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Abstract 
In this paper, we study the optimal level of cash for the firm to hold. We mod-
el the cash level with inflows and outflows due to deposits and withdrawals; in 
between, the cash level is a stochastic process where it signals a time to sell. 
After modeling the continuous jump, we implemented first step analysis me-
thod to find the probability of the event with initial cash and we were able to 
calculate data driven by set of difference equations. These data are used to de-
termine the length of the period of the investment. Then, we adopt the proba-
bilistic decision model where it goes under mathematical optimization. This 
model let the investor to maximize the probability of success or to stop on one 
of the largest fortunes using the equation of the principle of optimality. Final-
ly, to solve these optimal equations, we used the result of positive dynamic 
programming and we elaborated them by proves. 
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1. Introduction 

Defining cash balance is a classic problem in firm’s financial management. Cash 
management happens due to the daily inflows and outflows. It has the following 
responsibilities: To mobilize, manage and plan the financial resources of busi-
ness. Demand for cash can be positive or negative. Positive demand consists of 
accounts payable, whereas negative demand is known as account receivables. 
These funds are available at any moment in time for the firm. 

Historically, cash management problem has been studied by various researches 
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by extension of the continuous-review stochastic inventory models. These mod-
els were originally presented in Baumol (1952) [1], whereby the author makes a 
parallel relation between cash with other firms’ inventories. Later Miller and Orr 
(1966) [2] presented a model that considers the assumption of random cash 
flows as the normal distribution. They consider only two assets, cash and an al-
ternative investment. He adopted the uses of upper and lower bounds, and con-
sidering the small time gap between the investment of cash and withdrawing it. 
In this case, with buy and sell bond operations, they calculated the time on an 
hourly basis and the cost of maintaining the cash balance daily. 

Since 1980’s, various authors have worked with the cash optimization problem 
which is divided into deterministic and stochastic process. In this type of re-
search, Tapiero and Zuckerman (1980) [3] presented a stochastic model based 
on the premise that cash inflows and outflows have random behavior in a pois-
son process. 

Considering the cash balance problem as a possible use of the general and sta-
tionary Markov Model in Hinderer and Waldmann (2001) [4], the authors use a 
model for Markov chain processes in random environments that have a statio-
nary process as, for example, low variation over time. 

As the reader could notice, this subject is the main focus of many researchers 
over the past few decades, but because of the uncertainty related to receipts and 
payments from cash flow resources, what made the result a composition of ran-
dom variables were implemented models with new approaches, mainly based on 
stochastic process. Further reading about history and origin of cash management 
are discussed in [5]. 

Recently, a literature review was conducted similar to Newman’s (2002), 
which presented the Faustmann framework of optimal forest rotation literature 
in forestry investment decisions. The application of real options in forestry in-
vestment decisions developed during the late 1980s from the simple topic of na-
ture preservation employing a quasi-option value. This analysis method has re-
cently been applied to much larger problems of timber cutting contracts em-
ploying Monte Carlo simulation approaches. In addition, geometric Brownian 
motion and mean reversion, two of the most prevalent continuous-time stochas-
tic price models, are discussed. The number of publications slowly but steadily 
increased from the early 1980s to the late 1990s and has remained steady since 
the early 2000s, with an average of 2.7 articles annually. The discounted cash 
flow technique remains the major tool supporting forestry investment decisions. 

The study conducted by Yao et al. (2006) [6] presents a different formulation, 
considering the demand for money according to fuzzy logic concepts, develop-
ing a single period model as, for example, without using past data due to histor-
ical data not being able to provide a cash demand forecast. Along these lines of 
stochastic development, Volosov et al. (2005) [7] present a stochastic program-
ming model in two stages, based on scenario trees, which consider not only the 
problem of cash balance, but also the exposure to international currency, ad-
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dressing the risk of exchange rate variation. In this model, the authors consider 
cash flows coming from different currencies, relating to the aspect of existing 
foreign exchange and the need for hedging. Thus, the authors obtain positive 
results in determining the optimal cash balance. More recently, Gormley and 
Meade (2007) [8] have differentiated their work by presenting a dynamic policy 
for cash balance that minimizes transfer costs when cash flows are not indepen-
dent or identically distributed in a general cost structure. By using this metho-
dology, the authors used historical data to develop a time series model to fore-
cast cash flows, promoting a conditional expectation of future cash flows and 
obtaining results in the reduced transfer cost. 

Melo and Bilich (2011) [9] propose the use of dynamic programming to mi-
nimize the cost of cash, considering the cost de rupture cash. In order to ensure 
that investment decisions are made optimally in terms of both reward and risk, 
suitable frameworks for the solution of supply chain optimisation problems un-
der uncertainty are required. Most of the existing frameworks are suitable for 
two-stage problems while there is a need for appropriate multi-stage, multi-period 
optimisation frameworks for supply chain management as Balasubramanian and 
Grossmann (2004) [10] and Wu and Ierapetritou (2007) [11]. 

In this manuscript, we consider an inventory approach to cash management 
where the stochastic nature appears in the demand for money. 

2. Model 

The firm’s cash level fluctuates randomly as the result of many relatively small 
transactions. We model this fluctuation by dividing time into successive, length 
periods and by assuming that from period to period, the cash level moves up or 
down one unit, each with different probability. 

Using these symbols, we will elaborate our study by letting: 
s: Minimal capital. 
S: Maximum capital. 
n: Period n or cycle. 
p: Probability of success. 
q: Probability of loss. 

0T : Initial cash on hand. 

nX : Event when the cash reaches the boundaries at nth periods. 
T: Random time of the first transaction when it stops at 0 or S. 

0 1T + : First position when there is successful investment. 

0 1T − : First position when the investor loses his investment. 
k: Possible cash states. 

ku : Probability of cash fluctuation starting from initial state k. 
1s + : State at first step of success. 
1s − : State at first step of loss. 

1sW + : Remainder after the first step of success. 

1sW − : Remainder after the first step of loss. 
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sW : Mean duration starting from s reaching k. 
h

sW : Homogeneous solution of mean duration. 
p

sW : Particular solution of mean duration. 

skW : Expected number of visits to level k starting from s. 

{ }1 nX k= : Indicator random variable that takes value 1 when it reaches k 
and the value 0 otherwise. 

( )max ,0s k− : Maximum state k reached between 0 and s. 
r: Total cost of holding cash on hand during a cycle. 
K: Fixed cost of each transaction. 

iT : Duration of the ith cycle. 

iR : Total opportunity cost of holding cash on hand. 

nY : Maximum value observed in the sequence of 1Y till nY . 
*
iσ : Optimal stopping time. 

{ }*P Y
σ

: Probability of success where the investor will stop investing with the 
largest fortune. 

C: All stopping time. 

( )w x : Probability of success starting from x. 

( )s x : Probability of success starting when the firm stop in x. 

( )c x : Probability of success when firm continue investing in an optimal 
manner. 

*x : Valid investments at state x. 
x: Set of fortune valid at state x. 
f: Stationary policy. 

*<x x : State when the firm stop investing. 
*x x≥ : State when the firm continue investing. 

( )fw x : Probability of success starting from state x when policy f is employed. 

xP  or ( ),xP S x x− : Probability reaching the fortune at state x before the 
maximum amount of capital S. 

i: Largest fortune that the investor feels satisfied about. 
r (Section 2.4.2): State of when the investor chooses to stop. 

( ),xP i x : Probability of success at state x having one of the largest fortune i. 
*
ik : Valid investment at i when the firm stops at one of the largest fortune. 

We consider cash management strategies and we specify cash levels by two 
parameters, s and S, where 0 s S< < . The policy is as follows: 

-When the firm’s capital drops to zero, then he will sell sufficient bonds to 
replenish the cash level up to s. 

-When it increases up to S, then the investor will invest in treasury bills in or-
der to reduce the cash level to s. 

This process has led us to adopt an approach in [12] to analyse fluctuation. 
We see in Figure 1 that the cash level fluctuates in each cycle when it begins 

with s units of cash on hand and end at the next intervention whether a reple-
nishment or reduction in cash. 

We will begin our study by evaluating the mean number of visits to a  
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Figure 1.The graph that shows the fluctuation of cash during 
the First 2 cycles. 

 
particular state, the mean length of a cycle, first step analysis and at the end we 
will evaluate the long run performance of the model. 

Consider a firm who wins or loses on each investment as a result of many 
small deposits and withdrawals. We model this fluctuation by dividing time into 
periods. In each time period, assume the reserve randomly increases one unit of 
cash with probability p and decreases one unit by a probability q. 

We will model this assumption using stochastic probability where p q≠ . 
Let’s define the random variable 1 2, ,Y Y   where 

1, with probability ;
1, with probability .n

p
Y

q
+

= −
 

We start with an initial value 0 0T Y s= =  as initial cash. We define the  
sequence of sums 0

n
n iiT Y

=
= ∑  which makes the sequence 0 1

n
n iiT T Y

=
= +∑  is  

the cash on hand at period n. We can look at how many investment the process 
will experience until it achieves 0 or S. Each investment is of probability p and 

1q p= −  respectively. 

3. Probability and Mean Duration 

Let T denote the random time of the first transaction and nX  represents the 
event when they both reach 0 or S at nth period. 

In symbols, { }min 0; 0 orn nT n X X S= ≥ = = . If there is success the firm 
continues to invest as if the initial position is 0 1T +  with probability p and if 
the firm loses the position initial is 0 1T −  with probability q. 

0 1T +  and 0 1T −  are the first trial when the firm invest. That’s why the most 
important step in real life phenomena is the first step analysis. Its main benefit is 
that it provides a benchmark to evaluate more methods. To this end, we perform 
the first step analysis associated with our optimization problem by: 

The Method “First-Step Analysis” 

The probability of the cash fluctuation starting from the initial state k is: 
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{ }00 /k Tu Pr X X k= = =  

where the event written as 0TX =  is the event of firms robbed. 
Similar to the first step analysis in [13] and [14] we will obtain the equations 

1 1, for 1,2, , 1.k k ku pu qu k S+ −= + = −                (1) 

with boundary conditions: 

0 1, 0.Su u= =  

We begin the solution by introducing the differences 1k k kx u u −= −  for 
1,2, ,k S=  . Using 1p q+ =  to write ( )k k k ku p q u pu qu= + = + , equation 

(2.1) becomes: 

( ) ( )2 1 1 0 2 11; 0 ;k p u u q u u px qx= = − − − = −  

( ) ( )3 2 2 1 3 22; 0 ;k p u u q u u px qx= = − − − = −  

  

( ) ( )1 1 2 11; 0 ;S S S S S Sk S p u u q u u px qx− − − −= − = − − − = −  

given, 

( )2 1;x q p x=  

( ) ( )2
3 2 1;x q p x q p x= =  

( ) ( )3
4 3 1;x q p x q p x= =  

  

( ) ( ) 1
1 1;

k
k kx q p x q p x−

−= =  

  

( ) ( ) 1
1 1;

S
S Sx q p x q p x−

−= =  

Now, using 0 1, , , Su u u  by invoking the conditions 0 1, 0Su u= =  and 
summing the kx ’s: 

1 1 0 1 1x u u u= − = − ; 

2 2 1x u u= − , 1 2 2 1x x u+ = − ; 

3 3 2x u u= − , 1 2 3 3 1x x x u+ + = − ; 

  

1k k kx u u −= − , 1 2 1k kx x x u+ + + = − ; 

  

1S S Sx u u −= − , 1 2 1 1 1S Sx x x u−+ + + = − = − ; 

The equation for general k gives: 

( ) ( )
( ) ( )

1 2
1

1 1 1

1
1

1

1

1 1

k k
k

k

u x x x

x q p x q p x

q p q p x

−

−

= + + + +

= + + + +

 = + + + + 







               (2) 

which expresses ku  in terms of 1x ; But 0Nu =  gives 
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( ) ( ) 1
10 1 1 Sq p q p x− = + + + +   

( ) ( )1 1

1
1 Sx

q p q p −

−
=

+ + +

 

which substituted into (2.2) gives: 

( ) ( )
( ) ( )

1

1

1
1

1

k

k S

q p q p
u

q p q p

−

−

+ + +
= −

+ + +





 

The geometric series sums to: 

( ) ( ) ( )
( )

1

1, if ;
2

1
1

, if .
1

k
k

k p q
q p q p

q p
p q

q p

−

 = =
+ + + =  − ≠
 −

  

whence ( )
( )

( ) ( )
( )

11 , when ;
2

1
1 , when .

1 1

k k Sk

S S

k S k p q
S S

u q p q p q p
p q

q p q p

− − = = =
=  − − − = ≠
 − −

 

A similar approach can be used to evaluate the mean duration, the time T is 
composed of a first step plus the remaining steps. With probability p, the first 
step of success is to state 1s + , and then the remainder is 1sW + .With probability 
q, the first step of loss is to 1s −  and there are 1sW −  remainder. 

Thus, for the mean duration, a first step analysis leads to the difference equa-
tion: 

1 11 for 1, , 1.s s sW pW qW s S+ −= + + = −                (3) 

The firm will end its investment in states 0 and S. 
The boundary conditions are: 0 0SW W= = . 
We will solve (2.3) when p q≠ : 
First, we need to find the general solution to the homogeneous equation: 

1 1.
h h h

s s sW pW qW+ −= +  

and a particular solution to the non-homogeneous equation. 
We already know the general solution to the homogeneous equation: 

1 1.
h h h

s s sW pW qW+ −= +  

which is: ( ) .sh
sW A B q p= +  

Then, we use the form 2p
sW C Ds Es= + +  to find the particular solution. 

, , ,A B C D  and E represent the constants to be found that fits h
sW  and p

sW  to 
obtain sW , the general solution. 

The general solution of the duration equation is: 

( ) .s
s

sW A B q p
q p

= + +
−

 

The boundary conditions require that 0A B+ = , and  
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( ) 0s sA B q p
q p

+ + =
−

. 

Solving for A and B, we find: 

( )
( )

1
if .

1

s

s S

q ps SW p q
q p q p q p

 −
 = − ≠
 − − − 

              (4) 

Comparing to Dunbar’s paper [15] where he discussed the following: 
If 1 2p q= = ; the particular solution is 2s− . It follows the general solution is 

of the form 2
sW s A Bs= − + + ; satisfying the boundary conditions the solution 

is ( )sW s S s= − . 

4. Mean Number of Visits to a Cycle 

Now, fix a state k where 0 k S< <  and let skW  be the expected number of vis-
its to the level k starting from s given by a formal mathematical expression 
which is: 

{ }1
001 |T

sk nnW E X k X s−

=
 = = = ∑  

where { }
1, if ;

1
0, if .

n
n

n

X k
X k

X k
=

= =  ≠
 is the indicator random variable that takes 

the value 1 when nX  reaches state k and 0 otherwise. 

Note that if I go to a bank N times and nX  is the event (“I am robbed the nth 
time”) then the inner sum “ 1

1 1
n

N
Xn

−

=∑ ” is the total number of times where I am  

robbed. 
Then using the first step analysis, skW  satisfies the equations: 

1, 1,sk sk s k s kW qW pWδ − += + +                      (5) 

with boundary conditions 0 0k SkW W= =  
where 

1, if ;
0, if .sk

k s
k s

δ
=

=  ≠
 

We consider two cases: 
• case 1: When 0skδ = , we will obtain the homogeneous equation h

sW ; 
• case 2: When 1skδ = , we will obtain a non homogeneous difference equa-

tion. 
Using Linear Algebra, we found the particular solution: 

( )
0, if ;
2 , if .

p
sk

s k
W

k s s k
<

=  − ≥
 

Following that: 

( )

( )

, for ;

, for .
sk

s S k
s k S

qS
W

k S s
k s S

qS

−
≤ ≤

= 
− ≤ ≤
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which makes the full solution when p q≠  is as following: 

( ) ( )max ,0
sk

s S k s k
W

qS q
− −

= −  

where we denote ( )max ,0s k−  by the notation ( )s k +−  

so when 1
2

p q= = ; we will obtain: 

( )2 1sk
kW s s k
S

+  = − − −    
 

Using the obtained result of skW , the mean total unit periods of cash on hand 
up to time T starting from 0X s= , multiplying by k, by r and summing overall 
the cash is calculated as follow: 

( ) ( )

( )

1

1

1 1
1 1

2 2

6

S

s sk
k

S S
k k

W rkW

s S k s k
rk rk

qS q
rs S s
q

−

=

− −

= =

=

− −   
= −   

   

= −

∑

∑ ∑               (6) 

These results are interesting and useful in their own right as estimates of the 
length of a cycle and the expected cost of cash on hand during a cycle. Now we 
use these results to evaluate the long run behavior of the cycles. These cycles are 
statistically independent. Let K be the fixed cost of each transaction. Let iT  be 
the duration of the ith cycle and let iR  be the total opportunity cost of holding 
cash on hand during that time. Over n cycles the average cost per unit time is: 

1

1

Average cost n

n

nK R R
T T
+ + +

=
+ +





 

Next, divide the numerator and denominator by n, we obtain : 

[ ]
[ ]

Long run average cost .i

i

K E R
E T
+

=  

Let r denote the opportunity cost per time unit of cash on hand. Then 
[ ]i sE R rW= , while [ ]i sE T W= . Since these quantities were determined in (2.4) 

and (2.6) respectively we have: 

( )
( )
( )

( ) ( )( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )
( ) ( ) ( )

2 2

2 2

long run average cost

16 .
1

1

1 6 1 1
.

S

s Ss

S

S

s S

rsK S s K q p q pq
s S S q p s q pq ps S

q p q p q p

q rs S s q p q p

s S S q p s q p

+ − − −
= =

  − + −−
 −
 − − − 

− − −
+

− + −

     (7) 

We used calculus to determine the minimizing values for S and s, it simplifies 
matters if we introduce the new variable x s S= . Then (2.7) becomes: 
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( ) ( )( )
( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

3 2

long run average cost

1

1

1 6 1 1
.

1

S

Sx S

S

xS S

K q p q p

S x S q p xS q p

q p q rxS x q p

S x S q p xS q p

− −
=

− + −

− − −
+

− + −

 

Take the partial derivatives with respect to x and S and set them equal to zero, 
then solve, to find the critical points. 

1
6optx =  and 6opt optS s=  

Implementing the cash management strategy with the values opts  and optS  
results in the optimal balance between transaction costs and the opportunity cost 
of holding cash in hand. 

In our study, we adopted the approach with p q≠  as oppose to what in lite-
rature used to solve the optimization problem where they used similar probabili-
ties when p q= . Dunbar specifically worked on p q=  where he found 

k
S ku

S
−

= and ( )sW s S s= − , the probability of cash fluctuation and the mean 

duration respectively. Our approach is more realistic because there is no similar 
probabilities in real life. Contrarily to their study too, we analyzed the first step 
analysis. At the end, we evaluated the long run behavior cost. The last one is 
better than the short one because the firm will have the flexibility to change big 
components to achieve optimal efficiency. 

5. Optimal Stopping Time 
5.1. Maximize the Probability of Success 

In the previous section, we discussed when the firm will go bankrupt or when it 
reaches a predefined boundary. Now, we will discuss the decision that the inves-
tor will take to stop or continue investing [16] [17].  

This decision-making problem is classified under two categories: determinis-
tic and probabilistic decision models. During our work, we will adopt the proba-
bilistic decision model where it goes under the mathematical optimization. It is 
the branch of the computational science that seeks the answer to the question 
“What is the best?”. The model of the mathematical optimization consists of an 
objective function and a set of constraints expressed in the form of a system of 
stochastic inequalities [18]. 

Optimization models are used in almost all areas of decision making such that 
financial investment and cash management. The process of these models starts 
by describing the problem; prescribes a solution and controls the problem by 
updating the optimal solution continuously while changing the parameters. 

5.2. Optimization’s Model 

The sequence 1 2, , , nY Y Y  defined in Section 2.1 as a sequence of random va-
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riables is redefined in this section. Then, the serious decision of either to stop or 
continue takes place at time n when nY  is the maximum value observed. 

The sequence is now defined as follow: 

( )1 2max , , ,n nY Y Y Y= 
 

The objective is to find a stopping policy that will maximize the probability of 
success where the investor will stop investing with the largest fortune. This 
problem can be described in terms of stopping time as that of seeking an optimal 
stopping time *σ  such that: 

{ } { }* 0 0 0 0max / max max /n T n C n T nP Y Y Y s P X Y Y sσε σσ ≤ ≤ ≤ ≤= = = = =    (8) 

where C is all stopping times and T is the time process defined in section 2 as: 

{ }min 0; 0 orn nT n X X S= ≥ = = . 

This decision state is referred to as state x if nY x= , because the decision de-
pends neither on the values of 0 1, , nY Y −  nor on the number of investments al-
ready made. 

Let ( )w x  be the probability of success starting from state x, and let: 
• ( )s x  be the probability of success when the firm stop in state x 
• ( )c x  be the probability that the firm continue investing in an optimal 

manner in state x. 
Then, the principle of optimality: 

( ) ( ) ( ){ }max , for 0w x s x c x x S= < <                 (9) 

where ( )s x  is already defined by ku  in Section 2.2.1: 

( )
1

1

1 , when ;
1

, when .

1

x x

x

p q
x

q q
s x

p p
p q

q
p

+

+

 = +
    −=    
    ≠

  
 −  
  

              (10) 

and 

( ) ( ) ( )( ) ( )1 1 1 , 0c x w x q s x w x x S= + + − − < <           (11) 

as given in [16] [17] 
with the boundary conditions: 

( ) ( )0 1w w S= =  

To solve the optimality equation we use the result of positive dynamic pro-
gramming [19]. If the result fits the framework of the positive dynamic pro-
gramming, then a given stationary policy is optimal if its value function satisfies 
the optimality equation. This problem fits the framework of positive dynamic 
programming since if we suppose that the reserve increases one unit of cash if 
we attain the largest over all and all other reserves are zero, then the expected 
total fortune equals the probability of success. 
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Let f be a stationary policy which, when the decision process is in state x, 
chooses to stop if and only if *x x<  where: 

( )
( )

( ) ( )
( )

1
*

1

1
min :

1 1

x x x

S x

q p q p q p
x x

q p q p

+

+

 − − = ≥ 
− −  

           (12) 

Then f is optimal. 
*x  belongs to the set of valid investments and x belongs to the set of fortune. 

In addition, *x x<  because we will always assume that the investor cannot 
invest using the capital that he doesn’t have and doesn’t invest more than he 
needs in order to reach the target; 

To prove that f is optimal when (2.12) is considered: 
Let ( )fw x  denote the probability of success starting from state x when poli-

cy f is employed. 
Once the decision process leaves state x; i.e. *x x≥ ; it never stops until ab-

sorption takes place under f. 
We obtain: 

( ) ( )
( )

*

*

, if
, , iff

s x x x
w x

P S x x x x
 <= 

− ≥
                (13) 

where 

( ) ( )
( )

, if ;

, 1
, if .

1

x

S

x p q
S

P S x x q p
p q

q p

 =
− =  − ≠
 −

              (14) 

Observe that ( )s x  is decreasing in x because if we find the derivative of 
(2.10): 

( ) ( ) ( )
( )

1

1 for
1

x x

x

q p q p
s x p q

q p

+

+

−
= ≠

−
; 

we obtain: 

( )
( ) ( ) ( )( )

( )( )

1

21

ln

1

x x

x

q p q p q p
s x

q p

+

+

−
′ =

−
 

which will be negative. For that ( )s x  is decreasing in x. 

Similarly, the derivative for p q= , is ( )
( )2

1
1

s x
x
−′ =
+

 and it is negative  

that’s why we say that ( )s x  is decreasing in x. While ( ),P S x x−  is increas-
ing in x because if we find its derivative, we find that ( ), 0P S x x′ − > . 

In fact, from Equation (2.14) and 
for p q≠ : 

( ) ( ) ( ) ( ) ( )( )
( )( )2

ln ln
, 0

1

x x S

S

q p q p q p q p q p
P S x x

q p

− +
′ − = >

−
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For p q= , ( ) 1, 0P S x x
S

′ − = > . 

Let’s prove that f is optimal where f is as defined in (2.9). We have to show 
that ( ),xP S x x−  and ( )s x  satisfies: 

( ) ( ) ( ) ( )( ) ( ){ }max , 1 1 1 , 0f f fw x s x pw x q s x w x x S= + + − − < <    (15) 

as given in [16] [17]; and 

( ) ( ){ }* min : xx x s x P S x= ≤ −                   (16) 

we have to work on the conditions where *x x<  and *x x≥ ; 
1) for *x x< ; it means when ( ) ( )fw x s x= ; 

( ) ( ) ( )( ) ( )1 1 1f f fw x pw x q s x w x≥ + + − −             (17) 

or 

( ) ( ) ( )( ) ( )1 1 1s x ps x q s x s x≥ + + − −  

( ) ( )( ) ( ) ( )1 1 1s x q s x s x ps x− − − ≥ +  

( ) ( ) ( ) ( ) ( )1 1s x qs x qs x s x ps x− + − ≥ +  

( ) ( ) ( ) ( )1 1ps x qs x s x ps x+ − ≥ +  

Then, 

( ) ( ) ( ) ( )1 1q qs x s x s x s x
p p

+ − ≥ +  

Let’s verify the inequality for p q= : 
In this case, 

- ( ) 1
1

s x
x

=
+

 

- ( ) 11
2

s x
x

+ =
+

 

- ( ) 11s x
x

− =  

1 1 1 1
1 1 2

q q
x p x x p x

     + ≥      + + +     
 

( )
( ) ( )1 1

1 2
p x

q p
px x x

+
≥

+ +
 

1 1
2x x

≥
+

                          (18) 

True, so the inequality is verified. 
Now, for p q≠ : 

- ( ) ( ) ( )
( )

1

11

x x

x

q p q p
s x

q p

+

+

−
=

−
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- ( ) ( ) ( )
( )

1 2

21
1

x x

x

q p q p
s x

q p

+ +

+

−
+ =

−
 

- 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )( )
( )( ) ( )( )

1 1 2

1 2

22 1

1 2

1
1 1

1

1 1

x x x x

x x

x

x x

q p q p q p q p
s x s x

q p q p

q p q p

q p q p

+ + +

+ +

+

+ +

  − −
  + =
  − −  

−
=

− −

 

- ( ) ( ) ( )
( )( ) ( )( )
( )( ) ( )( )

2 21

1 2

1
1

1 1

x

x x

q p q p
q p s x s x

q p q p

+

+ +

−
+ =

− −
 

- 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )( ) ( )( )
( ) ( )( )
( )( ) ( )( )

1 1 2

1 2

1 2

1 2

2

1 2

1
1 1

2

1 1

1

1 1

x x x x

x x

x x x

x x

x

x x

q p q p q p q p
s x s x

q p q p

q p q p q p

q p q p

q p q p

q p q p

+ + +

+ +

+ +

+ +

+ +

− − +
− + = +

− −

− +
=

− −

−
=

− −

 

So the inequality is as follow; 

( ) ( )( ) ( ) ( )1 1 0qs x s x s x s x
p

− + + + ≥                (19) 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

2 2 21

1 2

1 1
0

1 1

x x

x x

q p q p q p q p

q p q p

+

+ +

− + −
≥

− −
 

2) Check for *x x≥ : 
It means that when ( ) ( ) ( ),f xw x P S x x s x= − ≥ ; 

( ) ( ) ( )( ) ( )1 1 1f f fw x pw x q s x w x≥ + + − −             (20) 

or; 

( ) ( ) ( )( ) ( )1, 1, 1 1 1 ,x x xP S x x pP S x x q s x P S x x+− ≥ − − + + − − −  

Let’s start with: 

( ) ( ) ( )
( )

( )
( )

1 11
1 1 1

1 1

x x x

x x

q p q p q p
s x

q p q p

− −− −
− − = − =

− −
 for p q≠  

and ( ) ( )
( )

1

1

1
1, 1

1

x

x x

q p
P x

q p

−

−

−
− =

−
 so, ( ) ( )11 1 1, 1xs x P x−− − = −  

Having; 

( ) ( )
( )

1

1

1
1, 1

1

x

x S

q p
P S x x

q p

+

+

−
− − + =

−
 

( ) ( )
( )

1

1

1
1, 1

1

x

x x

q p
P x

q p

−

−

−
− =

−
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( ) ( )
( )

1
,

1

x

x S

q p
P S x x

q p

−
− =

−
 

( )( ) ( )( )
( )( ) ( )( )

( )
( )

1 1

1

1 1 1

11 1

x x x

x x Sx S

q p q p q p
P P

q pq p q p

− −

−

− − −
∗ = =

−− −
 

( )
( )

( )
( )

( ) ( )
( )

( )
( )

( )

1 11 1

1 1

1 1
,

1 1

x x

S S

x x

xS S

q p q p
p q

q p q p

q p p q q p
P S x x

q p q p

+ −   − −
   +
   − −   

− + −
= = = −

− −

 

To prove that the investor will continue investing, we have ( )xP s x=  be-
cause P denotes the probability of success starting at state x and ( )s x  when the 
firm stop at state x. The inequality (2.20) is proved for ( )xP s x= , so the inequa-
lity is proved and makes the statement true for ( ) ( ) ( ),f xw x P S x x s x= − ≥ . 

5.3. Optimal Stopping Time of Satisfaction 

In this section, we will find an optimal stopping time of when the investor feels 
satisfaction and stop investing on one of the largest fortune that he had. 
Similarly to the previous section, the optimal stopping time is given by: 

( ){ }* *
0min : max 1 ;i n j n j n in Y Y i Y kσ ≤ ≤= = − − <            (21) 

where: 

( )
( )

( ) ( )( )
( )

*
1

11
min :

1 1

k ik

i S i k i

q p q pq p
k k

q p q p− + +

 −− = ≥ 
− −  

         (22) 

We denote the serious decision as if: 

( )0max 1n j n jY Y i≤ ≤≥ − − . 

This state can be written as ( ),x r  if nY x=  where 0 x S i< < −  and  
1,2, ,r i=   and 

( )0max 1n j n jY Y r≤ ≤= − −  

Let ( )rw x  where 1 r i≤ ≤  be the probability of success starting from state 

( ),x r  and ( )rs x  and ( )rc x  as defined in the previous section. 
The principle of optimality is: 

( ) ( ) ( ){ }max , when 1 and 0r r rw x s x c x r i x S i= ≤ ≤ < < −  (23) 

where 
( ) ( )1 ,r xs x P i x= −  when 1 r i≤ ≤  

with 

( ) ( )
( )

( ) ( )
( )

1
1

1 1

x x x i

r x i x i

q p q p q p
s x

q p q p

+

+ +

− −
= − =

− −
           (24) 
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and; 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

1 1

1 1

1 1

1 1

1 1

1

1 1, 1

1 1, 1 1, 1 1 ,

1 1 1

1 1 1

1

r r x r

x x x

x x x

S r x S r

x x

S r

c x pw x qP x w x

pP S r x x qP x P S r x x

q p q p q p
p q

q p q p q p

p p q p q q q p

q p

− −

+ −

+ −

− + − +

+ −

− +

= + + −

= − + − − + + − − + −

    − − −
    = +
    − − −    

− + −
=

−

 

( ) ( )
( ) 1

1

1

x

r S r

q p
c x

q p − +

−
=

−
                      (25) 

Similarly; 
Let f be a stationary policy which, when the decision process is in state ( ),x r ; 

we chooses to stop if and only if *x x<  where: 

( )
( )

( ) ( )
( )

*
1

1
min :

1 1

x x x r

S r x r

q p q p q p
x x

q p q p

+

− + +

 − − = ≥ 
− −  

         (26) 

Then f is optimal. 
Let’s prove the Equation (2.26); 
Let ( )fw x  be the probability of success starting from state ( ),x r  when the 

policy f is employed. 
Once the decision process leaves the state ( ),x r  for *x x≥  it never stops 

until absorption takes place under f. 

( ) ( ) ( )
( ) ( )

*

*

if Stop investing
1 , if continue investingf

x

s x x x
w x

P S r x x x x
 <= 

− + − ≥
    (27) 

( )s x  is decreasing already proved; while ( )1 ,xP S r x x− + −  is increasing in 
x, and *x  is given as follows: 

( ) ( ){ }* min : 1 ,xx x s x P S r x x= ≤ − + −  

we choose to continue in state ( ),x r ; 1 r i≤ ≤  if ( ) ( )r rs x c x= . 
It means that for 1 r i≤ ≤ : ( ) ( )r rc x s x≥ ; 
Let 

( ) ( ) ( )1 1 when 1rc x ps x qs x r i≥ + + − ≤ <            (28) 

to show that ( ) ( )rc x s x≥ ; we have to show: 

( ) ( ) ( )1 1ps x qs x s x+ + − ≥                   (29) 

( ) ( ) ( )
( )

( ) ( )( )
( )

11 1

1 1

1
1

1 1

x ix x i

x i x i

q p q pq p q p
s x

q p q p

++ + +

+ + + +

−−
+ = =

− −
 

( ) ( ) ( )
( )

( ) ( )( )
( )

11 1

1 1

1
1

1 1

x ix x i

x i x i

q p q pq p q p
s x

q p q p

−− + −

+ − + +

−−
− = =

− −
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( ) ( ) ( )
( )

( ) ( )( )
( )1 1

1
1

1 1

x ix x i

x i x i

q q p q pq q p q q p
ps x

q p q p

+

+ + + +

−−
+ = =

− −
 

( ) ( ) ( )
( )

( ) ( )( )
( )1 1

1
1

1 1

x ix x i

x i x i

p q p q pp q p p q p
qs x

q p q p

+

+ − + −

−−
− = =

− −
 

so let’s substitute each variable by it’s convenient expression in (2.29) we obtain; 

( ) ( )( ) ( )( )
( )( ) ( )( )

( ) ( )
( )1 1

1 1
0

11 1

x i x i x x i

x ix i x i

q p q p q p q p q p

q pq p q p

+ +

++ + − +

− − −
− ≥

−− −
       (30) 

Having ( ) ( )( ) ( ) ( )( )1 1x i x is x q p q p q p+− = − ; 

( ) ( )( )
( )( ) ( )( ) ( )

2

1 1

1

1 1

x i

x i x i

s x q p
s x

q p q p

+

+ + + +

−
≥

− −
 

simplify by ( )s x  we will get; 

( )( )
( )( ) ( )( )

2

1 1

1
1

1 1

x i

x i x i

q p

q p q p

+

+ + − +

−
≥

− −
                (31) 

So, the inequality for ( ) ( )rc x s x≥  is proved. 

5.4. Conclusions 

Managing the cash balance is important in business administration, but rarely 
do we apply the techniques presented in this study in practice. Much of this 
neglect is due to the difficulty in developing models closer to reality. Despite its 
name, optimization does not necessarily mean finding the optimum solution to a 
problem. Furthermore, the view of the cash balance is still limited and not re-
garded as an investment, which has a negative profitability defined by total cost 
of the cash, immediate liquidity, and risk associated with cash deficit. Thus, it is 
necessary to understand the cash balance together with other financial invest-
ments and examines the investment choices in financial products. 

This is a classic problem in business, involving economics, accounting, and 
finance, and it should return to be the focus of discussions in these areas, as the 
existing limitations concerning the models and methods can be eliminated. We 
must discuss the cash balance problem not only about the method involved in 
optimization but also in practical application. Further studies can be done con-
cerning the elaboration of this topic and discussing the fair investment when 
there is no loss or gain during investment. Finally, we must discuss the cash 
balance problem not only about the method involved in optimization but also in 
practical application. 
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