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Abstract 

This paper explores the selection of optimal portfolio by replacing the stan-
dard Mean-Variance model by Mean-Minimum Return Level (MRL) frame-
work and adding one important dimension—expectation of bounded First 
Passage Time (FPT) towards the MRL. To measure how much a given portfo-
lio is exposed to risk, the new model can capture both, the amount of the 
largest possible loss at a certain confidence level and time to such an event 
occurring. The novelty of this paper is the introduction of bounded first pas-
sage time towards MRL and taking its expectation into consideration as an 
additional factor in portfolio selection decision making. Assuming that the 
asset price dynamics follow multi-dimensional Geometric Brownian Motion 
with drift, we obtain a portfolio wealth process for multiple assets and we 
evaluate the lowest possible value to which it can drop by a high confidence 
level. Then we extend our examination of the optimal portfolio selection by 
ultimately obtaining the efficient surface of risky portfolios. As a result, the 
paper shows that the third dimension can make a significant difference while 
choosing the asset weights compared to classical models ignoring the portfo-
lio return paths as long as they achieve a desired combination of risk and re-
turn.  
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1. Introduction 

Portfolio selection theories have gone through various improvements since the 
introduction of its most prominent theory by Harry Markowitz in 1952. He was 
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first to introduce the risk-return principle with the well-known Mean-Variance 
framework. The basic idea is to arrive at an efficient frontier curve of risky assets 
by minimizing volatility for given expected returns. It is shown that taking more 
than one risky position can eliminate some portion of risk as an investor realizes 
the effect of diversification. Volatility as a risk measure is ideal when portfolio 
returns are normally distributed. However, when dealing with asymmetric dis-
tributions, it simply leads to misinterpretation of risk. Furthermore, in most of 
the cases, especially during abnormal economic states, history shows that mar-
kets do not follow the logic of normal distribution. In addition, measuring risk 
by volatility penalizes losses equally to profits of the same magnitude. However, 
investors are more concerned with a downside risk rather than simple volatility 
so that they are aware of the worst-case scenario that can be realized with a high 
degree of confidence. In addition, while aiming to select less correlated assets is a 
rational approach, there are some downsides we focus on. Slight change in cor-
relation can cause significant change in MRL. At the same time, one may allocate 
funds into assets in proportions, which while being optimal in Mean-Variance 
sense, can cause hitting the MRL level faster by having overlooked one impor-
tant factor—expected time of the portfolio return process towards the minimum 
level. This may be a source of severe problems for investors who are exposed to 
margin calls or need to raise funds in a short period of time if such an event is 
realized. 

To account for the problem of measuring downside risk rather than simple 
dispersion, Value At Risk (VAR) was introduced by JP Morgan in the early 
1990s. Since then, it has become a major benchmark instrument in the hands of 
financial institutions and regulators for measuring risk. Some theories appeared 
in the late 90s which promoted application of VAR and MaxVAR in portfolio 
management. Bookstaber and Richard [1] published a paper with some critical 
values about classical risk management. In 2004, Boudoukh et al. [2] did re-
search about computing long horizon VAR for portfolios exposed to mark to 
marketing. In this paper it is shown that VAR is a very useful measure of risk in 
a mark to market environment and the way to compute it is explained. Basically, 
VAR is a statistical measure. Specifically, a quantile of losses at some confidence 
level indicates that the highest possible loss can be incurred in the worst-case 
scenario. There have been numerous methodologies for computing VAR in dif-
ferent circumstances. Expected Tail Loss (ETL, aka Expected Shortfall), defined 
as the average loss beyond VAR is a coherent risk measure according to Artzner 
et al. [3] (1999) and is widely used in risk calculation and portfolio optimization 
problems. Artzner et al. [3] provide a list of axioms a risk measure must satisfy 
in order to be coherent. Classical Markowitz optimization technique was trans-
lated into Mean-VAR (or Mean-ETL) framework and the usefulness of ETL was 
examined by Rockafellar et al. [4] (2000), where volatility is replaced by VAR (or 
ETL) and optimization is done based on minimization of VAR (or ETL) and 
maximization of expected returns of portfolio. While this approach is a step to 
the right direction when it comes to assessing worst possible risk that can be rea-
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lized, it still lacks one important factor—expected time when the returns hit the 
lowest possible value at some confidence level. This is critically important for 
portfolios exposed to mark to marketing or margin calls. Adding this third di-
mension makes most of its sense when the portfolio volatility is large enough to 
cause the expected hitting time move before the investment horizon. In this sce-
nario, one can differentiate portfolios by taking into account the expectation of 
hitting time bounded by the investment length. In case when portfolio variance 
is sufficiently low, the expectation of bounded hitting time coincides with the 
investment horizon and becomes an ignorable factor and an investor can stay 
within the two-dimensional Mean-MRL framework. 

Lack of historical data or the complexity of parameter estimation forces in-
vestors to apply non parametric methods. Lin et al. [5] propose the portfolio op-
timization problem based on semi variance of uncertain variables. Within this 
model, the returns of assets are estimated based on experts’ subjective views. 
Models like uncertain semi variance have parameters which are hard to quantify, 
but in uncertain situations subjective views are useful or at least the only solu-
tion. 

Closely related idea to the uncertain semi variance model is the semi absolute 
deviation model proposed by Qin et al. [6]. Within this paper, authors examine 
the portfolio selection by several mean-semi absolute deviation adjusting models 
to measure trade off between risk and return. Views about the asset returns are 
obtained from expert opinions like in semi-variance model. 

Our aim is to construct a model which delivers the best performance in the 
sense that safety is taken as a priority. In order to concentrate on the contribu-
tion of the paper, we use Minimum Return Level as a risk measure instead of 
VAR or ETL. Once having MRLs and portfolio expected returns computed for 
different sets of asset weights, we extend the framework by introducing expected 
first passage time bounded by investment horizon as a third dimension used for 
decision making. This is done by computing the expectation of the minimum 
between the investment horizon and the first passage time of portfolio return 
process towards the minimum level. Once all three quantities for a given set of 
portfolio weights are in place, we define the best combination of them by max-
imizing MRL and the expected bounded first passage time for a given expected 
return of a portfolio. The ultimate result is the efficient surface of risky portfo-
lios. This can be regarded as the three-dimensional counterpart to efficient fron-
tier in classical Mean-Variance model. 

As a comparison to the Mean-Variance model, while this model might suggest 
holding a certain weights in assets allocated within a given portfolio, the 
Mean-MRL-FPT model may reject it altogether and find a set of weights which 
is better in 3-dimensional sense. In addition, it is quite possible that the optimal 
portfolio weights found by the Mean-Variance framework produces a negative 
drift which is avoided by the Mean-MRL-FTP model. In a highly volatile envi-
ronment, portfolio of assets selected by the Mean-Variance framework will hit 
the lowest possible return level earlier than the portfolio selected by Mean-MRL-FTP 
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framework and at the same time, the latter includes the risk measured by va-
riance as it is reflected in computation of MRL. So, there is a double benefit from 
applying MRL and FTP when the available assets are volatile enough. 

The paper is structured in four main parts. The second section examines the 
differential equations which represent the multi-dimensional Ito’s processes and 
constructs the portfolio process. Within this section, it is shown that in order for 
the portfolio wealth to drop to its minimum level, the geometric Brownian mo-
tion that determines the portfolio wealth must reach the level which we call the 
Minimum Return Level. This brings us to the next, third section. In this section 
the MRL is formally defined according to its probability function. The fourth 
section overviews the third dimension of the model—expected bounded First 
Passage Time towards MRL. This value consists of two parts—the probability 
density function and the cumulative probability function of the First Passage 
Time. The final part, section five deals with the model construction. It combines 
all the three dimensions and obtains the efficient surface of risky portfolios. 

2. Portfolio Wealth Process 

Consider a portfolio consisting of n risky assets. [7] examines the mul-
ti-dimensional Brownian motions for self-financing portfolios. 

To model the asset price movements, we take n-dimensional Ito’s process 
which is a vector of asset prices ( )T* 1, , nS S S=   driven by n-dimensional 
Brownian motion ( )T1, , nB B B=  , where ( ), 0i i

tB B t= ≥  be the real valued 
Brownian motion which starts from 0 on ( ), , PΩ  : 

( )d d di i i i
t t tS S t Bµ σ= +                       (2.1) 

where iµ  is the drift and iσ  is the row vector ( )1, ,i inσ σ . For more con-
venient notation we can convert the differential equation into the following 
form: 

( )1 1d d d di i i i in n
t t t tS S t B Bµ σ σ= + + +               (2.2) 

Define the portfolio wealth process tV  corresponding to self-financing port-
folio to follow the differential equation: 

1 1d d dn n
t t t t tV S Sθ θ= + +                     (2.3) 

Since we only consider long portfolios, here j
tθ  denotes the number of jth 

asset purchased at time 𝑡𝑡and it is a finite variance process. 
To solve this process, we extend the differential equation and introduce some 

notations. Let i i i
t t tSπ θ=  be the cash position of ith asset and let 

i
i t
t

t

q
V
π

=  be the  

weight of ith asset within a portfolio at time t. Having defined these quantities, we 
can proceed to solve the portfolio wealth process as follows: 

( )
( )

( )

1 1 1 11 1 12 2 1

2 2 2 21 1 22 2 2

1 1 2 2

d d d d d

d d d d

  d d d d

n n
t t t t t t

n n
t t t t t

n n n n n nn n
t t t t t

V S t B B B

S t B B B

S t B B B

θ µ σ σ σ

θ µ σ σ σ

θ µ σ σ σ

= + + + +

+ + + + +

+ + + + + +





 

      (2.4) 
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Multiplying the terms, factoring out the like terms and converting the equa-
tion into j

tπ  terms yields: 

( )
( )
( )

( )

1 1 2 2

1 11 2 21 1 1

1 12 2 22 2 2

1 1 2 2

d d

d

d

d

n n
t t t t

n n
t t t t

n n
t t t t

n n n nn n
t t t t

V t

B

B

B

π µ π µ π µ

π σ π σ π σ

π σ π σ π σ

π σ π σ π σ

= + + +

+ + + +

+ + + +

+ + + + +







 

           (2.5) 

At this point we have arrived to an equation defined in terms of dollar posi-
tions in each asset within a portfolio. However, since our ultimate goal is to op-
timize the asset weights, we need to convert this equation into the terms of j

tq . 
This is achieved by multiplying and diving the right side of the equation by tV  
at the same time. So, the result is an equation translated into weight terms: 

( )
( )
( )

( )

1 1 2 2

1 11 2 21 1 1

1 12 2 22 2 2

1 1 2 2

d d

d

d

d

n n
t t t t t

n n
t t t t

n n
t t t t

n n n nn n
t t t t

V V q q q t

q q q B

q q q B

q q q B

µ µ µ

σ σ σ

σ σ σ

σ σ σ

= + + +

+ + + +

+ + + +

+ + + + + 








 

           (2.6) 

Since the optimal weights imply an investor should hold these weights con-
stant during an investment horizon, it means an investor should constantly re-
balance the portfolio in order to maintain the once selected weights. So, assum-
ing that weights are held constant at any point in time t, we can correspondingly 
update the Equation (2.6) into the form: 

( )
( )
( )

( )

1 2
1 2

11 21 1 1
1 2

12 22 2 2
1 2

1 2
1 2

d d

d

d

d

n
t t n

n
t n t t

n
t n t t

n n nn n
t n t t

V V q q q t

q q q B

q q q B

q q q B

µ µ µ

σ σ σ

σ σ σ

σ σ σ

= + + +

+ + + +

+ + + +

+ + + + + 







 

          (2.7) 

In this equation, all sums within the parenthesis are constants, so we can 
shorten the notation by introducing the new notations: 

Let 
1 2

1 2
n

nq q qµ µ µ µ= + + +  

and 1 2
1 2

j j nj
j t n tq q qσ σ σ σ= + + +  for all 1, ,j n=  . 

Equation (2.7) now becomes: 
1 2

1 2d d d d d n
t t t t n tV V t B B Bµ σ σ σ= + + + +              (2.8) 

Solution to this differential equation by [7] is: 

( )
2 2 2 1 2

1 2 1 2
1
20 e

n
n t t n tt B B B

tV V
µ σ σ σ σ σ σ   − + + + + + +

 
+=

 

          (2.9) 

Power can be simplified once more if we let ( )2 2 2
1 2

1
2 nµ µ σ σ σ= − + + +

  
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and represent the sum of Brownian motions as a single Brownian motion by ad-
justing the coefficients accordingly. So 



1 2
1 2

n
t t n t tB B B Bσ σ σ σ+ + + =   

where 
2 2 2

1 2 nσ σ σ σ= + + +
 . 

Finally, the portfolio wealth process is: 

( ) 0 e tt B
tV V µ σ+=                        (2.10) 

At this point, it is clear that the power: 


t tR t Bµ σ= +                        (2.11) 

So called return of the portfolio is a Brownian motion with drift and diffusion 
coefficients. Since it represents the rate at which the portfolio wealth is changing, 
( )0 0R = . 

3. Minimum Return Level 

Given the portfolio wealth process by (2.10), it is clear that minimum portfolio 
wealth by high confidence level is reached when (2.11) obtains the lowest value 
by the same confidence level. In order to measure it, we need to know the prob-
ability distribution function of portfolio returns. Once we have estimated the 
probability distribution function F for portfolio returns, we can extract the 
quantile ( )1F α− , where alpha is a significance level, usually taken to be 1% or 
5%. The key improvement brought by the First Passage Time is that, if the esti-
mated portfolio return probability density function does not turn out to be 
symmetric while the volatility is significantly large, then the portfolios’ expected 
bounded FPTs will often differ a lot. Graphically, if we denote MRL as 

( )1m F α−= , on a normal distribution density function, it looks as follows 
(Figure 1). 
 

 
Figure 1. Normal probability density function corresponding to the cumulative probabil-
ity function F. ( ) ( )1 1, , , 0.1428 0.05,0.4,0.33m F Fα µ σ− −= − = . 
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From now on we will use m as the lowest level for the returns process (2.11) to 
reach in order to obtain the lowest portfolio wealth. 

4. Expectation of Bounded First Passage Time. 

Next step is to define the new dimension—expectation of bounded first passage 
time.  

For a Brownian motion with drift  

t tX t Wµ= +                           (4.1) 

if we denote the minimum value of this process till time t as: 

infx
t s t sM X≤=                          (4.2) 

and let { }min 0;y tt X yτ = ≥ ≤  be the first passage time to the level y, then it is 
shown from [8] that the probability distribution function for yτ  is given by: 

( ) ( ) 2ex y
t y

y t y tP M y P t N N
t t

µµ µτ − +   
≤ = ≤ = +   

   
      (4.3) 

where ( )N x  is the cumulative standard normal probability distribution func-
tion. 

We are looking for the first passage time for the returns process given by 
(2.11) towards the level m (which we called MRL). m is usually a negative quan-
tity (Figure 2).  

We know that ( )0 0R = . In order for (2.11) to reach the m level, the follow-
ing equation must be satisfied: 



t
m t Bµ
σ σ

= +


 

                        (4.4) 

So, the first passage time { }min 0;m tt R mτ = ≥ ≤  has the probability distri-
bution function: 

( )
2

e
m

t
m t m tP R m N N

t t

µ
σ σµ µ

σ σ
− +   

≤ = +   
   



 

 

 

           (4.5) 

 

 
Figure 2. Blue graph is one possible path of the Brownian motion (2.11), red line is the m 

level to which it can drop. MRL: 5%m = − , Return process: 0.35 0.25t tR t B= + , posi-
tive drift: 0.35µ = , diffusion: 0.25σ = .  
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If we have a Brownian motion with drift and diffusion given by: 

d d dt tX t Wµ σ= +                       (4.6) 

and ( )min 0; tt X yτ = ≥ ≤ , then it is shown in [8] that the probability density 
function of yτ  is given by: 

( )
( )20

20 2
2 3 e

2πy

t y X

t
y X

f t
t

µ

σ
τ σ

− +
−−

=                  (4.7) 

Correspondingly by [9] 

( ) ( ) ( )0
d 1

y

T
y yE T tf t t T P Tττ τ ∧ = + − ≤ ∫            (4.8) 

Converting (4.7) into the terms of R yields: 

( )
( ) ( )( )2

2
0

2
2 3

0
e

2πm

t m R

t
m R

f t
t

µ

σ
τ σ

− +
−−

=






               (4.9) 

Thus 

( ) ( ) ( )
0

d 1
m

T
m mE T tf t t T P Tττ τ ∧ = + − ≤ ∫          (4.10) 

The reason we switch to the bounded first passage time is that since 
( )0 0R m= > , from (2.11) it can be shown that for ( )0, mEµ τ> = ∞ . We al-

ways consider portfolio return process which has a positive drift, because we 
examine only long portfolios in this paper. 

5. Mean-MRL-FPT Framework 

After having defined the portfolio wealth process, and MRL and expectation of 
the bounded first passage time, we can construct the model of portfolio optimi-
zation. The goal is to find the maximum MRL and bounded First Passage Time 
for a given expected return for the investment end time [ ]: TT E R Tµ=  . 

So, there are three dimensions giving the efficient set of portfolios. 

( )
[ ]
m

T

E T
E R

m

τ ∧
 

Varying the weights 1 2, , , nq q q  allocated in the assets gives us the set of 
different portfolios from which selecting the best combination of the above 
quantities yields the efficient surface (Figure 3).  

On this surface, all risky portfolios are optimal in Mean-MRL-FPT sense since 
it is impossible to find a better combination of given quantities for each. 

As an important note, the model is particularly useful when the individual as-
sets within a portfolio have large variance causing the portfolio variance to be 
large as well. This makes the portfolio returns likely to hit the minimum level 
before the investment horizon. So, in this case ( )mE T Tτ ∧ <  and it makes 
sense to compare such portfolios. Otherwise, if the individual volatilities are low, 
then no matter what weights are allocated in each asset, the expected bounded 
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first passage time frequently coincides to the investment horizon-T. In this case, 
( )mE T Tτ ∧ =  for any set of weights allocated to different assets and the first 

passage time can be dropped altogether and the decision is to be made solely on 
two dimensions—Mean and Minimum Return Level. In such a situation, we 
would obtain the two-dimensional curve that looks much like the efficient fron-
tier (Figure 4).  
 

 
Figure 3. Surface of portfolios obtained by different weights allocated to the assets in-
cluded. 
 

 
 

m 0.042 0.045 0.0448 0.0453 0.0463 0.0478 0.0489 

TER  0.1145 0.11478 0.11492 0.11516 0.11521 0.11538 0.11558 

Figure 4. Efficient frontier constructed by ( )TE R  and ( )1m F α−=  by different port-

folios. 
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6. Conclusions 

The paper examined the portfolio selection process by introducing the frame-
work involving three dimensions. The basic idea was to extend the two-dimensional 
framework by an additional one—the expected bounded first passage time. The 
usefulness of the approach is evident once the individual assets within a portfolio 
have large volatilities causing the returns to hit the minimum level before the 
investment horizon. The paper only concerned itself with optimizing risky port-
folios. There can be numerous continuations to the problem. If an investor de-
cides to allocate part of the investment amount into some risk-free assets, then 
the optimal weights must be modified according to some criteria. In 
two-dimensional Mean-Variance model, maximization of Sharpe ratio and 
building a Capital Allocation Line (CAL) is one possible development. Similarly, 
one may think of capital allocation plane as an analogue to CAL in 3D. However, 
this paper is restricted to risky portfolio optimization.  

On a final note, as far as applicability of the model is concerned, it is obviously 
impossible to continuously rebalance the portfolio in order to maintain the con-
stant weights. However, one can adopt some discretization methodology to find 
the optimal interval for making trades and taking transaction costs into account 
at the same time. 
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