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ABSTRACT 

A critique of black-hole-black-body radiation, black-hole thermodynamics, entropy bounds, inflation cosmology, and 
the lack of gravitational aberration is presented. With the exception of the last topic, the common thread is the misuse of 
entropy and, consequently, the second law. Hawking’s derivation of the entropy loss due to black hole emission rests on 
Kirchhoff’s radiation law which equates the rates of absorption and emission of energy in any given frequency interval. 
Black-body radiation cannot, therefore, be used as a mechanism for black-hole evaporation. A derivation of the Planck 
factor from an exponential Doppler shift shows why the temperature cannot be proportional to the acceleration; accel- 
erations do not cause Doppler shifts. Inflationary cosmology is based on a misconception that the adiabatic condition of 
Einstein’s equations hold, and, yet, there can be an enormous increase in the entropy. The cause for the increase is a 
negative pressure which contradicts the thermodynamic definition of positive pressure as the derivative of the entropy 
with respect to the volume times the temperature: Increases in volume cause corresponding increases in the entropy. A 
first-order phase transition cannot occur under adiabatic conditions, cannot generate entropy, and the latent heat cannot 
be used to reheat the universe. Finally, a negative pressure is invoked to explain the absence of gravitational aberration, 
assuming that gravity propagates at the speed of light. 

It is the only physical theory of universal content which I am convinced will never be overthrown, within the fram- 
work of applicability of its basic concepts. 

Albert Einstein on Thermodynamics 
 
Keywords: Black-Hole Radiation; Black-Hole Thermodynamics; Entropy Bounds; Inflationary Cosmology;  

Gravitational Aberration 

1. Introduction and Summary 

The motto that history always repeats itself is not always 
true. The comparison of Planck’s derivation of the black- 
body spectrum and its associated entropy to the deriva- 
tion of Hawking radiation and Bekenstein entropy of a 
black-hole turns up vast differences. First, and foremost, 
Planck always had an experimental verification of his 
formulas. Planck’s assumption of the Wien distribution 
was contested by the results of Ruben and Kurlbaum in 
the long wavelength region, and led him to the search of 
a new distribution that would make the spectral density 
proportional to the absolute temperature in that region [1]. 
Moreover, the fitting parameters of that distribution led 
to the discovery of not one, but two universal constants, 
which along with c, the velocity of light, and G, the 
gravitational constant, would be “independent of particu- 
lar bodies or substances”, and would “necessarily retain 
their significance for all times and for all cultures, in- 
cluding extraterrestial and non-human ones”. Planck re-  

ferred to them as “natural units”, and would “retain their 
natural significance as long as the laws of gravitation and 
the propagation of light in vacuum, and the two laws of 
thermodynamics retain their validity” [2]. 

If Planck had thought through the natural units he was 
considering he would have realized that they constituted 
extremely high energies of 1.22 × 1019 Gev, extremely 
short times of 5.4 × 10−44 sec, and extremely short 
lengths of 1.6 × 10−35 m. It was only after the general 
acceptance of the big bang that such a Planck scale could 
have been realized immediately after the bang. On such a 
Planck scale, G would be comparable to the other forces 
of nature. Since there is no known theory that can probe 
this scale, reliance must be made on the rest of what 
Planck considered immutable, namely the two laws of 
thermodynamics. 

Hawking radiation is thermal radiation that is pre- 
dicted to be spontaneously emitted by black-holes. It is a 
consequence of the steady conversion of quantum vac- 
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uum fluctuations into pairs of particles, one of which is 
ejected at the event horizon and escapes to infinity, while 
the other is trapped within the event horizon. Since this 
radiation reduces the mass of a black-hole, Hawking ra- 
diation is said to be responsible for black-hole evapora- 
tion. 

A black-hole is thought to be the collapse of a star in 
which its matter and energy is veiled to an external ob- 
server behind an event horizon. Thus, a thermodynamic 
description from an observer’s view cannot be based on 
the mass and radiation before the black-hole was formed 
because they are no longer observable. Associating an 
entropy with a black-hole provides a handle on the ther- 
modynamics. The question comes to mind: a thermody- 
namics of what? Assuming there are many scenarios of 
black-hole formation, the microscopic interpretation of 
entropy as a measure of the number of complexions that 
are all compatible with a single macro-state would quan- 
tify the multiple ways in which a black-hole could be 
formed. Once a black-hole is formed, information seems 
to have disappeared. Since entropy is a measure of miss- 
ing information, this would provide yet another reason of 
associating entropy with a black-hole. 

The second law guarantees that the entropy of an iso- 
lated system will tend to increase until it reaches a maxi- 
mum. But how large is this maximum? Not wanting to 
appeal to statistical mechanical models, it should be pos- 
sible to argue from thermodynamic principles how large 
this maximum should be. Because maximum entropy 
measures information, it should provide a bound on in- 
formation capacity. 

Entropy has also been implicated in resolving the 
seemingly paradoxes associated with the standard model 
of cosmology which refers to an adiabatically expanding, 
radiation-dominated universe that is supposedly well- 
described by a Robertson-Walker metric. The paradoxes 
are due to 1) the horizon problem whereby causally dis- 
connected regions could evolve into a homogeneous uni- 
verse; and 2) the flatness problem whereby the only uni- 
verse that could reach a critical energy in the present 
epoch would be a flat universe since a closed universe 
would have achieve it in Planck’s time while an open 
universe would see its energy density rapidly dwindle 
away. According to the inflationary scenario, if the adia- 
batic assumption would be dropped in the standard model, 
these paradoxes would disapper. 

In all these cases there is the common thread of using 
thermodynamic laws in the absence of experimental veri- 
fication. More specifically, it is the second law and en- 
tropy which hold center stage. But, the “entropy” used in 
the first two cases has no relation to the second law, and, 
hence, is not an entropy, and relinquishing the constancy 
of the entropy while maintaining Einstein’s adiabatic 
equations is a contradiction. It is the purpose of this pa-  

per to redress these issues. 
A simplified derivation of the black-body spectrum for 

black-hole radiation and the Unruh temperature is marred 
on, at least, two accounts: 1) acceleration does not cause 
a Doppler shift; and 2) the integral of the spectral density 
function over all frequencies diverges. Hence, absolute 
temperature cannot be proportional to acceleration, in 
general, and surface gravity, in particular. The expression 
for the entropy of a black-hole violates both the second 
and third laws of thermodynamics, and there is no bound 
on the entropy-to-energy ratio, precisely because it is a 
decreasing function of the energy: The entropy-to-energy 
ratio can never be less than to the derivative of the en- 
tropy with respect to energy. Black-body radiation can- 
not be used as a mechanism of black-hole evaporation 
precisely because it obeys Kirrchhoff’s radiation law 
asserting that radiation cannot upset a state of thermal 
equilibrium [1, p. 64]. 

Inflation cosmology violates the adiabatic nature of 
Einstein’s equations. Since the Robertson-Walker metric 
does not predict that the ratio of a circle to its radius will 
be greater (less) than 2π for geometries of constant nega- 
tive (positive) curvature, it cannot describe non-Euclid- 
ean geometries of constant curvature. Thermodynami- 
cally derived relations for the energy and pressure are 
compared with those obtained from Einstein’s equations. 
For space-time with constant Gaussian curvature, Ein- 
stein’s equations require the pressure to be negative [3]. 
In the case of vanishing pressure, they reduce to the virial 
theorem, and Newton’s law. Pressure has the effect of 
causing deceleration which causes a compression of the 
cosmological fluid, which, in turn, increases the pressure, 
in violation of Le Châtelier’s principle. In general, nega- 
ive pressures, invoked in expansion, must lead to a de- 
crease in volume if entropy is to increase so that the 
enormous increase in entropy predicted by inflation can- 
not occur. The latent heat of a phase transition cannot be 
used to re-heat a universe, and a first-order phase transi- 
tion does not generate entropy. 

Finally, the condition for the absence of gravitational 
aberration leads to a negative pressure of exactly the 
same magnitude, but of opposite sign, as the relativistic 
equations of state of degenerate stars. These equations 
show that ratio of the pressure to rest energy density ratio 
is always proportional to the ratio of the Schwarzschild 
radius to the radius of the star. 

2. Do Black Holes Emit Black-Body  
Radiation? 

Much of modern cosmology is based upon an inexorable 
chain of analogies [4]. A case in point is the conclusion 
that black holes emit black-body radiation, which implies 
that the temperature be proportional to surface gravity. 
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A simplified derivation is based on one-dimensional 
hyperbolic motion that was derived by Born in 1909, and 
a year latter by Sommerfeld. It can be found in almost 
any text on relativity [5]. For a particle moving under 
uniform gravitational acceleration, 
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,
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where v  is the hyperbolic measure of the velocity. 
Rearranging results in 
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An expression for v  can be obtained from what 
appears as time-dilation,  

2

2
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v
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c
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Consider two coordinate systems, K 
v

, which is mov- 
ing at a velocity  with respect to system K . We 
know that the two systems will be related by the Lorentz 
transformation. If we consider the motion at the origin of 
the K  , its time   will be related to the time  of the t
K  system by  

2

2
1 ,

v
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c
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which expresses the well-known effect of time-dilation: 
Clocks in motion appear to run slower. Sometimes, it is 
expressed in its infinitesimal form, (5), but, because the 
velocity is uniform it integrates simply to (6). Not so in 
the case of uniform acceleration! 

Since the velocity is not uniform, we must introduce (3) 
into (6); integration then gives  
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which, upon inverting, results in  

 sinh .a cat                 (7) 

This is not time-dilation given by (6). In other words, 
frequency is to be associated with inverse time, not the 

inverse infinitesimal increment in time. Moreover, a 
comparison of (2) and (7) leads to the identification 
v a , and once this identification is made, there results  

1
e ,

1
a c v c

v c
 




t

                (8) 

from (4). This is supposedly is an exponential Doppler 
shift caused by uniform acceleration. Nothing could be 
further from the truth! 

Consider a light signal that is sent out at time ot , 
reflected at time tr, and returns in time tb. The laboratory 
time, , is the arithmetic average,  

 1
,

2 o bt t t                  (9) 

while the distance covered is proportional to half of the 
time difference, 

 1
.

2 b or c t t               (10) 

The uniform velocity is the ratio of (10) to (9), v r t . 
Taking the sum and difference of (9) and (10), in turn, 
give  

   1 , and 1 .b ot v c t t v c t        (11) 

Taking the product of the two expressions, and then the 
positive square root of the two relations give  

2 21 .o bt t v c t             (12) 

Comparing (12) with (6), we conclude that the proper 
time is the geometric mean time,  

,o bt t                 (13) 

which can never be superior to the laboratory time, (9), 
because of the arithmetric-geometric inequality. This is 
mathematical explanation of time-dilation. 

Now, divide the former time by the latter in (11) to get  
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Take the square root of both sides and then their 
logarithms to give  

1
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On the strength of (4) and (8), (14) would necessarily 
imply  

ln ,
2

b
o b

o

tc
a a t t

t
              (15) 

which is evidently wrong. The Doppler effect requires a 
uniform relative velocity between source and observer, 
not one given by (3). 
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In fact, (6) is a second-order Doppler shift discovered 
by Ives and Stilwell back in 1938. Radiation traveling at 
an angle 

2

,
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observed frequency  
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The angle  , measured in the direction of the observer, 
was set equal to 2 , and the conclusion of Ives and 
Stilwell was that a moving clock runs slower than a 
stationary one. 

This is not to say that uniform acceleration, as is 
conventionally assumed, does not have an effect upon the 
rate of a clock relative to a clock in an inertial system. 
Instead of the reflection time being given by geometric 
mean, (13), in the presence of uniform acceleration, it  

will be given by harmonic mean  
1

1 1o bt t
1

2


   

 [5, p.  

403]. Thus, clocks will run even slower in a uniformly 
accelerating frame than in an inertial frame, as a conse- 
quence of the geometric-harmonic mean inequality. How- 
ever, this has nothing to do with the Doppler effect which 
involves uniform velocities since time-dilation, (6), ap- 
pears as a second-order Doppler effect. And if this no 
longer holds, there will no longer be a Doppler shift in 
general. Therefore, (8) is not an exponental Doppler shift 
caused by acceleration. However, let this not deter us 
from continuing the derivation of the spectral density of 
black-body radiation involving (8). 

On the strength of (8), the exponential Doppler shift 
between emitted   and observed frequency    would 
be  
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For small times, (16) would reduce to  
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giving the wrong impression that the shift in frequency is 
due to acceleration, and not velocity. 

To draw an illusionary analogy with black-body radia- 
tion, one [6] considers the frequency spectrum  

 
2

e2 e .
a ci c a d ei



  

This is a double exponential integral which can be 
obtained in closed form. To this end, set ea cy  , and 
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The relation for Gamma functions,  
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gives the spectral density as  
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Apart from the minor point that an integral over all 
frequencies of (18) diverges1, one considers  1 e 1c a   
to be a bona fide Planck factor, and this necessitates 
defining the absolute temperature as [8]  

.
a

T
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Expression (19) is the well-known, and generally ac- 
cepted, Unruh temperature, for which an accelerating 
thermometer would measure black-body radiation, whereas 
a stationary thermometer would measure no temperature 
at all! 

The temperature, (19), is also the Hawking temperature 
[9] when we identify  with gravitational acceleration, 
g ,  

2
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One would therefore conclude that the absolute tem- 
perature is proportional to the mass were it not for the 
fact that  is now the Schwarzschild radius,  
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Introducing (21) into (20) gives  
3
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In contrast to (20), where the temperature appears to 
be proportional to the mass M, (22) now has it inversely 
proportional to it! 

MConfusing the rest energy, c , with the internal 
energy and using the second law,  
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one obtains an absolute entropy [10],  
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Planck energy. 
Since the entropy is the square of the energy, or mass, 

and the mass is proportional to the Schwarzschild radius, 
the entropy is proportional to the area, A , of the event 
horizon. Prior to making the identifications, and in units 
where all the universal constants are equal to one, the 
infinitesimal Euler relation would read [11]  

d ,
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for a neutral, rotating black hole at an angular velocity 
, angular momentum J . The surface gravity, which 

is subsequently set equal to the absolute temperature is 
1 4 M  . 

We will now follow Page’s [12] presentation of 
Hawking’s calculation of black-hole emission for free 
fields, since it has a hindsight of thirty years. Hawking 
found the expected number of particles, n , emitted in a 
wave mode of frequency,  , angular momentum, , as  j
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where  is the absorption probability for an in- 
coming wave. 

For the entropy of radiation, Hawking took the von 
Neumann entropy for the thermal density matrix of each 
mode2, 
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The expected loss in the black-hole entropy from the 
emission mode, due losses in energy, n , and angular 
momentum, nj , is  
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The second law is satisfied since the total change in 
entropy from radiation plus angular momentum loss due 
to emission is 
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“with the extreme right inequality being saturated only if 
there is no emission, 0n 

0
0T

” [12]. 
“Thus, the Hawking emission from a black-hole into 

empty space obeys the second law of thermodynamics, 
and it actually produces entropy from all modes with 
nonzero emission. This is as one would expect, since the 
emission from a black-hole with bhT  into empty 
space with   is an out-of-equilibrium process” [12]. 

Rather than using the second law of thermodynamics, 
the effective temperature is obtained from the Boltzmann 
factor, 
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which upon taking logarithms of both sides yields  
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For a Schwarzschild black-hole, or “s-waves of neutral 
particles in any Kerr-Newman geometry”, the Planck fac- 
tor becomes  21 e 1   , and “when , so that the 
classical incoming wave is totally absorbed by the black- 
hole, then 

1 

bh 2T T    , the Hawking temperature of 
the hole. But, otherwise, the effective temperature T  
for the mode generically depends on the mode” [12]. 

Parenthetically, the form of the inverse temperature 
given by (30) is incompatible with the black-hole expres- 
sion (23). This becomes apparent when we write the av- 
erage energy as E n  in (30), 
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for 1n  , in the Rayleigh-Jeans limit. Expression (31) 
asserts that the absolute temperature is proportional to 
the average energy, and not inversely proportional to it as 
(23) claims. Moreover, if we attempted to apply the sec- 
ond law to (28) we would not come out with (30) be- 
cause (28), or its negative, is not an entropy, but only 
part of one. Even worse, (28) has nothing whatever to do 
with the Bekenstein expression (24) for the entropy of a 
black-hole. For if it did, (31) could be integrated to give 
that expression in the same way that (23) is integrated to 
give (24). 

By the conservation of energy and angular momentum, 
the rate that the black-hole loses them is equal to the rate 
that radiation gains them. No so for the total entropy, 
(29), which gains more than it loses. The rate of change 
of black-hole entropy is given as  
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Let us begin our critique with the first law, (25), which 
black-hole thermodynamicists would write as  

.   J

E

              (33) 2Hawking makes allowance for fermions in all his expressions. However, 
fermions, or for that matter any particles other than photons, do not 
have a pure black-body spectrum, so the generalization and particle 
emission are illusory. 

Distinction must be made between the energy, , in a 
fixed coordinate system, and the energy, 
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,E E    dJ                (34) 

in a coordinate system rotating with the body [13], in this 
case a Kerr black-hole. Since the adiabatic definition of 
angular momentum is  

,
S

E     
J



.TdS d  J 

,

              (35) 

it follows from (35) that the differential for the energy in 
a rotating coordinate system is  
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Differentiating (34) and introducing it into (36) gives 
(33). 

Likewise, the differential for the Helmholtz free en- 
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in a rotating coordinate system is  
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Kirchhoff made use of the general thermodynamic law 
that radiation cannot upset a state of thermal equilibrium. 
For black-body radiation, Kirchhoff showed that, at ther- 
mal equilibrium and in each frequency interval, there is 
an equality between emitted,  , and absorbed, a K  , 
radiant energy, where a  is the fraction of absorbed 
energy in the frequency interval,   and d  , and 
K d   is the intensity of radiation in the same inter-  
val. This is expressed by Kirrchhoff’s radiation law [1, p. 
64]: 

.e a K  

1a   

             (40) 

Hawking calculates the left-hand side of (40) and 
claims that this energy per unit frequency interval is 
dumped into empty space with zero temperature, consti- 
tuting an out-of-equilibrium process. This is tantamount 
to calculating a reaction in the forward direction and 
forgetting to equate it with the rate of the reverse reaction 
in the law of mass action which secures chemical equi- 
librium. Likewise, at thermal equilibrium, the total emis- 
sive power must be equal to the total absorptive power. 
Kirchhoff was able to extend this equality to each and 
every frequency interval by considering cavities made of 
different materials. Moreover, Hawking considers a black- 
hole as a perfect black-body by setting  , but 
fails to take into account the form of the emissive power 
K , 

 3 ,T  

u

4
u K

c 


          (41) 

dictated by Wien’s displacement law, where   is the 
energy density, K  is the intensity in the frequency 

range from   to   , and   is an unkown func- 
tion of the single argument, T . It is precisely the 
pre-factor that is missing in (26) that is required in order 
to obtain Stefan’s law upon integrating over all frequen- 
cies. The cavity may even have perfectly reflecting walls, 

 0a   

u

 provided it contains a speck of charcoal dust 
that, through absorption and emission, will allow an arbi-
trary distribution of energy to approach the equilibrium 
distribution,  . Therefore, Hawking is not calculating 
the emission of energy and angular momentum, but, 
rather, the equilibrium distribution of the average number 
of photons, provided the number of oscillators m  in 
the frequency interval from d  to    is inserted 
into the numerator of (26). 

The expression used by Hawking to calculate the 
entropy of black-body radiation, (27), in the frequency 
interval from   to d   is the classical Shannon- 
Gibbs entropy that is compatible with Boltzmann statis- 
tics, and not the negative binomial distribution of black- 
body radiation. At most, (27) accounts for the Wien limit. 
The entropy of black-body radiation in the interval from 

d  to    is not (27), but [1, p. 77 eqn (2.24)]  

 rad ln ln
n m n m

S n n m
n m

 




       
   

.      (42) 

2 38m cJust as   is the number of Planck oscil- 
lators in the frequency interval from d  to   , so 
(42) is the entropy density in the same range. It is also 
not the change in entropy. This makes (32) blatantly 
wrong since an integration over all frequencies does not 
give the time rate of change of the black-hole entropy! 

In view of the definition of the energy in a rotating 
coordinate system, (34), the definition of the change in 
the black-hole entropy, (28), is also wrong for it would 
require  

1
bh 2 ,S E                  (43) 

where E n    j

d

 , is just the average energy in 
the coordinate system rotating with the Kerr black-hole. 
The expression of the black-hole entropy (28) was 
thought to be justified by the fact that it gave back the 
first law. But, (43) shows that it gives only part of that 
law. Missing is the second expression in (42) which is 
the negative of the ratio of the average free energy to 
temperature, in the frequency interval  , [cf. eqn (37)], 
in the rotating coordinate system, viz.,  

 ln 1 e ,TF m T 


             (44) 

where     j  . Expression can easily be verified 
by calculating its derivative with respect to the tempera- 
ture,  

rad ,
F n F E F

S
T T T

        
   


    (45) 
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which is (37). 
Furthermore, the temperature, (30), can be obtained 

directly from the second law which is [1, p. 137]  

rad rad radd d

d d

S S S E

n n E n T

 
  

 
ln ,

n m

n
   

 

R

  (46) 

since black-body radiation has zero chemical potential. 
Whereas the putative expression of a black-hole (28) is 
not related to the emissive power of a black-body, the 
entropy density (42) is. The appeal to Boltzmann statis- 
tics is an artifice since that statistics does not, in general, 
apply to black-body radiation as Planck realized. Fur- 
thermore, the black-hole entropy, (28), will not give the 
black-hole (body) temperature, (30), only (42) will when 
the degeneracy factor is properly accounted for. 

3. Are There Bounds on Entropy? 

Faced with the enormous numerical value of the entropy 
(24), Bekenstein [14] attempted to show that (24) was an 
upper limit for all entropies. For according to him, “There 
is no gap in magnitude between black-hole entropy and 
ordinary entropy. This comes about because of the exis- 
tence of a hitherto unnoticed upper bound to the entropy- 
to-energy ratio of non-black-hole systems of given effec- 
tive radius ”,  

.                (47) 
S R

k
E c



S E

2E
R

2E S 2E

“For systems of negligible self-gravity, inequality (47) 
keeps  from growing faster than , a well-known 
property of ordinary bodies which is responsible for the 
seeming gap between this entropy and black-hole entropy 
(which grows as ). However, as one compresses a 
body to its gravitational radius,  becomes of order 

, and  can begin growing as  thus ‘catching 
up’ with black-hole entropy”. No matter what the effect 
of gravitational compression may be, it cannot change a 
concave function into a convex one. 

“Evidently, systems composed of nonrelativistic parti- 
cles are not very interesting from the point of view of the 
bound” [14]. Therefore, the characteristic radius can be 
taken as the relativistic thermal wavelength, R c kT  , 
so that (47) is actually  

d
,

d

S S

E E


S
E

kS E
 1k 

                (48) 

on the strength of the second law. Then, the whole 
question boils down to is whether  is an increasing or 
decreasing function of . Because of the universality of 
the entropy it cannot be both. According to a theorem on 
twice differentiable functions [15],  will be 
convex in   if  or , and concave if 

. Hence,  
0,


0k

0 k 1

1 1d
,

d
k kS S

E kE
E E

   

1k

          (49) 

precisely because  . 
The defining property of the entropy is its concavity [1, 

16]. We consider the entropy as a sole function of the 
energy, and use primes to denote derivatives. If 

 d
0 and 0,

d
ES S ES S ES

E
          (50) 

then S E E E decreases. If 1  and 2  are any two val- 
ues of the energy, the concavity of the entropy requires:  

         1 2 1 21 1 ,S E E S E S E       

0 1

  (51) 

for  
E

1E E

. In particular, the slope of a straight line 
from the origin to any point on the entropy curve, say , 
cannot be inferior to the tangent of the curve at that point. 
We thus set  2 0S E   in (51), and obtain    and 

   
,

S E S E

E E






E

            (52) 

where we have divided both sides of the inequality by 
E E . Since  , (52) shows that that the ratio S E  

decreases. 
As a prime example of where to apply his inequality 

(47), Bekenstein considers black-body radiation for which  
1

44 4
.

3 3

S V

E E T
   
 

T

           (53) 

He then realizes that the ratio of entropy-to-energy “can 
be made as large as we please simply by lowering T  
sufficiently. But in fact the thermodynamic description of 
radiation on which [(53)] is based breaks down when  
is no longer large compared to the reciprocal of the 
characteristic size of the system (typical wavelength not 
small compared to cavity size). Boundary effects make 
themselves felt. These can be expected to arrest the 
growth of S E T as  is lowered further”. On the con- 
trary, black-body radiation makes no such demands: the 
integral is over all wavelengths from 0 to ∞! 

The first expression in (50) is the Massieu transform of 
the entropy with respect to energy, which is the product 
of the Helmholtz free energy, F, and the inverse tem- 
peratue  ,  

 ln 0,ES S F      

 

       (54) 

where  is the partition function. For an ideal gas  
is a monotonic decreasing function of  , whereas for 
black-body radiation  is the same decreasing func- 
tion of 

ln
 ,  

  31
ln ,

3
V             (55) 

  is the Stefan-Boltzmann constant, and V  is where 
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the volume of the cavity containing the radiation. Ac- 
cording to Bekenstein, “the wanted distribution is the ca- 
nonical one whose inverse temperature is just the peak 
value of S E

ln ,S E

 for the system”. Since  

             (56)   

 0ln 0,

(which is a rearrangement of (54)) an equality in (48), 
would be given by the condition that 

              (57) 

 since 0 max
Unfortunately, there is no finite value of 0

S E . 
  that 

would satisfy (57) for black-body radiation where the 
logarithm of the partition function is given by (55). If 
such a value could be found, (54) would accomodate 
both concave entropies, for which , and convex 
entropies, for which . Since  is a monotonic 
decreasing function of 

0


F
ln0F 

 , the conclusion does not 
follow that “the problem is thus superfically simple; the 
maximal S E  is just that   for which the partition 
function is unity”.  

The second inequality in (50) ensures that the heat 
capacity at constant volume is positive, viz.,  

  12 0.VS T C

             (58) 

Inequality (58) is violated by the Bekenstein entropy 
expression, (24), since  

2
Pl

4
0.

k
S

E
                 (59) 

The heat capacity at constant pressure cannot be de- 
fined for black-body radiation because black-body radia- 
tion is a phase equilibrium insofar as the number of pho- 
tons is not conserved [1,17]. The pressure, p, is a sole 
function of the temperature and obeys the Carnot- 
Clapeyron equation,  

d
,

d

p h

T T


h

               (60) 

where  is the enthalpy density, or the latent heat of 
sublimation. In fact, the Carnot-Clapeyron relation (60) 
leads at once to Stefan’s law of black-body radiation  

once the thermal equation of state, 
1

3
p  , is intro- 

duced where E V 

   

, the energy density. 
Hawking [9] claims that tiny black-holes will radiate 

away at a temperature (20) leading to complete evapora- 
tion in an explosion that would result in an intense burst 
of photons in the x-ray region. It is well-known that 
saturated vapor pressure depends only on the temperature, 
and not upon volume. Changing the volume of vapor 
pressure at constant temperature will result in evapora- 
tion or condensation so as to leave the vapor pressure 

constant. This is the physical content of (60). Evapora- 
tion would mean the disappearance of the photon phase 
leading to a rupture in the phase equilibrium. For the 
processes of evaporation or condensation to proceed ir- 
reversibly, the pressure of the two phases cannot be equal 
but differ by the capillary pressure. An increase in vol- 
ume of cavity radiation can be thought of as new radia- 
tion being evaporated from the walls of the cavity [1,17]. 
It is precisely the job of the latent heat h to maintain the 
walls at constant temperature. If a black-body would ab- 
sorb more radiation than it emits, it would heat up and 
the radiation would no longer be (iso) thermal radiation. 

4. Does Inflation Violate Einstein’s  
Equations? 

It has been said that inflation is an elegant way of ex- 
plaining why the universe is so homogeneous on the 
Hubble scale [18]. In this section, we show the contrary. 

The Robertson-Walker (RW) metric,  

 2 2 2 2 2 22 sin ,sinds R t d d d         (61) 

where R t

sinr R

, the expansion, or scale, factor, is said to 
describe a space that is both homogeneous and isotropic. 
The question is: Why is space homogeneous and iso- 
tropic? It is this question that inflationary cosmology 
hoped to answer. But before we get to that scenario, there 
are criticisms to be lodged against the RW metric, (61). 

The RW metric (61) is a metric of constant curvature. 
Introducing   [19] in (61) gives 

 
2

2 2 2 2 2
2 2

sin ,
1

dr
ds r d d

r R
  

 
   

 
    (62) 

21 R 1where the scalar curvature  can be chosen as  , 
1 , or 0 for positive, negative, or zero spatial curvature, 

respectively. It is well-known that the transition from 
spherical to hyperbolic geometry is allow the radius to 
become imaginary, . This would transform the 
RW metric (61) into  

iR R

    2 2 2 2 2 2 2sinh sinh ,ds R t d d d      

sinhr R

 (63) 

but  , as it is assumed in almost all texts on 
cosmology [19, eqn (111.12)]. 

The hyperbolic measure of distance is well-known to 
be given by 1tanh r R  , so that when it is intro- 
duced into (63) it will give the well-known Beltrami 
metric [5, p. 494]  

 
 

2 2
2 2 2 2

2 2 22 2

d
d d sin d

11

r r
s

r Rr R
.    



iR R

 (64) 

With the substitution , the transformation r = 
Rtanχ would not give the RW metric, (61). The deviation 
from Euclidean geometry can be seen very clearly from 
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(64) by considering , and constr 2  

2

. For then, 
the ratio of the periphery of a circle to the radius will not 
be , but3 

2 2

2
2 ,

r R


 

1
 

since 2 21 r R 
2

sinhR r . In constrast, for elliptic 
space the ratio would be less than ,  

2 2

2
2 ,

r R


 

1
 

because 2 21 r R 

iR R

sin R r . It is rather curious that 
since the metric (61) bears the name of Robertson that 
the only place where it is mentioned in his book, Relativ- 
ity and Cosmology, is in the forward by Fowler. What 
Robinson refers to as the cosmological metric is the 
Beltrami metric (64) [3, p. 342, eqn (14.12)], and its 
elliptical counterpart, obtained as usual by . 

The starting point for the inflationary scenario is the 
pair of Einstein equations that have been derived from 
the RW metric, (61), which are, quite remarkably, the 
same for the Beltrami metric, (64). The expressions for 
the energy density [3, p. 372],  

2

2
3 ,

R k

R


 


             (65) 

and pressure  
2

2
,

R k

R

 
 

2RR
p  


        (66) 

where 2



,p

8 G c   , are given in terms of the cosmic 
time derivatives of the expansion factor R, k, the constant 
space curvature, and , the cosmological constant. 

Between the energy density and pressure there is the 
thermal equation of state [20], 

                (67) 

where normally 
1 2

,
3 3

     

,TdS pdV 

, the limits being the ultra-  

relativistic and non-relativistic non-interacting particle 
limits, respectively. 

From thermodynamics we have the infinitesimal Euler 
relation, 

dE            (68) 

where S is the entropy. Choosing V, T as the independent 
variables, differentiating with respect to the volume, V, 
and using a Maxwell relation result in [21,22] 

.
T V

E p
T p

V T

      
 
 
 

 

Employing the thermal equation of state, (67), to elimi- 
nate the pressure gives linear partial differential equation 
of first-order,  

.
V T

E V E
T E

T V
            

          (69) 

Lagrange [23] reduced the method of solving the 
linear partial differential Equation (69) to one of solving 
the auxiliary set of ordinary differential equations,  

d d d
,

T E V

T E V
    

whose solutions, the characteristic curves, fill the (T, V, 
E)-space. The vector, 

 , , ,T V E v              (70) 

will be tangent to the family of characteristic curves. 
The general solution to (69) is  

 1 2, 0,c c 

TV c

 

where 1  and 2 , are the two independ- 
ent solutions, and 

EV c 
  is an arbitrary function. The gen- 

eral solution can also be written as: 

  ,E V TV                (71) 

where   is arbitrary function, which must be further 
conditioned by the thermodynamic stability conditions, 
e.g.,   cannot be chosen as an inverse function for that 
would have energy decreasing with temperature. The 
solution (71) to (69) can be represented as a surface in 
 , ,T V E -space. Starting at any point on surface, (71), a 
curve can be traced out in the direction of the tangent 
vector (70). The surface, (71), can be thought of as being 
formed by the family of such characteristic curves. 

Returning to (68), we can write it as:  

,
E

TdS dE pdV dE dV
V


          (72) 

with the aid of (67). It is readily seen that V  is an 
integrating factor for (72) since  

 .V TdS d EV               (73) 

This allows us to express the entropy as  

  ,S TV                 (74) 

where   is an arbitrary function, again with the caveat 
that it must not violate thermodynamic stability criteria. 

The Einstein equations, (65) and (66), can be combined 
into [3, p. 373] 

3 3d d
,

d d
R p R

t t
              (75) 

3For a history of the uniformly rotating disc in relativity consult in [5, 
§9.1]. which, on the strength of (68), is the condition of adia- 
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baticity. The fundamental error [24] in both the old [25], 
and new [26,27], inflationary cosmologies is to consider 
(75) as a separate condition distinct from  

3d
0,

d
sR

t
                (76) 

where  is the entropy density. As can be seen from 
(68), (76) is not independent of (75). 

s

So given any expression for the energy density  , the 
expression for the pressure  can be found from (75), 
and Einstein’s expressions for the energy density and 
pressure are consistent with (75). But, there is a new 
element now, the thermodynamic relation (71), which is 
independent of time derivatives. Although Einstein’s equa- 
tions express the energy density and pressure in terms of 
the time derivatives of the scale factor, they must neces- 
sarily be compatible with (71) if they are to have any 
thermodynamic relevance whatever. 

p

3 constTR  

Since Einstein’s theory demands an adiabatic universe, 
it follows from (74) that  

.           (77) TV

Imposing this on (71) results in  

 3 1
,

E C

V R 
 

C

             (78) 

where  is a constant. Such a system is said to be 
repulsive [21,22], because will not condense:  

0.
T

E

V

    
             (79) 

Expression (78) is exactly the solution to the energy 
conservation equation, 

 3 ,
R

p
R

  


  ,k k
i iu u p

              (80) 

which is obtained when the energy-momentum tensor,  

k
iT p

is substituted into the Bianchi identity, 

           (81) 

0.k
ik

T
x





             (82) 

Thus, the Bianchi identities are consistent with an 
adiabatic universe4. 

Introducing (78) into (65) gives  

   3 13 1 23 const.R R k R     

0k

      (85) 

Since the expansion factor depends on time, we must 
necessarily set   

3 1 2 const.R R 

constR

, because (85) must be homo- 
geneous of order zero in time. Then (85) reduces to  

            (86) 

The perfect cosmological principle asserts that the uni- 
verse looks the same to any observer in motion [3, p. 
347]. It requires  ., or constR R 

constp

, with k = 0. 
The latter is the de Sitter model in which an empty 
universe expands exponentially. According to (65) and 
(66), the energy density is a constant, and the pressure is 
   . This equation of state is said to charac- 

terize the vacuum [20]. The same conclusion can be 
reached by considering solely the cosmological constant 
in those expressions, and that is precisely what de Sitter 
did [29]. The problem lies with Einstein’s equations for 
they cannot accomodate an energy density or pressure in 
a stationary universe. 

Alternatively, in the standard model, the Hubble pa- 
rameter, R R  1H  falls off as t , which means that 
R A t A  is a constant. This requires that we  , where 

take 
1

3
  in (86) which then reduces to ,  constRR 

which not the virial theorem. Moreover, although the 
expansion factor increases in time, it will be decelerating 
because 34R A t 

0

. In short, the condition (86) is 
entirely ad hoc since it does not correspond to any 
known theorem, apart from  

0

, which is the virial 
theorem. 

The expression for the energy density (65) can be 
made to look like a generalization of the relativistic virial 
theorem, and would seem to satisfy (86) for   . For 
upon introducing 

4However, when (81) is introduced into (82) there results,  2 34 3Mc R    into (65), there 
would result  0,k i

k k

u p
u

x x

 
 

 

k k

i
ik k

T hu
u h

x x

 
 

 
             (83)

where h = ε + p is heat content, or the enthalpy, density. It is unclear 
how by multiplying a zero-vector like (83) by the 4-velocity ui that it 
can it be projected on the direction of the 4-velocity [28]. In any event, 
since the 4-velocities satisfy uiui = −1 so that 

21
,

2

GM
R

R


0k   
0p

             (87) 

which is the relativistic virial5. The second of Einstein’s 
equations is given by (66), again with , but 
this time with 

0i k

iu u x   , the en-

ergy balance condition, 
 , viz.,  

2
,

GM
R

R
 

0p 

0,
k

k

k k k

hu p
u

x x x

 
 



k
i iT

u


 
 

               (84)

is correct. Yet, the two conditions, (83) and (84) are not one and the 
same, for when (84) is introduced into (83) there results 

             (88) 

which is Newton’s law. Therefore,  will cause 

0.k i

k i k

up p
hu

x


  


k

iu u
x x

 
 

             (85)
5The nonrelativistic virial would see the constant κ halved. 
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deviations from Newton’s law. 
Differentiation of (65) with respect to cosmic time , 

and use of the adiabatic condition in the form (80) give  
t

   1 3 .R R


3
6 6

R p
            (89) 

The equation of motion (89) can be written as  

 2
1 3 ,

GM

R
R   

0

            (90) 

so that    appears as a correction term to Newton’s 
law. In fact, 

2

3 2
3 ,

p GM

Rc
              (91) 

is equation of state for degenerate matter. The ratio of the 
pressure to rest energy density is the same order as the 
ratio of the Schwarzschild radius to the radius of a star, 
which is of the same order of magnitude as the red shift, 
the mass defect, and the deflection of light around white 
dwarfs [30]. For normal relativistic stars,   is of the 
order , while for white dwarfs it is , reaching 
unity in the case of a black-hole. Therefore, (67) can 
hardly be considered a thermal equation of state where  

610 410

1 2
,

3 3
     

2 n

. 

This is because (91) has nothing to do with the thermal 
equation of state (67), although many would contest this 
fact [20]. There is a big distinction between the rest 
energy density, , where  is the number density, 
and the internal energy 

nmc
 . The distinction is blurred by 

writing the energy density and pressure as [19, p. 87]  

2

2 2
and

31

c
nm p

v c
  



2

2 2
,

1

nm v

v c
  (92) 

where the bar means an average over all particles. Then, 
in the non-relativistic limit, where terms are retained to 
order 2 2v c , the thermal equation of state, (67), is re- 

produced with 
2

3
  . An average over all particles is  

confused with an average over a distribution of velocities, 
and the rest energy density has been omitted. As the 
above orders of magnitude show, the rest energy density 
is by far greater than the internal energy. In fact, the 
equation of state of (91) is [16, p. 41]  

2 2

2p G

nmc c
,C

T

M

R





 
   

 
         (93) 

where C mc    is the Compton wavelength, and T  
is the thermal wavelength. In the non-relativistic limit 

2   and T , while, in the ultra-relativistic 
limit, 

mkT 
1   and T c kT . In both cases, (93) be- 

comes an expression for thermal-gravitational equilibrium. 
Finally, using (65) to eliminate the energy density 

gives 

  

 2

1
1 3

2

RR

R
   




1 3 0

.  

The condition for acceleration, therefore, is [18, p. 395] 

.                 (94) 

Under this condition, (86) shows that the kinetic energy 
will increase with the radius instead of decreasing with it 
as the virial theorem dictates. Moreover, Le Châtelier’s 
principle is violated because (89) implies that due to a 
decrease in  R t , the cosmic fluid will undergo com- 
pression, leading to an increase in the pressure which, in 
turn, aids the compression [3]. 

Because of the adiabatic condition, (77), there will be 
no type of phase transition envisioned by the inflationary 
cosmology. If we impose on (71) that the energy be 
extensive, we will get  

1 1 .E VT                (95) 

For the standard model, 
1

3
  , so that this model  

would identify (95) with Stefan’s law of black-body 
radiation. Such a system is attractive and show signs of 
wanting to condense [21,22]:  

0,
T

E

V

    

p

  

                (96) 

as opposed to our adiabatic system which will not 
condense because of (79). Black-body radiation needs a 
heat source to keep the walls of the cavity at a constant 
temperature. So it cannot occur in an adiabatic universe, 
unless part of that universe can be singled out as being in 
thermal equilibrium with the rest of the universe. The 
same distinction is made between the canonical (iso- 
thermal) ensemble which is embedded in a larger micro- 
canonical (adiabatic) ensemble. This could explain CMBR, 
which would then not be a relic of a big bang. 

Likewise, we require  to be an intensive variable. 
Using (67) to evaluate (71) we obtain  

1

1 1
1

.
TV

p T
V

 







 

T

          (97) 

Differentiating (97) with respect to  we get  

 1 1d
,

d

pp h

T T T


 

h

T

           (98) 

where  is the enthalpy density, or the latent heat. The 
latent heat can be used to create a structural change in the 
system at the temperature ; if the volume is varied at  
constant temperature the liquid will either condense or 
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evaporate so that the pressure will remain constant at that 
temperature. Latent heat is required, but it cannot be 
used to re-heat the system to just below the critical 
temperature after the phase transition ended [25] because 
the temperature remains constant. In short, latent heat 
cannot heat, so that inflationary cosmology must look for 
some other source to reheat the universe. Moreover, en- 
tropy “can[not] be generated in any phase transition” 
[25]. 

The Carnot-Clapeyron equation, (98), describes a phase 
equilibrium, and as such it violates the adiabatic condi- 
tion that (74) be constant. It was first derived by Lord 
Rayleigh in an attempt to generalize Stefan’s law to 1   
dimensions [1, §6.2]. Thus, the phase transitions which 
the early universe was thought to have undergone could 
not have happened. 

Be that as it may, the inflationary scenario confuses a 
first-order phase transition, in which there is latent heat, 
with a symmetry-breaking phase transition in which there 
is none. In the latter type of transition, discontinuities oc- 
cur in the derivatives of thermodynamic potentials like 
the specific heat. New inflation [26,27] employs a scalar 
field,  , which was at one time displaced from the mini- 
mum of its potential, 0 

0
 (the “false vacuum”), to a 

new symmetry-breaking minimum  

44 .T

 [20, §8.2]. The 
two states have a different symmetry. This is not a phase 
transition of the first kind where two different states are 
in equilibrium; a symmetry change occurs at the critical 
point so it is possible to say in which of the two phases 
the system belongs at any point of the transition. 

The total energy consists of black-body radiation and 
an energy (zero-point) associated with the scalar field,  

                 (99) 

The free energy, F E TS  , will have the same form 
as (71), namely,  

  ,TV  


const

F V             (100) 

where  is an arbitrary function. Like (71), (100) ex- 
presses a dichotomy: Either  

0T 

., and the system 
has a zero-point energy and will not condense, or it is not 
constant and the system will condense as . If the 
system has a zero-point energy,  

0,
V

p

T

    
 

showing that it will not condense. The entropy [21],  

d ,
V V

F p
S V C

T T
   
 

C

          

will then be a constant, , or zero, in accordance with 
the third law. Yet, the zero-point energy in (99) leads to a 
condensation even at absolute zero, for  

0

0,
T

E

V 


     

E V

 

since  . The conclusion to be drawn is that a 
zero-point energy in (99) (repulsion) is incompatible with 
the simultaneous presence of black-body radiation (at- 
traction). 

5. Is There Gravitational Aberration? 

It is known that the absence of gravitational aberration 
requires a diminution in the magnitude of gravitational 
acceleration, just as if the electric field is to point in the 
direction of the charge, and not in its past position [31]. 
This is contested by the fact that light propagation is not 
collinear with its gravitational force [32], and the delayed 
time of propagation of the gravitational force would 
cause a couple to form between celestial bodies that 
would destroy their otherwise stable orbits. The reason 
why the field points to the instantaneous position of the 
source is thought to be a consequence of an exact can- 
cellation of, at most, linear terms in the velocities. What 
is changed is the magnitude of the field, not its direction. 

In the case of the Schwarzschild metric, the accelera- 
tion will be directed to the instantaneous position of a 
moving source of mass M  and velocity . Thus, no 
aberration occurs, but there will be a decrease in magni- 
tude of the acceleration by an anount [31]  

v

5
2

2 2

2 2

1 1
2 2

2
1 ,

GM
R

GM GM
R

c R c R

GM GM

R c R

 
     
  

     
 





 

to linear order terms in the ratio, v c . In comparison 
with (90), the last expression shows that the decrease in 
the magnitude of acceleration is caused by a negative 
pressure,  

2

2
3 .

GM

Rc
                (101) 

which is the equation of state, (91), with the sign re- 
versed. Curiously, the same effect has been attributed to 
gravitational aberration which would increase the angular 
momentum of an orbiting body thereby causing an ex- 
pansion of the universe as a whole [33]. 
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