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Abstract 
This paper explores the dynamics of risk aversion of a representative agent 
with an iso-elastic utility function. In contrast to most of the existing litera-
ture, we estimate the coefficient of relative risk aversion from option prices. 
To do this, we transform the risk-neutral density function obtained from a 
cross-section of option prices to an objective distribution function that re-
flects individuals’ risk aversion through a CRRA utility function. The dynam-
ics of the relative risk-aversion coefficient are obtained by repeating the same 
estimation procedure over rolling windows. This procedure uncovers strong 
variation in risk aversion over time. We also propose a simulation procedure 
to construct confidence intervals for the risk-aversion coefficient in each pe-
riod. We assess the robustness of these confidence intervals under different 
assumptions on the data generating process of stock prices. The results imply 
a strong influence of volatility on the variation of risk aversion. In an empiri-
cal application, we compare the forecasting performance of our approach 
based on our risk-aversion estimates against the method proposed in [1]. 
Overall, we find that our simulation based approach obtains better forecast-
ing results than bootstrap methods. 
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1. Introduction 

Stock options are priced using risk-neutral expectations of the payoff of the 
underlying asset. These risk-neutral expectations usually incorporate in the 
option pricing formula a flexible specification of the density function for 
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describing the price of the underlying asset. Stock prices are priced, instead, by 
discounting the expected value of the future cash flows of the asset under an 
objective distribution function. Both approaches incorporate individuals’ attitude 
towards risk. The risk-neutral approach embeds individuals’ risk aversion in the 
risk-neutral probability distribution of the risky payoffs, that are discounted 
using the risk-free rate. In contrast, the objective approach uses objective 
probabilities, inferred from historical prices or alternative parametric methods, 
and discount future payoffs using a stochastic discount factor that incorporates a 
risk premium over the risk-free rate. 

There are different approaches to connect the risk-neutral valuation with the 
objective valuation. A convenient formulation that relies on an utilitarian 
approach is to assume a parametric relationship between the distribution 
functions through a utility function. The analytical tractability of power utility 
functions offers a convenient modelling device for describing individuals’ 
preferences. In this paper we exploit this parametric relationship between the 
risk-neutral and objective distribution functions and the power utility function 
to extract consistent estimates of the coefficient of relative risk aversion of a 
representative agent. There are two reasons for extracting risk aversion from 
risk-neutral valuations of option prices. First, risk-aversion estimates are 
economically important and provide relevant information for understanding the 
performance and dynamics of financial markets. Second, the empirical finance 
literature confirms the significant improvement in the ability of parametric 
models for forecasting stock prices that incorporate reliable estimates of risk 
aversion. 

The link between expected returns and investors’ risk-preferences in financial 
markets is the foundation of research concerning the risk-return relationship. 
Several methods have been developed over time in order to determine the 
risk-premia underlying asset markets. Popular approaches are, for example, the 
standard and consumption-based capital asset pricing model. These pioneering 
asset pricing methods are usually estimated based on asset price returns, treasury 
yields and consumption data. Although these models are still the building blocks 
of current asset pricing models and the foundation of today’s financial economics, 
their success in estimating the underlying risk premia in financial markets has 
been limited. A prominent example is the seminal article by [2] on the equity 
premium puzzle. These authors retrieve extremely high values of the risk 
aversion coefficient in order for the asset pricing model to be compatible with 
observed asset prices. These values are not economically justified. Other studies 
have tried to correct these estimates by imposing different assumptions on 
individuals’ preferences. For example, [3] makes strong assumptions on the 
flexibility of the underlying utility function. This author finds estimates of the 
risk aversion coefficient equal to one and consistent with the presence of a 
log-utility function for modelling the preferences of a representative agent. [4] 
find values of the risk aversion coefficient in the range of two. [5] in their 
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seminal study propose a novel GMM econometric framework for estimating the 
model parameters, however, their parameter estimates are consistent with 
previous estimates and oscillate between 0 and 1 [2], discussed above, find values 
of the risk aversion coefficient around 55 that are difficult to reconcile with 
practitioners’ and financial economists’ expectations on the underlying risk 
aversoin in financial markets. [6] propose a recursive utility function for 
modelling individuals’ preferences and find under this novel approach a risk 
aversion coefficient that oscillates between 0.4 and 1.4. It is important to remark 
that the Epstein-Zin utility function is able to disentangle individuals’ risk 
aversion from the rate of intertemporal substitution. [7] propose habit formation 
models in which individuals’ preferences depend on a reference point under 
which perceived utility of the asset is zero. This approach provides more 
variability in the estimates of the risk aversion coefficient. Thus, these authors 
find a risk aversion coefficient between 0 and 12. [8] n an asset pricing context 
find values in the range of 40 - 50 consistent with those found in [2]. [9] and [10] 
find values between 5.4 and 11.9 and smaller than 3, respectively. More recently, 
[11] derives a coefficient of risk aversion of 12.7 and [12] using option prices 
close to their asset price returns and consumption data find a value of the 
relative risk aversion coefficient equal to 3.52. These authors exploit option 
prices to extract implied volatility measures for estimating the risk aversion 
coefficient. 

The conclusion of this literature on risk aversion is that although it well 
acknowledges the existence of a premium in financial markets to compensate 
individuals for the presence of risk in asset prices under individuals’ risk 
aversion, there is much controversy on how to measure it and what values are 
consistent with the realizations of stock prices. There are three major approaches 
for retrieving risk-aversion coefficients based on option prices. They all try to 
combine risk-neutral dynamics from option prices with the realized dynamics of 
asset prices. The first approach estimates the risk-neutral density based on 
option prices separately from the density of asset prices obtained from historical 
asset price data. Afterwards, both densities are compared against each other to 
retrieve the risk preferences of market participants [11] [13]-[20]. The second 
approach jointly estimates the continuous-time dynamics of the risk-neutral and 
the subjective process. Option and asset prices are used to jointly estimate the 
pricing kernel that incorporates the premia for price, volatility and jump risks. 
[21] [22] [23] [24]. The third approach assumes a parametric form of the risk- 
aversion function, which is combined with the risk-neutral density in order to 
derive the subjective density [1] [19] [24] [25] [26] [27]. 

Our aim is to follow the third approach, and more specifically, [1]. One of our 
objectives is to gain insight on the variation of risk-aversion estimates over time 
and, hence, through the business cycle. [1] provide quantitative methods to 
evaluate risk-aversion estimates. These authors introduce two different app- 
roaches. First, a Monte-Carlo simulation method to retrieve the standard error 
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of risk-aversion estimates. Second, a Bootstrapping method to capture the 
influence of actual data and potential model misspecification on the reliability of 
risk-aversion estimates. Despite the appealing of both approaches, these methods 
face challenges due to the limited availability of asset prices and option prices. 
To overcome this issue, we explore different parametric data generating 
processes for constructing the risk-neutral distribution function for describing 
the dynamics of option and asset prices. Variation in the estimates of risk 
aversion is obtained by constructing rolling windows of 120 monthly observations 
and obtaining estimates of risk aversion for each window. This number is 
sufficiently large to avoid too much variation in risk-aversion estimates at the 
same time small enough to capture changes in market conditions that trigger 
shifts in risk aversion. Confidence intervals of the risk-aversion estimates can be 
constructed by simulating the prices from a parametric data generating process. 
The simulated distribution of risk-aversion estimates provides valuable insights 
on the variation of the risk-aversion coefficient. Furthermore, in the proposed 
set-up the underlying asset price process allows for different characteristics 
starting with the base case of a Geometric Brownian Motion and its extension to 
accommodate stochastic volatility processes. The simulation results are compared 
with the classic approach followed by [1] nd [27] These authors derive their 
risk-aversion estimates based on past series of risk-neutral densities and realised 
asset prices. 

Our extensive simulation exercise provides the following insights. First, our 
results suggest that there is more variation in the risk-aversion coefficient than 
implied by [1]. Not surprisingly, the volatility component has a major impact on 
the coefficient of relative risk aversion. The choice of parametric model for 
describing asset prices also has a major effect on the estimates of risk aversion 
for a representative agent. Thus, we note that imposing a lognormal density on 
asset prices produces greater variation in the coefficient of risk aversion compared 
to the mixture-lognormal and generalised beta distribution of the second kind. 
Lastly, we also perform a forecasting exercise to assess the relative out-of-sample 
ability of the different data generating processes for estimating the risk-aversion 
coefficient for forecasting stock prices. The forecasting performance is evaluated 
using the subjective density derived from the average simulated risk-aversion 
estimate. The findings are compared against the classic approach obtained from 
[1]. Overall, we find that the simulation based approach obtains better forecasting 
results than bootstrap methods. This fact is particularly apparent in the period 
after the sub-prime crisis. 

The paper is structured in six sections. Section 2 introduces the considered 
density types and transformation from risk-neutral to subjective density. Section 
3 describes the proposed simulation method. Section 4 elaborates on the 
simulation results. Section 5 provides the summary statistics of our observed 
S&P 500 option and index prices. Further, estimation errors and risk-neutral 
characteristics are reported, and empirical results are discussed. Lastly, Section 6 
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concludes the main findings and gives suggestions for further research.  

2. Option Implied Densities 

The risk-aversion estimates obtained in this section are retrieved from option 
prices. This approach goes back to the density forecasting literature for option 
pricing as, for example, [27]. The foundations to this literature on option pricing 
is due to [28]. These authors show that when there are no-arbitrage oppor- 
tunities and options are available for all strikes K, a call-option c can be eva- 
luated by: 

( ) ( ) ( )e d ,rT
QK

c K S K f S S
∞−= −∫                   (1) 

where S is the stock price, r the risk-free rate, T the time to maturity and Qf  a 
unique risk-neutral density. All parameters can be observed in the market except 
for the risk-neutral density. Assuming a parametric form of Qf , its parameters 
θ  can be obtained by minimising the squared error between observed oc  and 
model-based mc  call prices: 

( ) ( ) ( )( )2

1
arg min | ,

N

o i m i
i

G c K c K
θ

θ θ
=

= −∑             (2) 

with N the number of options in the cross-section. The risk-neutral valuation 
involving the density function Qf  is restricted by the risk-neutrality constraint 

[ ]Q
TF E S= , stating that the expected value of Qf  equals the forward price F. 

To reflect the dynamics of the underlying asset, the risk-neutral density needs to 
be transformed into a subjective counterpart density function that incorporates 
individuals’ risk-aversion profile. We follow the transformation in [1], who 
relate the risk-neutral Qf  to a subjective density function Pf  by making an 
assumption about the preferences of a representative investor. This parametric 
relationship goes back to [11]. In our study, we assume a power utility function 
u with u x γ−′ = : 

( )

( )
( )
( )
( )

( )
( )

0
0

.
dd

Q T

T Q TT
P T

Q Q

f S
S f Su S

f S
f y y f y yy
u y

γ

γ

−

∞ −∞

′
= =

′
∫∫

            (3) 

The constant relative risk-aversion parameter γ , inherited from the power 
utility and responsible for the transformation into the subjective density, is the 
central aspect of the subsequent analysis. As in [27], its value is determined by a 
series of M densities, maximising the log-likelihood of the realization of asset 
prices: 

( )( ) ( )( ),1 ,2 , , ,
1

ˆlog , , , | log | ,
M

T T T M P i T i i
i

L S S S f Sγ θ γ
=

= ∑�        (4) 

In our empirical analysis, we consider three different density types with 
different degrees of flexibility: Lognormal density (LN), mixture-lognormal 
density (MLN) and generalized beta density of the second kind (GB2). Their 

https://doi.org/10.4236/jmf.2019.92006


M. Kyriacou et al. 
 

 

DOI: 10.4236/jmf.2019.92006 86 Journal of Mathematical Finance 
 

characteristics and transformation are outlined in the subsequent subsections. 

2.1. Mixtures of Lognormal Densities 

[29] introduces a mixture of lognormal densities, MLN herafter, to evaluate 
option prices. Following [27], this distribution is defined as a weighted 
combination of two lognormal densities. A European call price is evaluated as 
the sum of two [30]models: 

( ) ( ) ( ) ( )1 1 2 2| , , , , 1 , , , , .B Bc K wc F T K r w c F T K rθ σ σ= + −       (5) 

with ( )1 1 2 2, , , ,F F wθ σ σ= . The risk-neutrality constraint for the MLN reduces 
the amount of free parameters to four and by stating that: 

( )1 21 ,F wF w F= + −                     (6) 

with F the forward price. Transforming the density into its subjective coun- 
terpart as in (3) leads to another mixture-lognormal density. The subjective 
parameters become: 

( )1 2 1 2, , , , ,F F wθ σ σ=� � � �                     (7) 
2

e T
i iF F γσ=� , for 1,2i = , and 

( )( )( )2 2 22
2 1

1

1 11 exp 0.5 .
Fw T

w w F

γ

γ γ σ σ
 −

= + − − 
 �

 

The lognormal density (LN) is a special case of the above for 1w = . As a 
result, we do not describe this distribution separately. 

2.2. Generalized Beta Densities 

The generalized beta density of the second kind, GB2 hereafter, was introducted 
by [31] and has been applied to option prices by [27]. They show that a 
European call option price can be evaluated by: 

( ) ( )( )
( )( )

| e 1 , , | 1 , 1

e 1 , , | , ,

rT

rT

c K F F v K a b p a q a

K F v K a b p q

β

β

θ −

−

 = − + − 
 − − 

       (8) 

with ( ), , ,a b p qθ = , all greater than zero, ( ) ( ) ( ), , 1a av K a b x b x b = +   and 
Fβ  the distribution function of a random variable following a beta distribution. 
The risk-neutrality constraint reduces the amount of free parameters from four 
to three: 

( )
( )
1 , 1

, 1,
,

bB p a q a
F aq

B p q
+ −

= >                (9) 

where B is defined in terms of gamma functions ( ) ( ) ( ) ( ),B p q p q p q= Γ Γ Γ + . 
The transformation of the GB2 risk-neutral density as in (3) leads a different 
type of GB2 density function. The subjective parameters are then  

, , ,a b p q
a a
γ γθ  = + − 

 
�  with aq γ> . 

3. Risk Aversion Evaluation 

One of the biggest challenges in the evaluation of risk-aversion estimates is the 
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limited availability of data. While option prices provide an accurate description 
of risk-neutral market expectations, subjective dynamics can only be observed as 
single price outcomes obtained from market prices. Linking a single risk-neutral 
density to realized asset prices to estimate the degree of risk aversion of a 
representative agent produces high variation in the parameter estimates. One 
way of overcoming this issue is to obtain risk aversion over several periods, as 
presented in (4). This approach requires, however, access to a sufficiently long 
dataset. In situations where the time horizon is too short, estimates might be 
misleading and will not accurately reflect the risk preferences of the 
representative agent. 

[1] introduce a Monte-Carlo simulation method and a Bootstrapping procedure 
to gain better insight into the variation of risk-aversion estimates. However, 
their approach does not overcome the problem of single price realisations. More 
importantly, risk aversion is only estimated from past data, which may 
accurately reflect individuals’ past preferences but not necessarily those relevant 
for the forthcoming period. 

We propose an alternative Monte-Carlo simulation exercise that addresses all 
these problems. Our simulation setting is structured in a way that only considers 
the most recent risk-neutral dynamics and simulates potential asset price 
outcomes based on different stochastic processes. This allows us to estimate risk 
aversion by taking into account current market dynamics. Importantly, it is 
possible to simulate several asset price outcomes for the same time period 
providing a more detailed outlook of the anticipated variation of the underlying 
risk aversion. 

3.1. Simulation Framework 

In our simulation framework current market dynamics are captured by a set of 
assumptions on risk-neutral and subjective processes. Given these, we can 
simulate a whole range of potential asset price outcomes for a specific period 
and use these to estimate risk aversion. Simulation-based risk-aversion estimates 
provide better insight into the full spectrum of potential risk-aversion estimates. 
Accordingly, the utility function can be validated. The Monte-Carlo simulation 
framework consists of the following five steps1: 

1) Make assumptions about the subjective process that includes the utility 
function of the representative agent and the risk-neutral process. 

2) Obtain options from the risk-neutral process and fit a risk-neutral density 
into option prices. Since, the risk-neutral process does not change, estimated 
risk-neutral parameter values do not change for the time horizon of M periods.  

3) Generate M asset price outcomes based on the subjective process for M 
risk-neutral densities. 

4) Estimate the risk-aversion parameter γ  over the estimation horizon of M 
periods based on (4). 

 

 

1Note that for the empirical application, Step 2 does not draw option prices from the risk-neutral 
process since options can be observed directly in the market. 
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5) Repeat Steps 3 and 4 H times. 

3.2. Likelihood Criteria 

Log-likelihood based tests on the asset price outcomes can be useful in providing 
insights on the quality of the retrieved risk-aversion values, as used in the work 
of [32], [27] and [24] to compare the quality of their density methods on equity 
indices. The log-likelihood function is defined as: 

( )( ), 1
1

log log
i

m m t t
t

L f S +
=

= ∑                   (10) 

where f is the density function, m the density type and i the number of densities. 
The log-likelihood function serves two different testing purposes. First, we 
construct a log-likelihood ratio test to assess statistically whether the additional 
risk-aversion parameter γ  significantly improves the forecasting performance 
of the densities. 

0 : 0H γ =                         (11) 

1 : 0.H γ ≠                         (12) 

The corresponding test statistic is defined as: 

( )*
, 0 , 02 2 .m mLR L Lγ γ= ≠= − −                   (13) 

Under the null * 22 LR χ  distribution with 1 degree of freedom. 
Second, we test whether the two competing methods, denoted as m and n, 

provide equal expected log-likelihoods as described: 

( )( ) ( )( )0 , 1 , 1: log logm t t n t tH E f S E f S+ +   =              (14) 

( )( ) ( )( )1 , 1 , 1: log logm t t n t tH E f S E f S+ +   ≠              (15) 

This test is proposed by [33], AG hereafter, and has been applied to option 
based densities by [24]. The AG test is an out-of sample test, which uses a rolling 
window estimation scheme to rank density forecasts. Its loss function is based on 
a weighted Likelihood ratio test and offers the advantage that it can be robust to 
heterogeneous data sets, while it can be applied to densities obtained from both 
parametric and non-parametric models. The test is based on the difference of 
log-likelihood of each period, denoted by td . The test statistic, AG, is retrieved 
on the basis of the average difference d̂  and standard deviation of ds  of d 
with integer times , ,i j� , as: 

( )0.5 ˆ
1 .

d

dAG j i
s

= − +                     (16) 

Under the null hypothesis 0H , it follows that ( )0,1AG N . 

3.3. Market Assumptions and Estimation 

We impose two different parametric forms to model market dynamics. First, 
market dynamics are assumed to follow a Geometric Brownian Motion as in 
[34]. Second, we incorporate stochastic volatility into the model by implementing 

https://doi.org/10.4236/jmf.2019.92006


M. Kyriacou et al. 
 

 

DOI: 10.4236/jmf.2019.92006 89 Journal of Mathematical Finance 
 

the model by [35]. In both cases, we assume that the volatility parameters are 
derived from option prices including also the subjective dynamics. Only the drift 
parameter is changed between specifications in order to account for the risk- 
premium of the subjective approach. This transformation is similar to the 
risk-premium transformation in [24]. The drift term of the subjective process is 
estimated using historical asset price returns under the assumption of lognor- 
mality of stock prices. Finally, we illustrate how expected risk aversion can be 
obtained by taking into account the risk-neutral and subjective dynamics. 

3.3.1. Geometric Brownian Motion 
In the first specification, we assume that markets follow a Geometric Brownian 
Motion as in [34]: 

( )d d d with 0,1t t t t tS S t S W Wµ σ= +            (17) 

with µ  the drift term and σ  the constant volatility. Option prices can be 
evaluated by the well-known Black and Scholes formula as follows. 

( ) ( ) ( )1 2e eqT rT
tc X S N d X d− −= −               (18) 

2

1

ln
2

tS r q T
X

d
T

σ

σ

   + − +  
   =

               (19) 

2 1 .d d Tσ= −                     (20) 

The parameter estimation is performed as in (2) by only considering a single 
at-the-money option. 

3.3.2. Stochastic Volatility 
An alternative to the geometric Brownian motion is the stochastic volatility 
model of [35]. This specification allows for more flexibility and captures more 
accurately observed market dynamics. As in the previous model, the change in 
asset prices follows a Geometric Brownian Motion as in (17), whereas the 
volatility parameter σ  follows an Ornstein-Uhlenbeck process. 

( ) ( )d d d with 0,1t t t t tv t v Z Zσ κ θ ξ= − +         (21) 

where µ  denotes the drift term, σ  the volatility of stock price, κ  the mean 
reversion speed, θ  the long-run variance, tv  the current variance and ξ  the 
volatility of volatility parameter. [35] provides a closed form solution to price a 
European call option in the form of the Black and Scholes formula: 

( ) 1 2e eqT rTc X S P X P− −= −                 (22) 

In contrast to the estimation of the risk-neutral density, the risk aversion 
parameters are not obtained directly from option prices as in (2). The Heston 
model is estimated by minimising the squared error between market implied 
volatility and model implied volatility2 

 

 

2The required calculations for this method are computationally extensive and the weighting ap-
proach by [36] helps to reduce the amount of computations. 
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3.3.3. Expected Risk-Aversion 
In line with [11] [13] and [17], the risk-aversion coefficient can be determined 
by the relation of the utility function to the risk-neutral and objective density 
function. The absolute risk-aversion, RA, can be then defined as: 

( ) ( )
( )

( )
( )

( )
( )

QP

P Q

f xu x f x
RA x

u x f x f x
′′′ ′

= − = −
′

                (23) 

Using this result, the relative risk-aversion, γ , can be retrieved by: 
( ).xRA xγ =                        (24) 

Since it is assumed that the transformation from risk-neutral to subjective 
dynamics only impacts the mean return, the risk-aversion estimate is the same at 
every point x. 

4. Simulations 
This simulation exercise aims to unveil the influence of different characteristics 
of the underlying asset price process on risk aversion. As a starting point, we use 
the conventional Geometric Brownian Motion to model asset price dynamics 
and we then extend this to accommodate stochastic volatility, as discussed in 
Section 3. The simulations provide useful insights about how and to what extent 
risk-aversion estimates are influenced by different factors within the considered 
models. The main point of interest is the influence of stochastic volatility on the 
risk-aversion estimates. 

Therefore, our simulations below include six different scenarios and examine 
the impact on risk aversion, as depicted in Panels A-F in the Table 1, Table 2, 
and Figures 1-3. Simulation A evaluates the change in the mean return, while 
Simulation B evaluates the impact of volatility, under a Geometric Brownian 
Motion. The remainder panels focus on the presence of stochastic volatility. The 
volatility process is modelled by an Ornstein-Uhlenbeck process. Simulation C 
investigates on the effect of the mean reversion κ  of volatility. Simulation D 
evaluates the impact of fat-tailed distributions via the volatility of volatility ξ . 
Lastly, Simulation E and F evaluate the impact of skewness in conjunction with a 
fat-tailed distribution. The latter might be the empirically most relevant case 
which can provide guidance for practical purposes. 

Each simulation scheme derives risk aversion over an estimation horizon of 
120H =  monthly periods. As described in Section 3, the risk-neutral and 

subjective parameters are kept constant over the entire estimation horizon to 
ensure only the current market dynamics are considered. The simulated option 
prices are obtained one month prior to expiry. One month consists of 21 trading 
days, which results in 252 trading days per year. Each day is discretised by ten 
sub-steps to assure a sufficient precision of the simulated asset prices. The entire 
simulation is repeated 5000N =  times. 

4.1. Geometric Brownian Motion 
Within the Geometric Brownian Motion, both the mean, µ , and the variance, 

2σ , influence the mean and variation of the simulated risk-aversion estimates,  
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Table 1. The table provides the results for all 6 simulations. The expected value of gamma E[γ] is obtained from the theoretical 
result in section 3. The average, median and mean squared error for all density types are the results of the simulation. The bold 
values for the mean squared error mark the lowest values in each row. 

  median  average  MSE   

E[γ]  log mix-log GB2  log mix-log GB2  log mix-log GB2  simulation 

0.00  0.00 0.07 0.02  0.01 0.03 0.03  10.17 8.48 9.58  

A













 
1.50  1.50 1.25 1.47  1.48 1.43 1.46  9.73 7.11 9.18  

2.50  2.60 2.59 2.54  2.59 2.58 2.53  9.91 9.78 9.29  

3.50  3.46 3.42 3.36  3.49 3.45 3.40  10.18 9.91 9.50  

4.50  4.51 3.83 4.38  4.48 4.15 4.37  9.88 6.10 9.22  

0.00  0.08 0.13 0.09  0.09 0.11 0.11  9.86 8.74 9.27  

B













 
0.33  0.35 0.35 0.35  0.37 0.37 0.38  3.40 3.39 3.21  

0.40  0.37 0.37 0.38  0.38 0.38 0.38  1.93 1.93 1.84  

0.43  0.47 0.47 0.47  0.47 0.47 0.47  1.45 1.45 1.38  

0.44  0.42 0.42 0.43  0.42 0.42 0.42  1.13 1.13 1.07  

0.00  −0.08 0.04 −0.11  −0.05 0.03 −0.10  41.77 26.22 29.63  

C













 
0.00  −0.12 −0.01 −0.03  −0.15 −0.05 0.03  20.95 14.07 16.58  

0.00  −0.06 0.00 −0.01  −0.07 −0.01 −0.04  17.23 13.73 12.83  

0.00  −0.05 0.01 0.00  −0.10 −0.04 0.02  14.53 11.44 11.21  

0.00  −0.05 0.00 −0.05  −0.06 −0.01 −0.03  13.24 11.01 10.92  

0.00  0.03 0.05 0.11  −0.01 0.01 0.12  10.12 9.23 9.48  

D













 
0.00  0.02 0.03 0.04  0.02 0.03 −0.01  11.38 10.74 10.31  

0.00  −0.07 0.11 0.05  −0.05 0.01 −0.03  15.75 9.85 13.58  

0.00  −0.10 −0.04 −0.07  −0.02 0.02 −0.07  26.32 20.87 20.39  

0.00  −0.13 −0.03 0.00  −0.14 −0.06 0.01  43.43 30.26 30.43  

0.00  −0.07 0.14 −0.04  −0.05 −0.02 −0.04  9.97 7.17 9.22  

E













 

0.00  −0.05 −0.03 −0.02  0.05 0.05 0.06  9.82 9.61 9.11  

0.00  0.01 0.01 0.05  0.17 0.17 0.18  10.62 10.51 9.79  

0.00  0.04 0.08 0.08  0.21 0.22 0.22  10.11 9.31 9.29  

0.00  −0.04 −0.01 0.02  0.19 0.20 0.20  10.21 9.67 9.24  

0.00  −0.04 0.13 0.15  0.15 0.20 0.19  43.50 29.65 30.79  

F













 
0.00  −0.02 0.22 0.29  0.36 0.38 0.38  42.20 28.61 30.06  

0.00  −0.30 0.10 0.17  0.46 0.46 0.46  45.14 28.50 30.14  

0.00  −0.02 0.41 0.53  0.82 0.77 0.78  45.08 27.45 29.34  

0.00  −0.27 0.31 0.45  0.73 0.69 0.70  48.53 27.89 30.13  

 
respectively. Figures 1-3 A displays the case of an stepwise increase of µ  from 
−0.5% to 4%. It is apparent that risk-aversion increases when the expected 
return rises since the compensation for risk becomes higher. Consequently, the 
mean of the subjective density shifts to reflect the premium in the underlying 
asset price process. 
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Table 2. The table contains the average maximum log-likelihood estimate based on 
Equation (4) for the risk-neutral density (RND) and subjective density (RWD). The bold 
values mark the highest average value of log-likelihood in each row. 

log  mix-log  GB2   

RND RWD  RND RWD  RND RWD  simulation 

0.57 1.08  0.48 0.96  0.00 0.49  

A













 
0.47 1.07  0.42 0.96  0.00 0.58  

0.46 1.29  0.46 1.28  0.00 0.81  

0.45 1.56  0.40 1.50  0.00 1.08  

0.43 1.94  0.37 1.72  0.00 1.47  

0.45 0.95  0.34 0.81  0.00 0.48  

B











 

0.50 1.03  0.50 1.03  0.00 0.52  

0.42 0.94  0.42 0.94  0.00 0.51  

0.43 1.02  0.43 1.02  0.00 0.57  

0.46 1.05  0.46 1.05  0.00 0.58  

0.00 1.81  111.32 112.80  119.66 121.21  

C











 

0.00 0.92  42.47 43.23  43.48 44.31  

0.00 0.77  24.70 25.39  28.18 28.83  

0.00 0.66  19.04 19.62  18.81 19.38  

0.00 0.61  13.26 13.81  14.93 15.48  

0.00 0.50  0.48 0.97  1.97 2.45  

D











 

0.00 0.56  8.84 9.38  10.75 11.27  

0.00 0.75  22.30 22.92  29.28 29.97  

0.00 1.20  56.31 57.39  68.88 69.96  

0.00 1.88  102.91 104.52  124.70 126.30  

0.00 0.50  0.27 0.70  2.14 2.61  

E











 

0.00 0.49  0.81 1.30  2.18 2.65  

0.00 0.53  0.52 1.04  2.21 2.72  

0.00 0.50  0.74 1.22  2.23 2.72  

0.00 0.51  0.98 1.48  2.38 2.86  

0.00 1.88  99.49 101.07  119.19 120.82  

F











 

0.00 1.81  95.83 97.34  117.18 118.73  

0.00 1.91  104.51 106.06  117.58 119.18  

0.00 1.89  99.33 100.82  112.75 114.29  

0.00 2.00  104.96 106.50  113.51 115.09  

 
Figures 1-3 B displays the results of a change in variance. Compared to the 

previous case an increase in the variance does not result in a major increase of 
risk-aversion. The variance mainly influences the variation of risk-aversion. 
However, this relation is inverse, meaning when variance is high (low) the 
variation of risk aversion is low (high). This feature can be confirmed by (7), 
which clearly illustrates that the risk-premium is linked to the product of  
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Figure 1. Distribution of estimated γs applying the lognormal density. A and B assume 
geometric Brownian motion as underlying process. The remaining plots are simulated 
applying the stochastic volatility model. The body of box plot is defined by the 
interquartile range of γ  estimates. The horizontal line dividing the box and diamond 
mark the median and average, respectively. The “whiskers” define the 10th and 90th 
percentile and the dots the 5th and 95th percentile. If not separately specified in the graph 
the parameter values for 0.005µ = − , 0r = , 0q =  and 2 0.01σ = . For the case of the 
stochastic volatility model 1κ = , 0.01θ = , 0.7ξ =  and 0ρ = . 
 
volatility and risk-aversion. Thus, an increase in volatility results in lower 
variation of risk-aversion since the risk-aversion has to change less to achieve a 
specific premium 

For both simulations, the mean squared error behaves similar for all con- 
sidered density types but results change across specifications. In simulation A, 
the mean squared error is similar independently of the values for µ . In contrast, 
the mean squared error varies heavily in simulation B due to the changes in 
variance. In both cases mean and median infer that risk aversion is distributed 
symmetrically. 
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Figure 2. Distribution of estimated γs applying the mixture-lognormal density. A and B 
assume geometric Brownian motion as underlying process. The remaining plots are 
simulated applying the stochastic volatility model. The body of box plot is defined by the 
interquartile range of γ  estimates. The horizontal line dividing the box and diamond 
mark the median and average, respectively. The “whiskers” define the 10th and 90th 
percentile and the dots the 5th and 95th percentile. If not separately specified in the graph 
the parameter values for 0.005µ = − , 0r = , 0q =  and 2 0.01σ = . For the case of the 
stochastic volatility model 1κ = , 0.01θ = , 0.7ξ =  and 0ρ = . 

4.2. Stochastic Volatility 

Extending the Geometric Brownian motion to accommodate stochastic volatility 
allows to further analyse the impact of volatility on the underlying asset. We 
focus on the effect of the following parameters: the speed of mean reversion to 
the long run volatility, κ , the volatility of volatility, ξ , and the correlation 
between the two Wiener processes of the stock price and volatility, ρ . Figures 
1-3 C displays the results across different values of κ . The results suggest that 
an increase in κ  has a similar influence as an increase in variance which can 
straightforwardly be explained by the mechanics of κ . A high value of κ  
results in a faster reversion to the long run mean of the variance. 
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Figure 3. Distribution of estimated γs applying the GB2 density. A and B assume 
geometric Brownian motion as underlying process. The remaining plots are simulated 
applying the stochastic volatility model. The body of box plot is defined by the 
interquartile range of γ  estimates. The horizontal line dividing the box and diamond 
mark the median and average, respectively. The “whiskers” define the 10th and 90th 
percentile and the dots the 5th and 95th percentile. If not separately specified in the graph 
the parameter values for 0.005µ = − , 0r = , 0q =  and 2 0.01σ = . For the case of the 
stochastic volatility model 1κ = , 0.01θ = , 0.7ξ =  and 0ρ = . 

 
In contrast, the parameter ξ  has an opposite effect on risk aversion, as 

shown in Figure 1-3 D. Increasing ξ  results in more variation of risk-aversion. 
This can be attributed to the fact that ξ  models the tail thickness of the asset 
price distribution. The simulation unveils that a higher frequency of extreme 
outcomes outweighs the impact of higher volatility, resulting in higher variation 
of risk-aversion. 

Simulations E and F elaborate on the remaining parameter ρ , which 
captures asymmetry in the asset price distribution. Figures 1-3 E and F exhibit 
the influence of ρ  on the risk aversion and its interaction with ξ . Figures 1-3 
E assumes a low value of ξ , whereas in Figures 1-3 F ξ  is relatively high. 
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Both plots show that with an increase in ρ  the asymmetry of the relative 
risk-aversion coefficient increases. This can be seen by the diverging mean and 
median parameters but also in the shrinking upper percentiles. The higher ξ  is 
the greater the absolute difference between median and average is. The influence 
of ρ  on the mean squared error is only minor as this is primarily driven by ξ . 

In addition to Mean Square Error consideration, we also provide simulation 
results on the maximum likelihood estimates from the transformation from 
risk-neutral to subjective density and compare them to the risk-neutral likelihoods. 
The results are tabulated in Table 2 and draw a more complete picture along 
with results on mean squared error. In simulation A and B values are fairly close 
to each other. However, this changes from simulation C and ongoing. It shows 
that the GB2 density clearly fits the data the best, enforcing that a flexible density 
type is preferable when the underlying asset price distribution moves further 
away from lognormal. Furthermore, when the subjective density is compared to 
the risk-neutral density the likelihood is in all cases higher suggesting an 
improved fit. 

Collectively, simulation results indicate that the main influence on the 
certainty of risk-aversion may be attributed to the volatility and the volatility of 
volatility. The mean mainly shifts the risk-aversion estimate in one or the other 
direction. In addition, flexible class of densities enable to obtain more accurate 
estimates for risk-aversion when the asset price distribution is skewed and has 
excess kurtosis. The fact that more flexible density types are favourable could 
also be shown by the likelihood comparison of the simulation. Finally, variation 
of risk-aversion strongly depends on the volatility component. Beyond that it 
could be shown that asymmetry in the asset price distribution also skews 
risk-aversion estimates. All these results provide useful insights to practitioners 
and highlight the importance of accounting for volatility when evaluating risk 
aversion estimates. 

5. Empirical Application 
5.1. Data and Estimation 

This study considers European call and put options, which can only be exercised 
at the maturity date. We obtain option prices from Optionmetrics for the period 
from January 1996 until May 2016 on the S&P 500 index. The considered expiry 
dates are 28 days before the third Friday of each month. We only consider 
options 28 days before expiry to ensure that estimation horizons are non-over- 
lapping. In case that there are no option prices available for the 28 days before 
expiry, the observation date is shifted by one day. If there are still no options 
available the observation date is dropped from the sample. This results in 242 
observation dates for the time period under study. The relevant option prices are 
selected based on their moneyness. All call (put) options with a moneyness 
greater (smaller) than 1.03 (0.97) are removed from the sample since they are 
less frequently traded. Moneyness is defined as the ratio between strike price and 
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underlying stock price. Furthermore, if there is no traded volume the option is 
removed as well. The estimation of the risk-neutral density is then performed 
taking into account the mid option price. Put options are transformed into 
call-options by the put-call parity relationship. In case there are two options 
available for the same strike price, the average mid price is used. In case 
dividends and zero-coupon rates do not match the maturity date, rates are 
interpolated between the two closest dates. Future prices F are calculated 
synthetically by the pricing equation ( )e t tr q T

t tF S −=  (Table 3). 
The risk-neutral density parameters are estimated minimising (2) at each 

observation date. Multiple start values were supplied into the minimisation 
problem to ensure the minimum is robust. Table 4 provides the summary 
statistics of the option pricing errors. The reported values are in a similar range 
as, for example, [24]. There are remarkable differences between the more flexible 
densities and the lognormal approach. The pricing errors can attributed to the 
greater flexibility of the MLN and GB2, which better replicate the non-normal 
distribution contained in option prices. 

5.2. Results 

The empirical results, applying the simulation method to observable S&P 500 
index options, are presented in Figure 4 and Figure 5. The graphs display the 
mean and median simulated risk-aversion estimate enclosed by confidence 
intervals. Furthermore, the estimation using a sequence of risk-neutral densities 
and asset price outcomes as in [1] is displayed. Their procedure is denoted as 
“historical approach’’. 

For the case of the Geometric Brownian Motion, the results of the different 
density types are similar with no major discrepancies. Overall, the simulation 
method suggests a symmetric distribution of risk aversion since the mean and 
median are close to each other and the percentiles are evenly distributed. 
Furthermore, during times of high volatility, as for example at the subprime 
crisis, the variation in risk aversion lowers. These observations confirm the 
results from the simulation. 

More complex are the findings assuming stochastic volatility for the price 
process. The greater flexibility of the underlying process allows for an 
asymmetric shape. While in the previous case the mean and median for all 
density types are close together, they diverge for the lognormal case. The median 
tends to be in excess towards the median, imposing a negative skew. This 
observation is a result of the negative skew induced by the stochastic volatility 
process. The lognormal distribution is not able to accommodate the more 
complex shape of the underlying probability distribution. Therefore, the 
estimation of the risk-aversion parameter compensates for this inflexibility, 
resulting in a skewed distribution of risk aversion. This observation highlights 
the importance of flexible density types when trying to estimate risk aversion. 
This finding lines up with the characteristics of the simulation, that more flexible 
density types yield a lower mean square error. Furthermore, the confidence  
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Table 3. Total number of options and options by moneyness. 

(a) 

 Total number Average Max Min 

Calls 7411 31 104 7 

Puts 12,857 53 264 11 

Overall 20,268 84 350 20 

(b) 

Moneyness S/K Total number In % 

Deep OTM put >1.10 6629 32.71 

OTM put 1.03 - 1.10 3106 15.32 

Near the money 0.97 - 1.03 6342 31.29 

OTM call 0.90 - 0.97 3159 15.59 

Deep OTM call <0.90 1032 5.09 

Overall  20,268 100.00 

 
Table 4. This table provides the summary statistics when estimating the risk-neutral 
density. The estimation is performed as in 2 and minimises the squared error between 
model and observed option prices. 

Density Median Average Standard deviation 

LN 3.21 4.89 6.04 

MLN 0.10 0.16 0.17 

GB2 0.09 0.17 0.22 

 
intervals have a stronger variation compared to the Geometric Brownian Motion. 
This is not a surprise due to the greater complexity of stochastic volatility. 
However, remarkable are the differences in the lower confidence intervals. For 
the MLN and GB2, they swing far less into negative values of risk aversion, 
which further highlights the importance of flexible density types. 

Overall, it is remarkable how uncertain the estimates are even within basic 
assumptions as displayed in Figure 4 and Figure 5. Generally, the simulation- 
based methods tend to exceed the risk-aversion estimates of the historical 
approach. Nevertheless, the confidence intervals mostly encompass the historical 
estimates, particularly when assuming stochastic volatility. 

To gain further insight, we use the obtained mean risk-aversion estimate and 
transform the risk-neutral density into its subjective counterpart. Afterwards, we 
evaluate their predictability based on the log-likelihood of the final asset price 
outcomes. This results in 122 evaluation periods since the historical method 
retrieves the estimates using a 10 year rolling window. The log-likelihood is 
reported in Table 5 in excess to the risk-neutral LN. The reported values can 
clearly show that the more flexible density types are preferable towards the LN. 
Furthermore, the GB2 is clearly in excess towards the MLN. The additional  
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Figure 4. Risk-aversion simulation results and historical estimates. The simulation as-
sumes the asset price follows a geometric Brownian motion. The dark blue line denotes 
the average estimate of risk aversion whereas the green dashed-dotted line denotes the 
median. The inner confidence interval (dark blue) defined by the 25th and 75th percentile. 
The outer confidence interval (light blue) is defined by the 5th and 95th percentile. The red 
line defines the risk-aversion obtained by the classic method. 

 
parameter γ  is further tested using the log-likelihood ratio test. All methods 
are significant at the 20% level. The reason for the low significance level could be 
rooted in the short sample size. [27] encounter similar difficulties and argue the 
insignificance is a type II error. These authors base this claim on the findings of 
[37] and others since the risk-premium is small relative to volatility and, 
therefore, difficult to estimate. 

Finally, we test two competing forecasts for equal expected log-likelihoods 
following [33]. The results are reported in Table 6. Comparing the different 
density types with each other clearly shows that the GB2 is the preferable 
method. The test rejects the null hypothesis at the 1% level in all cases. Within 
each density type findings are less clear. Only for the historical risk aversion, the 
subjective density is significantly different from the risk-neutral density. In none  
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Figure 5. Risk-aversion simulation results and historical estimates. The simulation 
assumes the asset price follows stochastic volatility. The dark blue line denotes the 
average estimate of risk-aversion whereas the green dashed-dotted line denotes the 
median. The inner condence interval (dark blue) de ned by the 25th and 75th percentile. 
The outer con dence interval (light blue) is de ned by the 5th and 95th percentile. The red 
line de nes the risk-aversion obtained by the classic method. 

 
Table 5. The excess log-likelihood is defined as excess value compared to the weakest 
method. In this case the worst performing method is the risk-neutral LN. The remaining 
methods denote transformed subjective densities. 

 
Excess 

log-likelihood 
 2*LR 

Method LN MLN GB2  LN MLN GB2 

RND 0.00 17.04 96.44     

Hist. 1.04 18.03 97.43  2.09 1.69 1.98 

GBM 1.20 18.17 97.58  2.40 2.26 2.28 

SV 1.18 18.17 97.58  2.36 2.25 2.27 
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Table 6. The table contains the test-statistics of the [33] test. The critical values are denoted with (*) at the 10% level, (**) at 
the 5% level and (***) at the 1% level. 

  Log  mix log  GB2 

  RND hist. sim. 1 sim. 2  RND hist. sim. 1 sim. 2  RND hist. sim. 1 sim. 2 

log 

RND               

hist. 1.91*              

sim. 1 1.13 0.18             

sim. 2 1.12 0.16 0.31            

mix log 

               
RND 2.09** 2.01** 1.91* 1.91*           

hist. 2.16** 2.09** 2** 2**  2.08**         

sim. 1 2.23** 2.16** 2.08** 2.08**  1.07 0.18        

sim. 2 2.23** 2.17** 2.09** 2.09**  1 0.16 0.06       

GB2 

               
RND 11.58*** 11.76*** 11.26*** 11.27***  30.92*** 30.71*** 28.25*** 27.89***      

hist. 11.44*** 11.65*** 11.19*** 11.19***  30.15*** 30.93*** 28.86*** 28.55***  2.11**    

sim. 1 11.73*** 11.97*** 11.59*** 11.59***  28.82*** 29.91*** 30.89*** 30.79***  1.05 0.17   

sim. 2 11.74*** 11.99*** 11.62*** 11.62***  28.58*** 29.69*** 30.94*** 30.88***  0.98 0.15 0.04  

 
of the cases, the proposed simulation method is significantly different to the 
risk-neutral density. A possible explanation for this observation could be that the 
volatility dynamics are assumed to be the same in the risk-neutral and subjective 
model dynamics. It is well known that option prices contain a volatility 
premium and the volatility in the subjective process tends to be lower. Therefore, 
when assuming the risk-neutral and subjective volatility dynamics to be the 
same, we implicitly assume similar expected log-likelihoods (Table 6). 

6. Conclusions 

This paper provides a novel methodology for uncovering the presence of risk 
aversion in asset prices. Risk aversion is interpreted as the coefficient of relative 
risk aversion characterizing a power utility function. In contrast to most of the 
literature, we extract risk aversion from the risk-neutral distribution underlying 
the risk-neutral valuation of option prices. More specifically, we exploit a 
parametric expression relating the risk-neutral distribution function with an 
objective distribution describing the true probability distribution of asset prices 
and a power utility function describing individuals’ risk attitude. This expression 
provides a closed-form solution that links risk-neutral expectations with a 
subjective valuation that incorporates the preferences of a representative agent. 
This approach allows us to estimate consistently the coefficient of relative risk 
aversion as the sample size increases. 

We have also proposed a simulation scheme to introduce uncertainty into the 
pricing models. By doing so, we have constructed confidence intervals that 
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reflect the uncertainty around the parameter estimates of relative risk aversion. 
We have also accommodated the presence of dynamics in risk aversion by 
proposing a parametric model for describing the dynamics of asset prices. 
Finally, as an additional contribution, we have explored different types of 
density functions for describing the probability law of asset prices. By doing so, 
we have explored the predictive ability of the model and assessed, out of sample, 
the reliability of the different estimates of the relative risk-aversion coefficient 
for prediction purposes. 

Our results, obtained from an extensive simulation exercise, suggest that there 
is more variation in the risk-aversion coefficient than implied by [1]. Not 
surprisingly, the volatility component has a major impact on the coefficient of 
relative risk aversion. This is due to the direct link between volatility, risk 
aversion and the risk premium. A way to make the risk-aversion estimate less 
varying and more stable across time is to assume more flexible density types. 
Especially, when stochastic volatility is present more flexible density types obtain 
more stable values. The choice of a parametric model for describing asset prices 
also has a major effect on the estimates of risk aversion. Thus, we note that 
imposing a lognormal density on asset prices produces greater variation in the 
coefficient of risk aversion compared to the mixture-lognormal and generalised 
beta distribution of the second kind. Lastly, we also perform a forecasting 
exercise to assess the relative predictive ability of each estimation method out of 
sample. For all density types, there is no statistically significant difference 
between the risk-aversion coefficient based on the Monte-Carlo simulation and 
the classic approach developed by [1]. In contrast, comparing both approaches 
against the risk-neutral density reveals statistically significant differences. 

Within this paper we centred our attention on the classic case of a power 
utility function. Therefore, it can be extended in different directions to obtain 
further insights into the degree of risk aversion in financial markets and its 
variation over time. First, an interesting avenue for further research is to 
evaluate the influence of the volatility premium on risk-aversion estimates. 
Second, exploring alternative utility functions that provide a different charac- 
terization of individuals’ risk aversion can be a fruitful strategy to uncover 
different patterns of risk aversion under different assumptions on individuals’ 
risk profile. Finally, our simulation exercise clearly shows that individuals’ risk 
aversion changes over time. It might be of much interest to applied economists 
and financial practitioners to explore suitable time series models for forecasting 
asset prices constructed from reliable estimates of the risk-aversion coefficient. 
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