normalization volume 3V L= : That is 2πi ip n L=   
( )1, 2,in = ± ± ⋅⋅⋅  for , ,i x y z= . The functions ( )su p  are orthonormalized:  

( ) ( )† ,r s rsu u δ=p p                                      (27) 

as well as  

( ) ( ) .r s rsE E δ δ= pqp q                                  (28) 

Next relations are especially important in a frame ( )0,0, p=p :  
( ) ( )1 4xu p u pα =                                     (29) 

( ) ( )1 4 .yu p iu pα =                                    (30) 

Because each component of α  satisfies 2 1iα = , iα  takes the eigenvalues 1+  and 1− . This means the 
velocity iv  also has two eigenvalues iv c= ± , that is the speed of light. However, states rE  are not eigen 
states of iv . An explicit form of ( )i tα  in the next section is applicable to the states rE . 

5. Expectation Value of Zitterbewegung 
In actual calculation, we will take z-axis along the momentum of the electron: ( )0,0, p=p . This procedure is 
necessary in order to not only simplify our calculation but also exclude the z-component of angular momentum 
caused by orbital motion of the electron. 

The velocity operator c=v α  is divided into two parts.  

( ) ( )( ) ( )( ) ,Zit unif
i i iv t v t v t= +                                (31) 

where  

( )( ) ( )( )2 1 20 exp ,Zit
i i i

Htv t c c p H
i

α −  = −  
 

                         (32) 

and 
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( )( ) 2 1,unif
i iv t c p H −=                                       (33) 

( ), ,i x y z=  from Equation (16). The velocity ( )Zit
iv  is Zitterbewegung part which includes oscillation factor, 

and ( )unif
iv  corresponds to uniform velocity. The coordinate operator ( ), ,x y z=r  is also easily calculated 

from corresponding part of the above equations.  

( ) ( )( ) ( )( ) ,Zit unif
i i ir t r t r t= +                                     (34) 

( )( ) ( )( )2 1 1 20 exp
2

Zit
i i i i

i Htr t c c p H H R
i

α − −  = − + 
 





                         (35) 

( )( ) 2 1
0,

unif
i i ir t c p H t r−= +                                     (36) 

where iR  is an integration constant, and 0,ir  agrees to an initial point of the electron in classical sense. 
Remembering that ( )0α  is equal to the original α  of Equation (7), we easily calculate the expectation value 
of zcα  for 1E  in our frame, by the use of relations in Sections 3 and 4.  

( ) ( ) ( ) ( )
2

†
1 1 1 1 .z z

p

c pE p c E p cu p u p
E

α α= =                          (37) 

Equation (37) leads to  

( ) ( )( ) ( )1 1 0Zit
zE p v t E p =                                (38) 

( ) ( )( ) ( )1 1
Zit

zE p z t E p R=                                (39) 

and 

( ) ( ) ( ) ( ) ( )( ) ( )
2

1 1 1 1
unif

z z
p

c pE p v t E p E p v t E p
E

= =                        (40) 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 1 1
unif

zE p z t E p E p z t E p R= +                          (41) 
2

0 ,z
p

c p t z R
E

= + +                                     (42) 

where 1 1
1 1pH E E E− −=  is used. Arbitrary constant 0 zz R+  can set to zero without loss of generality. The 

similar results occur for x and y components of both v  and r . The contribution from uniform velocity vanish 
at this time because of 0x yp p= = .  

( )( ) ( )( ) 0Zit Zit
x yv t v t= =                                (43) 

( )( ) ( )( ) 0unif unif
x yv t v t= =                               (44) 

( )( ) ( )( ),Zit Zit
x yx t R y t R= =                              (45) 

( )( ) ( )( )
0 0, ,unif unifx t x y t y= =                             (46) 

where the expression of the expectation value for 1E  is simplified. Results (38)-(46) indicate that Zitter- 
bewegung (trembling motion) phenomenon for relativistic electron is un-observable effect in the sense that the 
expectation values of physical quantities always agree to classically measured one in accordance with 
Ehrenfest’s law [20]. A question whether Zitterbewegung works or not in actual physics phenomena then arises. 
The answer will be shown in the next section. 

6. Spin-Magnetic Moment 
We calculate the magnetic moment based on Equation (4). As mentioned in Section 2, the velocity ( )tv  of 
relativistic electron is not equal to mp  but equal to ( )c tα . So that the expression of magnetic moment µ  
must be  
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2
e

= ×rµ α                                         (47) 

for relativistic electron. It is our advantage that we need no external magnetic field. In what follows, we pay 
attention to the electron in state 1E , and to the z-component of the magnetic moment.  

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( )

2 2

.

Zit unif Zit unif
z y x y y

Zit unif Zit unif
x x

e et x t t y t t x t x t v t v t
c

y t y t v t v t

µ α α = − = + +

− + + 

      (48) 

By the use of the completeness condition  

( ) ( )
4

=1
1,s s

s
E E =∑∑

q
q q                                 (49) 

we have an expression of the expectation value of zµ .  

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )

1 1

4

1 1
1

1 1

1 1

1 1

1 1

1 1

1 1

1

2

z

Zit Zit
s s y

s

Zit unif
s s y

unif Zit
s s y

unif unif
s s y

Zit Zit
s s x

Zit unif
s s x

unif Zit
s s x

E t E

e E x t E E v t E
c

E x t E E v t E

E x t E E v t E

E x t E E v t E

E y t E E v t E

E y t E E v t E

E y t E E v t E

E

µ

=

= × 

+

+

+

−

−

−

−

∑∑
q

p p

p q q p

p q q p

p q q p

p q q p

p q q p

p q q p

p q q p

p ( )( ) ( ) ( ) ( )( ) ( )1
unif unif

s s xy t E E v t E 
q q p

               (50) 

Each matrix elements of uniform part are calculated as follows:  

( ) ( )( ) ( ) ( ) ( )( ) ( )1 1 0unif unif
s x s yE v t E E v t E= =q p q p                  (51) 

( ) ( )( ) ( )1 0 1
unif

s sE x t E x δ δ= pqp q                           (52) 

( ) ( )( ) ( )1 0 1
unif

s sE y t E y δ δ= pqp q                           (53) 

We have also Zitterbewegung part of the velocity.  

( ) ( )( ) ( ) ( ) ( )†
1 1 4

2 2
exp expZit p p

s x s x s

E t E t
E v t E u c u c

i i
α δ δ δ

   
= =   

   
qp qpq p q p

 

        (54) 

as well as  

( ) ( )( ) ( )1 4

2
exp .Zit p

s y s

E t
E v t E ic

i
δ δ

 
=  

 
qpq p



                     (55) 

Substitution of Equations (51)-(55) into Equation (50) gives  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )(
( ) ( )( ) ( ) ( ) ( )( ) ( ) )

1 1 1 4 4 1

1 4 4 1

2

.

Zit Zit
z y

Zit Zit
x

eE t E E x t E E v t E
c

E y t E E v t E

µ =

−

∑
q

p p p q q p

p q q p
            (56) 
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We find here that zµ  is made only by Zitterbewegung parts. We can easily obtain each element:  

( ) ( )( ) ( ) ( ) ( )( ) ( )1 4 1 4

2
exp .

2
Zit Zit p

p

E ti cE x t E i E y t E
E i

δ
 

= = − − 
 

pqp q p q 



             (57) 

( ) ( )( ) ( ) ( ) ( )( ) ( )4 1 4 1

2
exp .Zit Zit p

y x

E t
E v t E i E v t E ic

i
δ

 
= =  

 
qpq p q p



                (58) 

We then finally obtain  

( ) ( ) ( )1 1 2z
p

e cE t E
E

µ =p p                                 (59) 

which is the same result as in the previous work [2].  
It is necessary to recall that there is not any z-component of magnetic moment arising from orbital motion of 

electron because of ( )0,0, p=p  and 0zL =  in our frame. Nevertheless, magnetic moment of Equation (59) 
has actually appeared. Therefore, we may conclude that zµ  of Equation (59) and the spin-magnetic moment of 
the electron must be identified. When the momentum of the electron is small and 2

pE mc≅ , it becomes  

( ) ( ) ( )1 1 ,
2z
eE t E
mc

µ =p p                                 (60) 

indicating correct g -factor because of 1 1 2zE S E =   for Dirac electron in our frame; that is  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 ,
2z z

eE p t E p g E p S E p g
mc

µ = =                    (61) 

where S  is the 4 4×  spin matrix operator. 

7. Concluding Remarks 
As seen in Sections 5, the expectation values of all Zitterbewegung parts give zero or constant, both in velocity 
and coordinates. This means that we can not directly measure the effect of Zitterbewegung. However, they still 
survive behind some kind of physical quantities. The magnetic moment is an example. Although Zitter-bewe- 
gung relating to the velocity or coordinates is un-observable in the sense of the expectation value which corres- 
ponds to classical behavior, we have shown that it exists and works through the magnetic moment. A crucial 
point is non-diagonal matrix elements: ( )( ) ( )4 1 ,Zit

iE ev t E i x y= . The physical meaning of these matrix ele- 
ments is inferred as follows:  

The initial state 1E  of electron with positive energy and up-spin undergoes transition into the state 4E  
with opposite signs of energy and spin (See Equations (29) and (30)), by operating ( )( )Zit

iev t . This matrix 
element is a kind of “transition current” because it exactly corresponds to the electric current J  in the de- 
finition of magnetic moment [2] which is written in another form [18],  

31 d .
2c

= ×∫r J rµ                                    (62) 

In quantum theory, the conservation law of energy may break by E∆  in time t∆ , where  
.E t∆ ∆ ≅                                         (63) 

The electron which has undergone transition into 4E  must immediately return to 1E  within time t∆ . 
The period of transition cycle is about  

21 2 ,t E mcω ∆ ≅ ∆ ≅  
                              (64) 

where 22E mc∆ ≅  means the energy gap of Dirac Sea in vacuum. This ω  agrees with the frequency of 
Zitterbewegung (See Equations (57) and (58)).  

In the classical electrodynamics, the magnetic moment is caused by periodic orbital motion of a charged 
particles which is equivalent to an electric current. In the relativistic quantum theory, it seems that it is possible 
to cause the magnetic moment also by periodic transition from the positive energy state to the negative energy 
state (Figure 1). It then seems that the former is the magnetic moment which corresponds to Equation (5) with 
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Figure 1. Spin-magnetic moment caused by 
transition current.                         

 
1g = , and the latter is the spin-magnetic moment with 2=g . In other word, the spin-magnetic moment may 

be caused not by usual electric current but by some new current which yield when the electron undergoes 
transition between two states of positive and negative energies. It should be noted that even an electron at rest 
(i.e. 0=p  and 0=L ) in space is able to yield this new current.  

8. Another Remarks 
Such a situation as described above occurs in some kind of solid state. In the two band model of Cohen and 
Blount [21], Wolff [22] indicated that the Hamiltonian takes the Dirac form after a suitable transformation, and 
that the resulting equations are essentially identical to those of the Dirac theory. This fact means that we could 
apply the method developed here to the spin-magnetic moment of electron in solid state [23]. Zawadzki [11] 
indeed pointed out that the energy of the electron in narrow-gap semiconductor was given as  

2 2 2 4
pE p u m u= +                                       (65) 

( m : effective mass), where u  is maximum value of the group velocity gv  of electron in band:  
lim gp

u v
→∞

≡                                          (66) 

The Hamiltonian which corresponds to Equation (65) has the form  
2

3 0H up m uα β= +                                       (67) 

in the frame  

( )00,0, p=p  

where ( )1 2 3, ,α α α=α  and β  are the Dirac matrices. The above Hamiltonian agrees completely to the Dirac 
Hamiltonian in Equation (7) if we replace u  by c , and m  by m . Obeying the Heisenberg equation of 
motion, it is then predicted that H  of the equal form reproduces the same results obtained here with the re- 
placements c u→  and m m→  . They will appear as a change of g -factor of the electron in semiconductor 
from new equation corresponding to Equation (59). 
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