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ABSTRACT 

In this paper, we investigate the problem of maximizing the expected exponential utility for an insurer. In the problem 
setting, the insurer can invest his/her wealth into the market and he/she can also purchase the proportional reinsurance. 
To control the risk exposure, we impose a value-at-risk constraint on the portfolio, which results in a constrained sto-
chastic optimal control problem. It is difficult to solve a constrained stochastic optimal control problem by using tradi-
tional dynamic programming or Martingale approach. However, for the frequently used exponential utility function, we 
show that the problem can be simplified significantly using a decomposition approach. The problem is reduced to a de-
terministic constrained optimal control problem, and then to a finite dimensional optimization problem. To show the 
effectiveness of the approach proposed, we consider both complete and incomplete markets; the latter arises when the 
number of risky assets are fewer than the dimension of uncertainty. We also conduct numerical experiments to demon-
strate the effect of the risk constraint on the optimal strategy. 
 
Keywords: Proportional Reinsurance; Martingale Transform; Value-at-Risk; Stochastic Control; Deterministic  

Optimal Control 

1. Introduction 

Maximizing the expected utility of wealth is an important 
objective for an insurer. To achieve this goal, there has 
been much attention in the literature in security market 
and/or reinsurance-related products [1-9]. The insurer is 
tempted to put his/her surplus into the risky investment 
so as to obtain a higher potential return. However, maxi- 
mizing profit should not be the only objective. As risky 
investment could result in a heavy loss, a shrewd insurer 
should strike a balance between the amount of risky 
assets and risk-free assets, such that they are kept within 
bounds. In today’s challenging economic climate, it is 
clear from the latest report, entitled Financial Reform: A 
Framework for “Financial Stability” released by The 
Group of Thirty (G30), that firms must balance risk with 
caution between the long-term interests of shareholders 
and returns to shareholders. 

One instrument of risk control is reinsurance, which 
transfers part of the risk exposure to another insurer. In 
this way, the utility is improved because the reinsurance 

will help absorb the possible major loss resulting from an 
insurance claim. However, reinsurance is costly since the 
insurer has to pay hefty premiums to the reinsurer. This 
will, in turn, reduce the utility significantly. Thus the 
optimal choice of reinsurance is also an important issue 
for the insurer. With a certain risk measure in place, we 
can control the exposure to risky assets and determine the 
level of necessary reinsurance. 

In risk management, a popular risk measure is value- 
at-risk (VaR). VaR has emerged as an important risk 
management tool to estimate the potential loss over a 
given time period with a given probability. With VaR as 
the risk constraint, Kostadinova [2] studied the problem 
of maximizing the expected utility of wealth. In [2], the 
optimal investment strategy is sought by maximizing the 
expected wealth of the insurance company with the 
value-at-risk constraint imposed at the initial date. How- 
ever, VaR of the portfolio is never reevaluated after the 
initial date. This is different from the practice adopted by 
most financial institutions where they use VaR for 
internal risk control, and VaR is reevaluated frequently. 
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Because the VaR of the portfolio after the initial date, the 
probability of portfolio losses below the prescribed 
maximum VaR can become zero after the initial date and 
yet the trader is still allowed to continue to follow the 
original trading strategy. This trading strategy is clearly 
inconsistent with the purpose of imposing the VaR 
constraint. 

In this paper, by allowing both the opportunities of 
investment and proportional reinsurance, we consider the 
problem of maximizing the expected exponential utility 
for the final wealth subject to the VaR constraint. Here, 
the utility reflects the amount of satisfaction gained by 
the financial agent from wealth. We impose the VaR as a 
risk constraint at each instant and emphasize the need for 
the repeated recalculation of VaR in practice. Moreover, 
the constraints are calculated abstracting from within- 
interval trading, based on the available information. In 
this way, it can be assured that the constraint is consistent 
with the strategy, see [10-14]. 

In solving this optimal investment and proportional 
reinsurance problem, one popular way is to employ the 
stochastic dynamic programming approach [1,9,15,16]. 
By using the dynamic programming principle, the pro- 
blem is reduced to solving a Hamilton-Jacobi-Bellman 
(HJB) equation, which is a second order linear partial 
differential equation. A key assumption in this approach 
is that the value function of the problem is a  
function. This assumption is needed to ensure to obtain 
the existence of a classical solution to the problem. How- 
ever, the HJB equation is highly nonlinear. Even its nu- 
merical solution is difficult to obtain. This is especially 
true when the risk constraint is taken into account simul- 
taneously. Moreover, the dynamic programming approa- 
ch deals with the problems in Markov model setting. For 
the Martingale approach, it works well in a complete 
market. Since every Martingale relative to a Brownian 
filtration can be represented as a stochastic integral with 
respect to the underlying Brownian motion, the integrand 
in this representation can lead to the portfolio that we are 
seeking. However, in an incomplete1 market with a cons- 
traint on the strategy or when the number or the risky 
asset is smaller than the dimension of the driving Brow- 
nian, this line of arguments fails. 

1,2C

In this paper, we study an investment reinsurance pro- 
blem with a dynamic risk constraint. The approach that 
we will propose is much easier than the traditional one. It 
transforms the stochastic optimal control problem into a 
deterministic optimal control problem. Although the pa- 

rameters for the assets are assumed to be deterministic 
functions of time, it appears possible to be extendable to 
cases, where the parameters are measurable with respect 
to some filtration defined in the work. Our approach is 
applicable to cases with or without constraints on the 
strategy, and whether or not the model setting is Mar- 
kovian. This provides a different perspective to the 
investigation of the investment reinsurance problem in 
actuarial science. 

The rest of the paper is structured as follows. In Sec- 
tion 2, we present the investment-reinsurance model with 
dynamic risk constraint. Here, we consider the wealth 
maximization problem with the exponential utility func- 
tion, which plays a prominent role in insurance mathe- 
matics and actuarial practice. The exponential utility 
function is the only utility function under which the prin- 
ciple of “zero utility” gives a fair premium that is inde- 
pendent of the level of reserve of an insurance company 
(see Gerber [17], page 68). In Section 3, by decom- 
position, we show that this constrained stochastic optimal 
control problem can be simplified significantly, reducing 
to a constrained deterministic optimal control problem 
and then to a finite-dimensional optimization problem, 
which can be tackled by classical computation techniques, 
such as [18-20]. In Section 4, we demonstrate the effec- 
tiveness of this method through carrying out numerical 
experiments for cases of complete and incomplete mar- 
kets, where the risky assets are fewer than the uncertainty 
factors (i.e., the dimension of the Brownian motion). We 
also conduct numerical experiments to investigate the 
effect of the VaR constraint on the strategy. 

2. The Model and the Problem 

Suppose that the accumulated claim process  C t  of an 
insurer can be modeled as:  

  0d d dC t a t b W t    ,            (1) 

where  0W t  is a standard Brownian motion defined on 
a complete probability space . Let  be 
the filtration generated by  0 . The 
surplus process 

 1 1 1, , P 
  ,0W t

1
t

s t 
 ; 0tX t  , which represents the liquid 

assets of the company (also called the risk or the surplus 
process) is taken as the state variable. With a safety 
loading > 0 , the continuously paid premium is 
assumed to be  1c a  . In the absence of control, 
the surplus is governed by  

     0

0

d d d d d

,

,X t c t C t a t b W t

X x

    



   (2) 1An incomplete market in Mathematical Finance corresponds to a set-

ting, in which the controller has full information about many aspects of 
the system (the market), but various exogenously imposed constraints 
(taxation, transaction costs, bad credit rating, legislature etc.) prevent 
him/her from choosing the control (portfolio) outside a given constraint 
set. In fact, even without government-imposed portfolio constraints, 
financial markets will typically not offer tradeable assets corresponding 
to a variety of sources of uncertainty. 

where x  denotes the initial reserve. 
The proportional reinsurance  is a predictable 

process with 
 q t

 0 1q t  , for   0,t T . If the risk 
exposure of the company is fixed, then the reinsurer pays 
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 q t  of each claim while the rest is paid by the insurer. 
To this end, the cedent diverts part of the premiums to 
the reinsurer at the rate of    with a 
proportional loading of 

1 aq t 
> 

 

. 
Suppose that the insurer is also allowed to invest its 

surplus. Assume that the market consists of a risk-free 
asset and  risky assets. The dynamics of the risk-free 
and the risky assets evolve according to  

d

   r t    0 1,t B
d

d ,
B t

B t
         (3) 

and 

             d   W t S

 pW




   dt


 

 t

 d

t d

d dt  

1, ,W W 

  , ,t t 

 d p p 

 nk 

,D S t t t 10 ,



S t



 (4) 

respectively. Here, the vector  

  

is a -dimensional standard Brownian motion indepen- 
dent of  on a probability space 

p
 0W t

 , , P2 2 2 . We use superscript “ ” to denote the 
transpose of a vector or matrix throughout this paper. 
The vector  

  1 d   

is the appreciation rate, the matrix  is the  

 

volatility with  

 Ra  , 

    1D S t Sdiag

1,1,
d




, , dS

 

 

and 

,11

 . 

Assume that  r t ,  and  t  t

 t

 are determinis- 
tic functions of t. Let  denote the natural filtration 
generated by  

2,t

  , 0W s s  . 

Let 

  , ,  1t t  

  ,u q t

  d t


  t

 

represent the amount invested in the risky asset at time 
. When both optimal investment and proportional 

reinsurance are included in our problem formulation, 
incorporating the strategy 

t

  

in (2), the dynamics of the resulting wealth process u
tX  

follows 

           
       

     

0

0

d d

d 1 d

d ,

.

u uX t rX t t t r t t

q t a t b q t W t

t t W t

X x

 

 

 





   

    

 




1

 

We denote  

   1 2 1 2 1, 2, 1 2, , , , , ,t tP P          t P . 

Set 

 0 1, , , m     , 

with 

 0 1 q t   . 

The strategy 

    : ,u q t t  

(equivalently,  t ),  

0 t T  , 

is said to be  if admissible
1) it is -progressively measurable,  t
2)  

   
2

0
d <

T
t t t      

P -almost surely, 
3)  

     0,1 , 0,q t t T   . 

Let  be the class of all such  strategies. 
We assume that the following assumption is satisfied. 

U admissible

Assumption 2.1. There exist constants M  and  
R   such that  

     0 < ,   ir t t b t M  ,  

     2
,   , 0, ,nt t T        R  

     2 2 2 ,   , 0, ,b t x x t x T R         (5) 

where  

    t t    t . 

Problem ( 1 ). Given the wealth process (5), find an 
admissible strategy 

P
*u U  such that the expectation of 

the final wealth utility defined by  

    
0 e

umX TuU X T
m

            (6) 

is maximized, where the constant  is the risk aversion 
parameter (see Pratt [21]). 

m

Now we specify the dynamic risk and impose it as the 
risk constraint for the optimal investment and reinsurance 
problem. Suppose that the portfolio is adjusted frequently 
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t
over time so that the interval from time t  to time 

 is small, where . Here,  is the 
risk evaluation horizon, or the risk horizon for short. We 
consider the loss from time  to t . Denote 

t   > 0t

t

 ,t t

t

t 

 

Suppose that  

      , , ,q s s s t t t     

is unchanged in the interval , i.e.,   ,t t t 

         
 

, ,   

,

q s s q t t

s t t t

 

  

     0 d
e

t r s su uY t X t
  ,

. 
and 

     u uY t Y t t Y t     . We have 

 

                    0 0d d
e d e

s st t t tr u u u r u u uu T T

t t

a
Y t s s r s s t s W s

r

 
   

    
     

 
 1     d .

d ,

 

It follows that 

               d d
e e

t t t t
t s

t tr s s r u uu u u

t
X t t X t N t t s W s 

                           (7) 

where 

             d
e d

t t
s

t t r u uu

t
N t a t s r s   

      1  .                     (8) s


 

Then, the mean and variance of uX t t   are, 
respectively, given by 

It follows from (10) and (9) that  

   

         2 d1

VaR

e d
t t
s

u
t

t t r u u

t

N t

k t s s



 
  

 

 



 
        d

e ,
t t
t r s s su u

tE X t t N t X t


   
.t
   (11) u     (9) 

and 

          2 d
var e d .

t t
s

t t r u uu
t t

X t t t s s t 
       (10) 

Let the maximal risk be less than or equal to , i.e.,  R

VaR . t R             (12) 

Let  uX t  denote the discounted loss  Then, the portfolio constraint is 

     d
e

t t
t r s su uX t t X t


   . 

 

                       d d 2 d1e d e d e d    
t t t t t t
s s s

t t t t t tr u u r u u r u u

t t t
t s r s s a s k t s s     

               1     .t R  

(13) 
 

With , namely, , the constraint 
(13) defines a convex set. In this work, we assume that 

. 

 1 0k  0.5k 

0.5k 

For the stochastic optimal control problem considered 
in this paper, since the utility function is an exponential 
function. We will show that it can be reduced to a deter- 
ministic optimal control problem via a suitable decom- 
position. It is further reduced, by the control parame- 
trization technique [22], to a deterministic finite-dimen- 
sional problem. A numerical solution of this determi- 
nistic optimization problem can be obtained using exist- 
ing optimization software packages, such as NLPQLP 
([18-20]). 

3. Deterministic Reduction 

When the market is  in the sense that complete d p  
and no constraint is imposed on the strategy, Bai and 
Guo [15] investigate the problem with short-selling 
constraint. However, when the strategy is constrained in 
a general closed convex set due to the presence of the 
dynamic risk constraint, it is not known if there exists a 
smooth solution to the associated HJB equation or not. In 
fact, even if we could show the existence of a smooth 
solution, this second order nonlinear PDE is difficult to 
solve, even numerically. 

We first present a transformation theorem that links 
the original stochastic optimal control problem with the 
deterministic optimal control problem. Before stating the 
theorem, we need to introduce the following notations. 
For any path  , denote . Let      : ,u t u t t 



J. Z. LIU  ET  AL. 441

      : 0, 0,1  is measurable . nu T R u    
 

Theorem 3.1 Suppose that  

        1 1 2 2 ,  u u uU X t U X t U X t 


 

where  is deterministic for all  1 1
uU X t  u 




, and 

 is a  martingale. Then,    2 2
u t U X t

    1 1 .max max
u u

u u
EU X T U X T

 







   (14) 

Furthermore, denote  

  *
1 1argmax

u
uu U X





T  

and let  

     * * *, : , for all    u t u t u t    
.  

If *u  , then 

    1 1 .max max
u u

u u
EU X T U X T

 




 


   (15) 

Proof. From the properties of Martingale, we have  

     1 1 ,   .  u uEU X T EU X T u   

As  

     1 1 1 1max max
u

u uEU X T U X T 


 u , 

it follows that (14) holds. 
From the notation of , we see that, as *u

 *u  ,  

     *

1 1 1max
u u

u
U X T U X T




 

         (16) 

and 

       ** *

1 1 1 1 .uu uEU X T EU X T U X T 
   (17) 

It follows from (16) and (17) that 

        *

1 1 .max max
u u u

u u
U X T EU X T EU X T

 
 






 

This, together with (14), implies the validity of (15). 
This theorem shows that if the decomposition holds, 

the optimal strategy is the same for all paths, because the 
parameters  t ,  r t  and  are deterministic.   t

Remark 3.1 Suppose that the parameters  t ,  r t  
and  t  are -progressive measurable. Since tF

     **

1 1
uuEU X T EU X T , 

the stochastic optimal control problem is reduced to the 
deterministic optimal control problem with every path.  

3.1. The Equivalent Problem 

In this subsection, we will show that our problem satis- 
fies the decomposition assumption specified in Theorem 
3.1. 

Rewrite the dynamics (5) as:  

 

                    

0

d du u d ,X t r t X t a t t r t t t t W t

X x

               


1    
 

 
where 

 
0

( ) ,
0

b
t

t



 

  
 

  

          0 1 0, , , ,   dt t t t t a     


  

  0 1

1

, , , ,   1,1, ,1 .p

d

W W W W
 



 1





       (18) 

;r  

Applying Itô’s differentiation rule to (18), we 
obtain 

 

                0

e 1
e e d d d

rt
t r t srt .t x a s s r s s W s s

r
       

      1               (19) X

Thus, 

   
                

                  

0 0

0 0

max

exp d exp e d
max

exp e d exp e d .max

u

u

T T r s T

u

T Tr s T r s T

u

E U X T

mc T m s W s m s s r s s
E

m m

E m s s W s m s s r s s

    

   



  



    



        
 
 

    

 

 

1

1

   

   







      (20) 
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Denoting    s s     , we have  

          
       2 d2

1 0

e
: e

2

T
s r

T r s Tu m s s
d ,

s
X T m s s r s

  
 

 
  

 
    1

   s  

         
     2 d2

2 0

e
: e d

2

T
s r

T r s Tu m s
d , 

s
X T m s s W s

  
 

 
  

 
  

 
  s



               (21) 

  
and 

     
     

1 1 1

2 2 2

: exp ,   

: exp .

u u

u u

U X T X T

U X T X T

 


 

Obviously,  is a Martingale under 
Assumption 2.1. By Theorem 3.1, the original problem 
can be reduced to the deterministic optimal control 

problem  

 2 2
uU X T

  1 1 .max
u

u
U X T






             (22) 

Notice that (22) is also equivalent to the following 
problem. 

Problem ( ). Find 2P u 
 such that  

 

          
       2 d2

d

0

e
e d

2

T
sT

s

r r
T r m s s s

J m s s r s
 

   
  







     
 
 

 1
    s

1

             (23) 

 
is minimized, subject to  

 0 q t  .               (24) 

In the next section, we will show that Problem  2P  
admits an optimal solution. 

3.2. Existence of Optimal Solutions 

From Theorem 3.1, we see that the optimal strategy is the 
same for almost all the sample paths. Thus, it suffices to 
seek a deterministic control strategy for Problem  2P  
if all the required assumptions are satisfied. 

Let  denote the class of all   2 0,L T  func- 
tions. 

If , define  u 



2 2

2 0
d .

T
u u 
 

s  

For Problem  2P , it is easily seen that if u

 , 

we have that 
0

T
      , and then . Thus, 

we can consider the following Problem  with a small- 
er control set u

 J   
 2P





 , instead of Problem  2P  with 

u 
. 

Note that 

  is a Hilbert space equipped with the 

inner product of  au


 and  defined by   bu


            
0

, d .     (25) 
Ta b a bu u u s u s s

 
   

Let  t 


  . Then, we have the following result.  
Theorem 3.2 Consider Problem  , where the 

function 
2P

 J   is defined by 
 

 
                

2
d 2 d

0
e e

2
,     otherwise.

T T
s s

T r rm
m s s r s s s s s

J
       

  
    



 1
 

      


d ,  
  

 

 
Then, the following properties are satisfied. 
1)  J 




 J
 is convex; 

2) 

  is coercive, i.e.,  

  ;lim J





 




  

and 
3)  J 


  is lower-semicontinuous, i.e.,  

    ;liminf
n

n
J J




 
           (26) 

for every 

  and , with    

 

( )

2
0;lim

n

n
 


 

 
   

4) There exists a * 
 
   such that  

  *
infJ J    



 
  . 

Proof. 1) The convexity is obvious, since  

        d
e

T
t r

t t r t
    1


   

and  

       
2

2 d
e

2

T
t rm

t t t
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are concave. 
1) From Assumption 2.1, we obtain   

2
2

2 2

e .lim lim
2

MT m
J mM

 
  

 

 
    

  

 
   


  (27) 

 
3) 

 

                   

 
 

2

2

d d

0 0
π 0

( )

2
0

e d elim

elim

0.

T T
t t

T Tr rn

n

MT n

n

t t r t t t t r t

M

   



 

   

 

 

 

 

   

 



 1 1



 
 

 
   

 
 

dt

             (28) 

 
Also, 

 

                   

 

         

 

               

 

2

2

2

2

2 2
2 d 2 d

0 0
0

2 2
d d

0
0

2 d

0
0

e d elim
2 2

e e dlim

e dlim

T t
t t

T T
t t

T
t

T Tr rn n

n

T r rn

n

T r n n

n

n

m m
t t t t t t t

t t t

t t t t t

   

 

   

 

 

 

 

   

   

       

  

 

 

 

 

 



 

 



  

 

  



 





 
 

 
 

 
 

 
 

   
    

 
   

   
       

     

dt

     2

0 2 2
0

e dlim

0.

T n nMT t t t t t         



 




  
       

          (29) 

 
Thus, 3) holds. 

4) From Ekeland and Temam [23],  a  such that   * 
 
 

   *
minJ J   

 
. 

Proposition 3.1 The optimal strategy  

    * *1 ,t q t *  

  

is given by  
 

                  

      
 

        

      
 

       

2
d 2 d*

d d 1
0

2
0

d

0

2
0

d 1

arg e emin
2

e e
, , 

e
if  1,

e ( )
1, , otherwise.

T T
t t

T T
t t

T
t

T
t

r r

H

r r

r

r

m
t m t t r t t t

t r t t t r t

mm t

t r t

m t

t t r t

m

   



   

 

 

   

 









 







 

 





 
     

 
    
   

  

   
 
 


1

1

1

 


  
    








t



 

 
with  *J 


  being its value function.  

Proof. From the expression of  J 

 , it is easily seen 

that the pointwise optimal strategy is just the optimal 
strategy at time . The result in Bai and Guo [15] is a 
special case with constant parameters. 

t

Using an argument similar to that given for Theorem 
3.1, we can concentrate on finding a deter- ministic 
strategy from  

 ,    
   
     . 
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Corollary 3.1 Define  

 
                

2
d 2 d

0
e e

2
, otherwise.

T T
t t

T r rm
m t t r t t t t t u

J
      

  
    



 1
       

 d ,  ,


 

 
Then, there exists a  such that  * 


 

   *
infJ J  



 
  . 

Proof. The proof is similar to that given for the proof  
 

of Theorem 3.1 and hence is omitted here. 
Let the strategy in Proposition 3.1 be constrained to lie 

in a closed convex set K . Then, the following result holds.  
Proposition 3.2  The optimal strategy is given by 

                  
2

d 2 d* arg e e ,min
2

T T
t tr r

u

m
t m t t r t t t

      



  
     

 
1



  
    


t 

            (30) 

 
with  *J 


  being its value function. 

Although it is difficult to obtain an explicit solution to 
(30), we can solve this finite-dimensional optimization 
problem numerically. This is much simpler than dynamic 
programming, which involves solving a second order 
nonlinear PDE with constraint. It is also much simpler 
than the Martingale approach for which it is required to 
consider the replicate portfolio with constraint. 

4. Numerical Experiments 

We will develop a numerical method for constructing an 
approximation of *  and then calculating  *J  . In 
solving the deterministic constrained optimization pro- 
blem, we use the control parametrization method (see 
[18-20]). Let the time horizon  0,T


 be partitioned into 

 subintervals, and let  be approximated as a 
piecewise constant function, given by 
N  

    1

1

,
0

,
j j

N
j

t t
j

t t 






            (31) 

where 0 1 2  and  is the 
indicator function defined by  

0 Nt t t t T       I t

 
1, if ,

0, elsewhere.I

t I
t


 


 

For each , 0,1, , 1j N   j

  is a vector specifying 

the value of   on the sub-interval . Such a 
strategy should be chosen such that (23) is minimized 
subject to the dynamics (24). Then, Problem 

1,j jt t 

 2P  can 
be solved as an optimization problem, and various 

optimization software packages, such as NLPQLP (see 
[18-20]), can be used for this purpose. 

Consider a complete market where the number  of 
stocks is equal to the dimension of the driving geometric 
Brownian motion. The proportional reinsurance 

n

   0,1q t   
is the only constraint. In this market, Proposition 3.1 has 
given the explicit expression of     , tq t  and 
 *J  . Here, two sets of parameters are used to show 

that when the trading interval approa- ches to zero the 
solutions converge to those in [15]. 

Case I (  0 < < 1q t  when the reinsurance constraint 
is inactive). The model parameters are: 

1.0, 0.1, 26, 0.3, 0.1, 0.2, 0.2m r T a b         

and 0.5  . Figures 1 and 2 plot the risky invest- ment 
and the proportional reinsurance, respectively. 

Case II (   0q t   when the reinsurance constraint is 
active). 

0.7, 1, 1, 0.05,

26, 0.3, 0.2, 0.5

a m r

T b


 

   
   

. 

the proportional reinsurance  for cases with or 
without risk constraint. In Figure 3, the risky investment 
under the risk control is compared with the risky invest- 
ment without control.  

  0q t 

To show the effectiveness of the method, we also 
solve the problem under this assumption . Here, 
we assume that there is one risky asset, and the Brownian 
Motion is two-dimensional. The following parameters 
are used:  

 <n m

 

1 20.4, 0.1, 0.2, 26, 0.2, 0.2, 0.2, 0.5, 0.2m r a T b             

 
Figures 4 and 5 plot the risky investment and the 

proportional reinsurance, respectively. 
In this example, parameters are assumed to be 

constants, taking the values:  

0.1, 0.2, 0.2, 0.5,

0.5, 0.1, 0.2, 0.5

a

m r b

  


   
   

 

and 0.6R  . Figure  compares the risky investment  6
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Figure 1. The risky investment in case 1. 
 

 

Figure 2. The proportional reinsurance in case 1. 
 

 

Figure 3.The risky investment in case 2. 

 

Figure 4. The optimal risky investment in the incomplete 
market (n < m). 
 

 

Figure 5. The optimal proportional reinsurance in the in-
complete market (n < m). 
 

 

Figure 6. The risky investment compared in the cases: with 
and without constraint. 
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in the constrained case with the risky investment without 
VaR constraint. It is easily seen from Figure 6 that if 
VaR is active, the risky investment should be cut down 
consistent with the purpose of the risk management. 
Figure 7 plots the proportional reinsurance, also for both 
cases. If the constraint is active, the proportional 
reinsurance should be increased, when compared with 
the case of no constraint. We can show its validity under 
the assumption that  VaR   is increasing with  . To 
be more specific, let the optimal strategy for the case 
without constraint and that with constraint be denoted by 

0,*  and * , respectively. Then,  
* 0,*  , . * 01 1q q   ,*

,*

In fact, to satisfy the constraint, we require that either  
* 0   or . * 01 1q q   ,*

,*without loss of generality, assume that * 0  . If  
* 01 1q q   ,*

,*



, 

then it is clear that the result holds. Otherwise,  
* 01 1q q  

 0,* *

, 

which means that 1 ,q  is in the constraint set. 
However, 

     * 0* * *1 , > 1 ,J q J q   , 

which is a contradiction to the fact that  * *1 ,q   is 
optimal. Thus, it follows that 

* 0,*  ,  * 01 1q q   ,*

if  VaR   is increasing with  . In fact, this condition 
is reasonable as the time horizon  is small. From 
Figure 8, we see that VaR is stabilized once the risk 
constraint is active. 

t

5. Conclusion 

In this work, we considered the optimal investment and 
proportional reinsurance problem with VaR as the dyna- 
mic risk constraint. By employing a decomposition ap- 
proach, we transformed the stochastic optimal control 
problem into an equivalent deterministic optimal control 
problem. This equivalent problem is solvable by existing 
optimal control techniques. It is observed that when the 
risk constraint is active, the insurer should decrease the 
investment on risky asset, while increasing the propor- 
tional reinsurance. This is consistent with the risk mana- 
gement. The method proposed in this paper is effective 
for the case with or without constraint. It is also effective 
in complete and incomplete market(i.e., the number of 
risky assets is fewer than the dimension of uncertainty). 
Our approach appears possible for extension to the case 
when the parameters are -progressively measurable. t
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