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ABSTRACT 

The elastic properties of lead sulfur selenium are studied using first-principles calculations. The geometry optimized 
structural parameters for PbS0.5Se0.5 under different pressures are listed. The lattice parameter increase with increasing 
pressure, but enthalpy is constant. However, parameter B and Y decrease and parameter S increase with increasing 
pressure. The elastic constants satisfy the traditional mechanical stability conditions for these ternary mixed crystals. 
The elastic modulus as two functions of pressure from 0 - 10 GPa are obtained. The calculated elastic constants Cij de-
crease but with different rates under increasing pressure. 
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1. Introduction 

In both the fundamental physics and high-pressure tech- 
nique, the study of the mechanical properties of materials 
is of crucial importance. The determination, by both ex- 
perimental and theoretical simulations, of the mechanical 
properties under pressure is a highly challenging task. 
These properties are closely related to the shear rigidity 
of materials and correspondingly, to their elastic moduli 
[1]. The lead salts semiconductors PbS and PbSe have 
been subject of many experimental and theoretical works. 
They has been largely used in infrared detectors, as in- 
frared lasers in fiber optics, as thermoelectric materials, 
in solar energy panels, and in window coatings [2,3]. 
One of their interesting properties is their narrow funda- 
mental energy band gap [4,5]; that is why, these IV-VI 
semiconductors are useful in optoelectronic devices such 
as lasers and detectors [6-8].  

There are also many experimental studies for the mix- 
ture of these materials, for example, Lebedev and Slu- 
chinskaya have found the appearance of ferroelectricity 
in these IV-VI semiconductors [9]; and investigated the 
samples of PbSxSeyTe1−x−y quaternary solid solutions at 
low temperatures using electrical and X ray methods [10]; 
ab initio study of cubic PbSxSe1−x alloys by Kacimi et al. 
[11]; Structure, electronic and optical properties of 
PbS1-xSex by Labidi et al. [12]; the vacuum evaporated 
PbS1−xSex thin films were examined by Kumar et al., [13]; 
and multi-spectral PbSxSe1−x photovoltaic infrared detec- 
tors [14] were realized by Schoolar et al. 

This study was carried out to shed light on the future 

studies of scientists who experimentally prepare and test 
these alloys in laboratories, to help them in determining 
the change in amounts of additives in alloys, and to de- 
termine the accordance of theoretical studies with ex- 
periments and other theoretical works. The elastic prop- 
erties of PbS0.5Se0.5 will change under pressure, which 
directly influences various applications of PbS-based de- 
vices under different working conditions. Taking into ac- 
count of different application conditions, the elastic pro- 
perties of lead sulfide at 0 - 10 GPa are studied using 
first-principles calculations in our work. 

2. Computational Method  

The first-principles calculations presented here were per- 
formed by the CASTEP program on the platform of Ma- 
terials Studio, which is based on density functional the- 
ory using a plane-wave basis set for the expansion of the 
wave functions [15-17]. Non-local ultra-soft pseudo-po- 
tentials were used to describe the valence electrons. Ge- 
neralized gradient approximation (GGA) with PBE 
Scheme was adopted to evaluate exchange-correlation 
energy. Monkhorse-pack mesh was used to select 56 
k-points for bulk calculation. A plane-wave cutoff energy 
of 340 eV was employed throughout. It was shown that 
the results are well converged at this cutoff. The Pb (5d 
6s 6p), S (3s 3p) and Se (3d 4s 4p) were treated as va- 
lence state. The geometries for all the systems are opti- 
mized. The minimum total energy of the structure is 
achieved by relaxing the internal coordinates using the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. 
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The following thresholds for converged structures are 
employed: energy change per atom <2 × 106 eV, residual 
force 0.5 eV/nm, stress below 0.05 GPa and the dis- 
placement of atoms during the geometry optimization 
0.001 nm. The GGA method maybe underestimates the 
band gap energy in both semiconductors and insulators. 
We can estimate a multiplicative correction factor to the 
calculated results in order to adjust the band gap to the 
experimental results. However, our relative results do not 
include the correction factor in this paper for conve- 
nience. 

The elastic constants were calculated by the finite 
strain method. In this method, the ground state structure 
is strained according to symmetry-dependent strain pat- 
terns with varying amplitudes and a subsequent calcula- 
tion of the stress tensor after a re-optimization of the in- 
ternal structure parameters. Further-more, the bulk mo- 
dulus B and the shear modulus S were calculated from 
the elastic constants. Young’s modulus was then com- 
puted from these values. 

3. Results and Discussion  

In mechanical properties, element thereof which is acted 
on by external forces is in a state of stress. Moreover, if 
the body is in equilibrium, the external stress must be 
exactly balanced by internal forces. In general, stress is a 
second rank tensor with nine components as follows [18- 
21]:  
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In an atomistic calculation, the internal stress tensor 
can be obtained using the so-called virile expression 
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where index i runs over all particles 1 through N, mi, vi and 
fi denote the mass, velocity and force acting on particle i, 
and V0 denotes the (undeformed) system volume.  

Application of a stress to a body results in a change in 
the relative positions of particles within the body, ex- 
pressed quantitatively via the strain tensor:  
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                 (3) 

For a parallelepiped (e.g., a periodic simulation cell) 
characterized in some reference state by the three column 
vectors a0, b0, c0, and by the vectors a, b, c in the deformed 
state, the strain tensor is given by:  
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where h0 denotes the matrix formed from the three column 
vectors a0, b0, c0, h denotes the corresponding matrix 
formed from a, b, c, T denotes the matrix transpose, and G 
denotes the metric tensor .  

The elastic stiffness coefficients, relating the various 
components of stress and strain are defined by:  
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where A denotes the Helmholtz free energy.  
For small deformations, the relationship between the 

stresses and strains may be expressed in terms of a gen- 
eralized Hooke’s law:  

                   (6)  

or 
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where Slmnk denote the compliance components. Note that 
in both Equations (6) and (7), the summation convention 
is implied. For example, s21 is given in full as: 
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In view of the fact that both the stress and strain tensors 
are symmetric, it is often convenient to simplify these 
expressions by making use of the Voigt vector notation. 
Stress is represented as: 
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For Example  

 

while strain is represented as:  
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For Example:  11 22 33 13 12

The generalized Hooke’s law is thus often written as: 

                   (10)   

Note that the 6 × 6 stiffness matrix C is also symmetric, 
and hence a maximum of 21 coefficients is required to 
fully describe the stress-strain behavior of an arbitrary 
material. Note also that C is no longer a tensor, since it 
does not obey the required transformation rules.  
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For an isotropic material, the stress-strain behavior can 
be fully described by specifying only two independent co- 
efficients. The resulting stiffness matrix may be written:  

sure = 5 GPa to save space in journal. The geometry op- 
timized structural parameters for PbS0.5Se0.5 alloys under 
different pressure are shown in Table 1. Here, E is the 
enthalpy of the system, B is the bulk modulus, S is the 
shear modulus and Y is the young’s modulus. These 
properties, which are the most interesting elastic proper- 
ties for applications, are often measured for polycrystal- 
line materials when investigating their hardness. 
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where λ and µ are referred to as the Lamé coefficients. 
For the isotropic case, Expressions used for the Young 
modulus Y, bulk modulus B and Shear modulus S are 
given as follows [16,18]: 

In Table 1, we can find that lattice parameter a and 
enthalpy E both constant with increasing pressure and S 
is the increase with increase pressure, However, parame- 
ter Y and B decrease with pressure. To our knowledge, 
many materials usually become metallic with increasing 
pressure. So, the atoms get closer, lattice parameter de- 
creases, and thus all modulus become larger. But in the 
PbS0.5Se0.5 alloys lattice parameter increase. So, the at- 
oms get farther and thus modulus becomes larger, these 
materials become non-metallic with increasing pressure. 
Figure 2 shows the increase lattice parameters with in- 
creasing pressure.  
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As in the first step in calculations, the lattice constants 
of alloys at equilibrium are calculated by minimizing the 
lattice parameter of the crystal, i.e. the ratio of total en- 
ergy of the crystal to its volume. The tested optimization 
setup convergence is shown in Figure 1 only for Pres-  

Figure 3 shows elastic modulus of PbS0.5Se0.5 alloys 
under different pressure, S is the shear modulus, and Y is 
the Young’s modulus, Parameter Y smaller decrease with 
pressure and S is the increase with increase pressure. In  

 

 

Figure 1. The optimization setup convergence of PbS0.5Se0.5 alloys. 
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Table 1. Geometry optimized structural of PbS0.5Se0.5. 

Pressure (GPa) Referencre a (nm) E (×103 eV) Β (GPa) S (GPa) Y (×10−2 GPa) 

Present 0.608 −3.8696 53.26 8.36 3.3988 

Theorya 0.612 ------ 50.80 ------ ------ 0 

Theoryb 0.612 ------ 48.4 ------ ------ 

5 Present 0.615 −3.8696 19.95 10.99 3.1670 

10 Present 0.657 −3.8676 12.64 11.01 3.1102 

E is the enthapy of the system, Β is bulk modulus, S is the shear modulus and Y is the young’s modulus. Refa. [11], Refb. [12]. 

 

 

Figure 2. Lattice parameters a of PbS0.5Se0.5 with different 
pressure. 
 

 

Figure 3. The elastic modulus S and Y versus the pressure. 
 
the present case the bulk modulus B of PbS0.5Se0.5 alloys 
were studied under different pressure (P = 0.5 and 10 
GPa). It is seen that the compressibility, according to the 
decreasing value of different pressure (see Figure 4). 

The elastic constants of solids provide a link between 
the mechanical and dynamical behavior of crystals, and 
give important information concerning the nature of the  

 

Figure 4. The compressibility of PbS0.5Se0.5 versus the pres- 
sure. 
 
forces operating in solids. In particular, they provide in- 
formation on the stability and stiffness of materials, and 
their ab initio calculation requires precise methods. Since 
the forces and the elastic constants are functions of the 
first-order and second-order derivatives of the potentials, 
their calculation will provide a further check on the ac- 
curacy of the calculation of forces in solids. The sec- 
ond-order Elastic constants (Cij) are calculated by using 
the “volume-conserving” technique [22,23] and the find- 
ings are given in Table 2.  

For a stable tetragonal structure, the six independent 
elastic constants Cij (C11, C12, C13, C33, C44 and C66) should 
satisfy the well known Born-Huang criteria for stability 
[24],  
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while for cubic crystals, the three independent elastic 
constants  11 12, ,ijC C C C44  satisfy inequalities,  
 – 0C C  0C  0C   2 0C C 11 12 11 44 11 12

Our results for elastic constants in Table 2 obey these 
stability conditions for PbS0.5Se0.5 alloys. 

, , , .  
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Table 2. The elastic contants Cij of PbS0.5Se0.5 under different pressure. 

Pressure (GPa) C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa) 

0 357.50 62.3 55.64 321.51 11.51 11.06 

5 319.32 23.64 18.05 321.44 11.01 10.95 

10 312.23 16.57 10.79 313.03 10.88 11.26 

 
The elastic constants Cij are very important for some 

mechanical properties of PbS0.5Se0.5 especially in some 
special application conditions such as internal strain and 
thermo-elastic stress. The calculated results of Cij of 
PbS0.5Se0.5 as a function of pressure from 0 to 10 GPa are 
presented in Table 2. For these alloys, no experimental 
data are available. From this table, we find that C11, C12 
and C13 decrease under increasing pressure. However, 
C33, C44 and C66 decrease but with different rates under 
increasing pressure. 

4. Conclusions  

In present work, the elastic properties of lead sulfur sele- 
nium are investigated using first-principles calculations. 
The results are obtained by a first-principles method based 
on the GGA using plane-wave pseudo potentials. The geo- 
metry optimized structural parameters for PbS0.5Se0.5 
under different pressures are listed. The elastic constants 
satisfy the traditional mechanical stability conditions for 
these ternary mixed crystals. The lattice parameters in- 
crease with increasing pressure. However, parameter S is 
the increase with increase pressure but parameter Y and B 
decrease with pressure. The calculated results of Cij of 
PbS0.5Se0.5 as a function of pressure from 0 to 10 GPa are 
listed. C33, C44 and C66 decrease with different rates un- 
der increasing pressure. However C11, C12 and C33 de- 
crease under increasing pressure. 
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