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ABSTRACT 

The overall research in Reinforcement Learning (RL) concentrates on discrete sets of actions, but for certain real-world 
problems it is important to have methods which are able to find good strategies using actions drawn from continuous 
sets. This paper describes a simple control task called direction finder and its known optimal solution for both discrete 
and continuous actions. It allows for comparison of RL solution methods based on their value functions. In order to 
solve the control task for continuous actions, a simple idea for generalising them by means of feature vectors is 
presented. The resulting algorithm is applied using different choices of feature calculations. For comparing their 
performance a simple measure is introduced.  
 
Keywords: comparison, continuous actions, example problem, reinforcement learning, performance

1. Introduction 

In Reinforcement Learning (RL), one solves optimal 
control problems without knowledge of the underlying 
system’s dynamics on the basis of the following perspec-
tive: An agent which is aware of the current state of its 
environment, decides in favour of a particular action. 
The performance of the action results in a change of the 
agent’s environment. The agent notices the new state, 
receives a reward, and decides again. This process is 
repeated over and over and may be terminated by reach-
ing a terminal state. In the course of time the agent learns 
from its experience by developing a strategy which 
maximises its estimated total reward. 

There are various RL methods for searching optimal 
policies. For testing, many authors refer to standard con-
trol tasks in order to enable comparability; others define 
their own test-beds or use a specific real-world problem 
they want to solve. Popular control tasks used for refer-
ence are e.g. the mountain car problem [1,2,3], the in-
verted pendulum problem [4], the cart-pole swing-up 
task [5,6,7] and the acrobot [2,8,9]. 

In most papers, algorithms are compared by their ef-
fectiveness in terms of maximum total rewards of the 
policies found or the number of learning cycles, e.g. 
episodes, needed to find a policy with an acceptable 
quality. Sometimes the complexity of the algorithms is 
also taken into account, because a fast or simple method 

is more likely to be usable in practice than a very good 
but slow or complicated one. All these criteria allow for 
some kind of black-box testing and can give a good es-
timation whether an algorithm is suitable for a certain 
task compared to other RL approaches. However, they 
are not very good at giving a hint where to search for 
causes why an algorithm cannot compete with others or 
why, contrary to expectations, no solution is found. The 
possible reasons for such kinds of failure are manifold, 
starting from bad concepts to erroneous implementa-
tions. 

Many ideas in RL are based on representing the 
agent’s knowledge by value functions, so their compari-
son among several runs with different calculation 
schemes or with known optimal solutions gives more 
insight into the learning process and supports systematic 
improvements of concepts or implementations. 

One control task suitable for this purpose is the double 
integrator (e.g. [10]), which has an analytically known 
optimal solution for a bounded continuous control vari-
able (the applied force) and the corresponding 
state-value function V(s) can be calculated. Since this 
produces a bang-bang-like result, the solution for a con-
tinuous action variable does not differ from a dis-
crete-valued control. 

In this paper, we present a simple control task, which 
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has a known optimal solution for both discrete and con-
tinuous actions, with the latter allowing for better cumu-
lative rewards. This control task is a simplified variant of 
the robot path finding problem [11,12]. Since its state is 
described by real-valued numbers, it is useful to calibrate 
new algorithms working on continuous state spaces be-
fore tackling more difficult control tasks in order to rule 
out the teething problems. It allows for a detailed com-
parison of RL solutions in terms of the state-value func-
tion V and action-value function Q and may serve for 
didactic purposes when discussing solution methods for 
discrete and continuous actions. 

In real-world problems, the state space is often un-
countable and infinitely large, e.g. when the state is de-
scribed by real numbers. For this kind of tasks, simple 
tables cannot be used as memory for saving all possible 
values of V(s) and Q(s, a). A common way to handle this 
problem is the usage of function approximation, which 
introduces some inaccuracy to the system. Knowing an 
exact solution may help to develop heuristics to find ap-
propriate parameters approximating the optimal solution 
well. 

The paper is structured as follows: Section 2 intro-
duces the notation describing RL problems and their so-
lutions. The proposed control task and its optimal solu-
tion are presented in Section 3. To solve this problem for 
discrete and continuous actions by means of RL we ap-
plied a well-known algorithm combined with feature 
vectors for actions. This is discussed in Section 4. In 
Section 5 we present simulation results for discrete and 
continuous actions. Section 6 concludes the paper with a 
summary and an outlook. 

2. Notation 

In terms of RL, a control task is defined for a specific 
environment, in which an agent has to reach an objective 
by interacting with the environment. The learning proc-
ess is organised in one or more episodes. An episode 
starts with an initial state s0. It can either last forever 
(continuing task) or end up with a terminal or absorbing 
state ST after performing T actions (episodic task). At 
time t, the agent becomes aware of the current state st of 
the environment and decides in favour of an action at. 
Performing this action results in a new state st+1 and the 
agent receives a reward rt+1. For an episodic task, the 
sequence of states, rewards and actions is denoted as  

0 1 2 1

0 1 1 2 2( , ) ( , ) ( , ).
a a a aT

T Ts r s r s r s


     

Figure 1 shows the information exchange between the 
agent and its environment. 

A deterministic policy  is a mapping from states 
s S to actions a A: 

 

 : S   A. 
 

In general, for a given state s, the action space A(s) 
also depends on the state s, because in some states some 
actions may not be available. Here, the state should be 
representable as a tuple of n real numbers, so S n. 
The action space is considered in two variants: A finite 
set 1= { , , }ma a , whose elements will be denoted as 
discrete actions, and alternatively an infinite set A m, 
whose elements are called continuous actions. For the 
control task presented in Section 3, both cases are dis-
cussed. In general and for real-world control tasks, also 
mixed action spaces having both discrete and continuous 
actions are imaginable. 
 

 

 

Figure 1. RL’s perspective of control tasks as described in [13]. The diagram shows the communication of the agent with the 
environment. 
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In order to handle episodic and continuing tasks with 

the same definitions for value functions, we follow the 
notation of [13]: Episodic tasks with terminal state sT can 
be treated as continuing tasks remaining at the absorbing 
state without any additional reward: sT+k≡sT and rT+k≡0 
for .  = 1,2,3,k 

Using this notion, for all states sS, the state-value 
function 

1
=0

( ) = =k
t k t

k

V s E r s s
 



 

 
 
 
        (1) 

concerning a given policy π holds the information, which 
total discounted reward can be expected when starting in 
state s and following the policy π. The quantity [0,1]   
is called discount factor. For < 1  the agent is myopic 
to a certain degree, which is useful to rank earlier re-
wards higher than latter ones or to limit the cumulative 
reward if , i.e. no absorbing state is reached. =T 

In analogy to the value of a given state, one can also 
assign a value to a pair (s, a) of state s S and action 

A(s). The action-value function a

k 1
k 0

( , ) = ,k
t t tQ s a E r s s a a

 


 



 

 
 

     (2) 

concerning a policy π is the estimated discounted cumu-
lative reward of an agent in state s, which decides to per- 
form the action a and then follows π. 

For the deterministic episodic control task proposed in 
this paper we have chosen = 1 , so the Equations (1) 
and (2) simply reduce to finite sums of rewards. 

In order to maximise the agent’s estimated total re-
ward, it is useful to define an ordering relation for poli-
cies: A policy π is “better than” a policy π', if  

: ( ) ( )V s V s s       S .        (3) 

An optimal policy complies with  

                   (4) 

and is associated with the optimal value functions V * and 
Q* , which are unique for all possible optimal policies:  

* ( , ) := ( , ),Q s a Q s a               (5) 

* *( ) := ( ) = ( , ).max  
a

V s V s Q s a         (6) 

Given the optimal action value function Q* and a current 
state s, an optimal action a* can be found by evaluating  

* ( ) =arg max ( , ).
a

a s Q s a*           (7) 

3. The Directing Problem and Its Solution 

3.1 The Control Task 

The directing problem is a simplified version of the path 
finding problem [11,12] without any obstacles. The 
agent starts somewhere in a rectangular box given by  

 max max= (x, y) | 0 x x 0 y y .    S     (8) 

Its real-valued position s=(x, y) is the current state of 
the system. 

The objective of the agent is to enter a small rectan-
gular area in the middle of the box (Figure 2). This target 
area is a square with centre (cx,cy) and a fixed side length 
of 2dT. Each position in the target area, including its 
boundary, corresponds to a terminal state. 

In order to reach this target area, the agent takes one or 
more steps with a constant step size of one. Before each 
step, it has to decide, which direction  to take. If the 
resulting position is outside the box, the state will not be 
changed at all. So given the state s = (x, y), the action a = 

, and using the abbreviation  
( , ) = ( cos , sin ),x y x y            (9) 

the next state = ( , )s x y    is  

max max( , ) if (0 0 ),
( , ) =

( , ) otherwise.

x y x x y y
x y

x y

      


   
   

(10) 

In terms of RL, the choice of  is the agent’s action 

which is always rewarded with r ≡ -1 regardless of the 

resulting position. By setting the discount factor = 1 , 

the total reward is equal to the negative number of steps 

needed to reach the target area. 
For the analytical solution and for the simulation re-

sults, xmax = ymax = 5, dT =
1

2
 and cx = cy= 2.5 have been 

chosen. 
The optimal solution for this problem, although it is 

obvious to a human decision maker, has two special fea-
tures: 

 In general, the usage of continuous angles allows 
for larger total rewards than using only a subset of 
discrete angles and  

 

Copyright © 2009 SciRes                                                                                JILSA 



MICHAEL C. RÖTTGER, ANDREAS W. LIEHR 31 

  

 

Figure 2. The direction finder. The state of the agent is its real-valued position somewhere in the simulation domain. Its 
objective is to enter the shaded target area by choosing a direction before each constant-sized step. This choice may be 
completely free (continuous actions) or limited to a finite number of four angles (discrete actions). The reward after each step 
is -1, so an optimal policy would minimise the total number of steps. 

 

 the state value function V * and Q* can be expressed 
analytically, so intermediate results of reinforce-
ment learning algorithms can be compared to the 
optimal solution with arbitrary precision.  

In the following, the solutions for discrete and con-
tinuous actions are described. 

3.2 Discrete Actions 

For a finite set  

            (11) 

of four discrete directions, which can be coded as 
3

0, , ,
2 2

 

 


  using angles in radians, the state value for 

an optimal policy for an arbitrary position (x, y) is given 
by  

*
discr ( , ) = ( ( )) ( ( )) .x yV x y h g x h g y         (12) 

The symbol  denotes the ceiling function, which 

returns the smallest integer equal to or greater than a 

given number, and the terms  and  

are abbreviations for    



( ( ))xh g x ( ( ))yh g y

( ) =| |x x Tg x x c d              (13) 

( ) =| |y y Tg y y c d              (14) 

0 for 0
( ) =

z for 0

z
h z

z


 

           (15) 

The value of a terminal state is zero, since no step is 
needed. 

Figure 3 shows a plot of the optimal state-value func-
tion for discrete actions. Due to the limited set of direc-
tions, the agent needs four steps when starting in a corner 
of the domain. 

3.3 Continuous Actions 

If arbitrary angles [0, 2 ]  are allowed, i.e. continu-

ous actions, the optimal state value is given by:  

2 2
cont ( , ) = ( ( )) ( ( )) .x yV x y h g x h g y   

 
    (16) 

As for discrete actions, the helper functions defined in 

(13), (14), and (15) have been used. 
Figure 4 shows a plot of the optimal state-value func-

tion for continuous actions. Contrary to the case of dis-
crete actions, the agent only needs three steps at the most 
to enter the target area. Except for the set of possible 
directions, the task specification is the same as for dis-
crete actions. 
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Figure 3. Optimal state value function V *(x, y) for four discrete actions → , ↑ , ← and ↓ . Because of 1   it is equal to the 

negative number of steps needed in order to enter the target square in the centre, so V *(x, y)  4, 3, 1,0 2,    . xmax = ymax = 

5, dT =
1

2
 and cx = cy= 2.5. 

 

 

Figure 4. Optimal state value function V *(x, y) for continuous actions, i.e. [0, 2 [ . The state value is equal to the negative 

number of steps needed to enter the target square in the centre, so V *(x, y)  3, 2,   1,0 . xmax = ymax = 5, dT =
1

2
 and cx = cy= 

2.5. 
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Figure 5. Action values for all states when choosing direction → (or =0) as first action and following an opti- mal policy 
with discrete actions afterwards. The corresponding state value function is depicted in Figure 3. Values rank from −5 to 0. 
 

 

Figure 6. Action values for all states when choosing direction → (or =0) as first action and following an optimal policy for 
continuous actions afterwards. The according state value function is depicted in Figure 4. Values rank from −4 to 0. 
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3.4 Action Values 

The problem as defined above is deterministic. With 
 given and ( , )V x y

= 1 , the evaluation of the corre-
sponding action value function is as simple as calculating 
the state value of the subsequent state (x', y') by means of 
(9) and (10), except for absorbing states:  

Q*(x,y, )     (17) *

0 if(x,y)isterminal,
=

( , ) 1 otherwise,


   V x y

where the next state (x', y') is defined by (10). Its optimal 

state value V *(x', y') is computed through evaluation of 

(12) for discrete actions or (16) for continuous actions. 

For the direction →, or =0, the action value func-

tion Q* (x, y, →) is depicted in Figure 5 for four discrete 

angles (→, ↑, ←,↓ ) and in Figure 6 for continuous an-

gles. Disregarding the target area both plots can be de-

scribed by V * (s)－1 shifted to the left with a respective 

copy of the values for  to . ]3, 4]x ]4,5]x

4. Algorithm for Searching Directions with 
Reinforcement Learning 

In the following an algorithm is presented which is capa-
ble of solving the direction finder problem for discrete 
and continuous actions. It is based on a linear approxi-
mation of the action value function Q and is often 
used and well-known for discrete actions. Note, that we 
have slightly changed the notation in order to apply ideas 
from state generalisation to the generalisation of actions, 
which enables us to handle continuous actions. 

Q

4.1 Handling of Discrete and Continuous Actions 

When searching for a control for tasks with a small finite 
number of actions (discrete actions), it is possible to as-
sign an individual approximation function ( , ) ( ) 

aQ s a Q s  
ble action. When using linear approxima-

tion, this is often implemented by using a fixed feature 
vector for every state s independent of an action a and a 
separate weight vector θa for every action:  

to every possi

a( ) = θ
aQ s (s)                (18) 

For a very large set of possible actions, e.g. if the ac-
tion is described by (dense) real-valued numbers drawn 
from an interval (continuous actions), this approach 
reaches its limits. In addition, the operation ( , )max a Q s a   
becomes very expensive when implemented as brute 

force search over all possible actions and can hardly be 
performed within a reasonable time. 

There are many ideas for dealing with continuous ac-
tions in the context of Reinforcement Learning. Exam-
ples are the wirefitting approach [14], the usage of an 
incremental topology preserving map building an aver-
age value from evaluating different discrete actions [15] 
and the application of neural networks (e.g. [16]). 

To the best of our knowledge, so far no method has 

been shaped up as the algorithm of choice; so we want to 

contribute another idea which is rather simple and has 

been successfully applied to the direction finder problem. 

The basic idea, which is more a building block than a 

separate method, is not only to use feature vectors for 

state generalisation, but also to calculate separate feature 

vectors for actions. We combine state and action features 

in such a manner that each combination of feature com-

ponents for a state and for an action uses a separate 

weight. If one has a combined feature (s,a), the linear 

approximation can be expressed as  

( , ) =Q s a θ (s,a)                   (19) 

where each weight, a component of θ, refers to a combi-
nation of certain sets of states and actions. This raises the 
question how to build a combined feature vector (s,a). 
Here, two possibilities are considered. 

Having a state feature  and an action fea-

ture , with components  

 and        (20) 

          (21) 

an obvious way of combination would be to simply con-

catenate (CC) them:  

                (22) 

   

(23) 

Concerning linear approximation, this would lead to a 

separation in weights for states and actions which is not 

suitable for estimating Q(s, a) in general, because the 

coupling of states and actions is lost:   
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   (24)
 

Alternatively, one can form a matrix product (MP) of 
the feature vectors which results in a weight for every 

combination of components of the vectors  and 
 building a new feature vector:  

    
 (25)

 

with = 1, , , = 1, , .s ai n j  n  

The resulting matrix has been reshaped to a vector by 

concatenating the rows in order to stick with the termi-

nology of a feature vector. This kind of feature assem-

bling has been used for the results in the following sec-

tions. From now on, the tag MP  is left out for better 

readability. 

With this kind of combined feature vector, the known 

case of discrete actions with separate weights for each 

action can be expressed by means of (19). This is done 

by choosing the action’s feature vector as  

          (26) 

with  and  

for = ia a  and 0 otherwise. This is equivalent to the 

usage of binary features with only one feature present, 

the latter corresponds to the action a. 

For continuous actions, all methods to calculate fea-

ture vectors for states can also be considered to be used 

for actions. One has to choose some appropriate way to 

generalise every action by a feature vector. 

There are several ideas for procedures to compute a 

feature vector. One of the most popular is the usage of tile 

coding in a Cerebellar Model Articulation Controller 

(CMAC) architecture, e.g. successfully applied for con-

tinuous states in [2]. A comparison of radial-based fea-

tures (RBF) with CMAC for function approximation is 

given in [17]. In the following, we present different kinds 

of state and action features used for the direction finder. 

4.2 State Features 

One of the simplest feature types are binary features. For 
states of the direction finder, we used the square-shaped 
areas  

           (27)
 

for  with centres  , = 1, , 20i j 

2 1 2 1
= , .             (28) 

8 8ij

i j
c

  
 
 

S

For binary state features we evaluate  

          (29)
 

Here s denotes the tuple (x, y). Row by row, the com-

ponents of (29) are combined to a feature vector 

. 
Similarly, for radial-based state features we used  

       
(30)

 

Again, the components are combined to a feature vec-

tor which is additionally normalised afterwards:  

          

 (31) 

4.3 Action Features 

For the set of discrete actions Equation (26) results in a 
binary feature vector  

     (32) 

For continuous actions a, i.e. for arbitrary angles 

[0, 2 ] , we use the sixteen components  

    

 (33) 

with  and = 1, ,16l  . These compo-

nents decay quite fast and can be regarded as zero when 

used at a distance of 2π from the centers  of the 

Gaussians:  

  
(34)

 

This is used to build feature vectors accounting for the 

periodicity  

* *( , , ) = ( , , 2 ),Q x y Q x y    

which should be met by the approximation ( , , )Q x y  . 

In order to approximately achieve this, we combine the 

Gaussians as  
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    (35) 

and define a normalised action feature vector  

            

(36)

 

which is finally used in (25) as . 
Using Equations (34), (35), (25) and (19) it follows that 

 

Feature vectors for continuous angles built like this are 
henceforth called cyclic radial-based. In order to have a 
second variant of continuous action features at hand, we 
directly combine the components  defined in (33) 
to a feature vector and normalise it in a way equivalent 
to (36). These features are denoted with the term ra-
dial-based and are not cyclic. 

4.4 Sarsa( λ ) Learning 

For the solution of the direction finder control task, the 
gradient-descent Sarsa(λ) method has been used in a 
similar way as described in [13] for a discrete set of ac-
tions when accumulating traces. The approximation  
of Q is calculated on the basis of (19) using (23) for (s,a) 
with features as described in Subsections 4.2 and 4.3. 
The simulation started with 

=0
. There were no 

random actions and the step-size parameter 

Q

0t θ
  for the 

learning process has been held constant at 0.5= . 
Since the gradient of  is (s,a), the update rule can 

be summarised as  
Q

1 1 1= ( , ; ) ( , ;t t t t t t t tr Q s a Q s a     θ θ )

t

(s) 

=rt+1+t
T((st+1,at+1)-(st,at))      (37) 

1 =t t t θ θ δ e                         (38) 

et+1=et+(st+1,at+1)              (39) 

The vector et holds the eligibility traces and is initial-
ised with zeros for t = 0 like θt. An episode stops when 
the agent encounters a terminal state or when 20 steps 
are taken. 

4.5 Action Selection 

Having an approximation (s,a) at hand, one has to 

provide a mechanism for selecting actions. For our ex-
periments with the direction finder, we simply use the 
greedy selection  

Q

( ) = arg max ( , ).
a

s Q s a            (40) 

For discrete actions, π(s) can be found by comparing 
the action values for all possible actions. For continuous 
actions in general, the following issues have to be con-
sidered:   

1)  standard numerical methods for finding extrema 
normally search for a local extremum only,  

2)  the global maximum could be located at the 
boundary of (s), and  

3)  the search routine operates on an approximation 
Q (s,a) of Q(s,a).  

For the results of this paper, the following approach 
has been taken: The first and the second issue are faced 
by evaluating ( , , )Q x y   at 100 uniformly distributed 
actions besides =0 and =2π, taking the best candi-
date in order to start a search for a local maximum. The 
latter has been done with a Truncated-Newton method 
using a conjugate-gradient (TNC), see [18]. In general, 
in the case of multidimensional actions , the problem 
of global maxima at the boundary of 

a

(s) may be tack-
led by recursively applying the optimisation procedure 
on subsets of (s) and fixing the appropriate compo-
nents of a at the boundaries of the subsets. The third is-
sue, the approximation, cannot be compassed, but allows 
for some softness in the claim for accuracy, which may 
be given as an argument to the numerical search proce-
dure. 

5. Simulation Results 

In the following, the direction finder is solved by apply-
ing variants of the Sarsa(λ) algorithm, which differ in the 
choice of features for states and actions. Each of them is 
regarded as a separate algorithm whose effectiveness 
concerning the direction finder is expressed by a single 
number, the so-called detour coefficient. In order to 
achieve this, the total rewards obtained by the agent are 
related to the optimal state values V       *(s0), where s0 is the 
randomly chosen starting state varying from episode to 
episode. 
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5.1 Detour Coefficient 

Let  be a set of episodes. We define a measure called 
detour coefficient ( ) by  

       (41)
 

Here, Re is the total (discounted) reward obtained by 

the agent in episode e and  is the respective initial 

state. The quantity |

es0

| denotes the number of episodes in 

. In our results the | |=1000 last non-trivial episodes 

have been taken into account to calculate the detour co-

efficient by means of (41), whereas non-trivial means 

that the episodes start with a non-terminal state, so the 

agent has to decide for at least one action. For V       * one has 

to choose from Equations (12) and (16) according to the 

kind of actions used. 
The smaller ( ), the more effective a learning pro-

cedure is to be considered. For the direction finder, the 
value of ( ) can be interpreted as the average number 
of additional steps per episode the RL agent needs in 
comparison to an omniscient agent. It always holds that 
( ) , because the optimal solution cannot be out-
performed. 

0

The detour coefficient depends on the random set of 
starting states of the episodes e , therefore we con-
sider ( ) as an estimator and assign a standard error for 
the mean by evaluating  

       (42)
 

with . 0= *( )e e
e V s R 

For the following results, the set of randomly chosen 
starting states is the same for the algorithms compared to 
each other. 

5.2 Discrete Actions 

For discrete actions, we have solved the direction finder 
problem for two different settings, with binary state fea-
tures according to (29) and with radial-based state fea-
tures according to (30) and (31). The other parameters 
were: 10000 episodes, 0.5= , 0.3  , max 20T  . 
Calculating the detour coefficient (41) for the last 1000 
episodes not having a terminal initial state we observe 
( )=0 for binary state features. This means, these epi-
sodes have an optimal outcome. Repeating the simula-
tion with radial-based state features, there were six epi-

sodes of the last 1000 non-trivial episodes which in total 
took 12 steps more than needed, so ( ) . 
The respective approximation Q x

0.012 0.005 
, )( , y 

(Q x

 after 10000 
episodes for radial-based state features is shown in Fig-
ure 7a as image plot which is overlayed by a vector plot 
visualising the respective greedy angles. An illustration 
of the difference * ( , ) maxV x y , , )y    for sample 
points on a grid is depicted in Figure 7b. Due to (6) such 
a plot can give a hint, where the approximation is inac-
curate. Here the discontinuities of V       * stand out. 

Both kinds of features are suitable in order to find an 
approximation  from which a good policy can be 
deduced, but the binary features perform perfectly in the 
given setting, which is not surprising because the state 
features are very well adapted to the problem. 

Q

5.3 Continuous Actions 

For continuous actions, which means [0, 2 [ , solu-
tions of the direction finder problem have been obtained 
for four different combinations of state and action fea-
tures. The feature vectors have been constructed as de-
scribed in Subsections 4.2 and 4.3. The results are sum-
marized in Table 1. 

For all simulations the following configuration has 
been used: 0.5= , 0.3  , maximum episode time 

max 20T  , and 20000 episodes. The values of ( ) and 
s ( ) have been calculated as discussed in Subsection 
5.1. Like for binary state features and discrete actions, 
the last 1000 non-trivial episodes did not always result in 
an optimal total reward, so ( )>0 for every algorithm. 
Our conclusion with respect to these results for the given 
configuration and control task is:   

 Radial-based state features are more effective than 

binary state features. 

 When using radial-based state features, cyclic ra-

dial-based action features outperform radial-based 

features lacking periodicity. 
 

Table 1. Results for continuous actions for different 
combinations of state and action features:  

bin (binary), rb (radial-based), crb (cyclic radial-based). 

state features action features η(ε) sη(ε) 

bin rb 0.109 0.011

bin crb 0.115 0.013

rb rb 0.090 0.011

rb crb 0.063 0.009
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(a) 
 

 

(b) 

Figure 7. Results for learning with discrete actions, calculated by performing 10000 episodes, using radial-based state 

features. Possible directions: . For parameters, see Subsection 5.2. For these plots, the value functions and 
the policy have been evaluated on 40x40 points on a regular grid in the state space. (a) Discrete greedy actions 

   φ { , , , }∈

argmaxg φφ = Q(x, y,φ)  and their values  gQ(x . The angles corresponding to the greedy actions are denoted by 

arrowheads. (b) Difference between 

, y,

( , )V x

φ )

y  and (maxφ Q x, y, ) φ . The largest deviations are at the lines of discontinuity of 

( , )V x y . Compare to Figure 3. 



MICHAEL C. RÖTTGER, ANDREAS W. LIEHR 39 

 

(a) 
 

 

(b) 

Figure 8. Results for learning with continuous actions, calculated by performing 20000 episodes, using radial- based state 

features and cyclic radial-based action features. In principal, all directions are selectable: . For parameters see 

Subsection 5.3. Like in Figure 7, for the sampling of  a regular grid of 40x40 points has been used. (a) 

Continuous greedy actions 

[∈φ 0,2π[
)(maxφ Q x, y,φ

argmaxg φφ = Q(x, y,φ)  and their values  gQ(x

( , )V x

, y,φ ) . The angles corresponding to the greedy 

actions are denoted by arrowheads. (b) Difference between y  and ( )Q x, y,maxφ φ . The largest deviations are located 

near the discontinuities of ( , )V x y . Compare with Figrue 4. 
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Figure 8 illustrates the function ),,(

~
max  yxQ

V x

*V

 and 
its comparison with V*(x, y) for radial-based state fea-
tures and cyclic radial-based action features after 20000 
episodes. Monitoring this difference during the learning 
process helps to understand where difficulties for the 
approximation scheme or the action selection arise. Here, 
like for discrete actions, the discontinuities of  
stand out. In order to get additional information, one can 
add an estimation procedure for  resulting in an ap-
proximation , e.g. by using the TD(

( , )y

V  ) algorithm 
[13,19], which runs independently in parallel to the 
learning process. Inspecting the evolution of supports 
an assessment about the covering of the state space. 

V

6. Conclusions and Outlook 

The direction finder is a control task in the domain of 
real-valued state spaces which allows choosing either 
discrete or continuous actions. For both cases, the opti-
mal value functions and are known analytically 
and can be compared with their approximations in detail. 
The optimal policy for continuous actions is not 
bang-bang-like and generally results in at least as good 
or better total rewards than the optimal policy used for 
four discrete actions. In general, the application of fine 
discretisations of the action space in order to find a con-
tinuous policy is not an option. In the case of the direc-
tion finder, one could think about using  
discrete angles because the solution should converge to 
the solution for optimal angles, but the mere effort to 
find a greedy action increases linearly with the number 
of actions. In general, problems with continuous actions 
cannot be solved in a satisfying way by simply refining 
the methods for discrete actions but require new ideas. 
The development of these ideas is supported by evident 
control tasks like the direction finder. 

*V *Q

8,16,32,

Together with a measure like the detour coefficient 
(41), the direction finder can serve as a tool for testing 
new RL algorithms working on real-valued state spaces 
for both discrete and continuous actions allowing for 
intermediate comparison of the approximations  and 

 with the known optimal value functions and . 
The detour coefficient can also be used in combination 
with any other control task for which the optimal state 
value function is known. 

V

Q *V *Q

*V
In order to solve the control task for continuous ac-

tions, we have introduced feature vectors for actions in 
order to approximate . This may serve as a 

building block in other Reinforcement Learning algo-
rithms. 

( , )Q s a

The proposed algorithm has been applied to the direc-
tion finder control task for discrete and continuous ac-
tions using different combinations of features. In the case 
of continuous actions, we are able to infer from the de-
tour coefficient that certain kinds of features are more 
suitable than others. 

There are many improvements which can be applied to 
the search algorithm. So far, when searching for 

, the linearity of  together with the 
knowledge of the feature calculation scheme has not 
been taken into account. This may result in faster and 
more accurate optimisation. In addition, it would be in-
teresting to use the detour coefficient to compare the 
algorithm with completely different approaches for con-
tinuous actions or other kinds of action selection. 

argmax ( , )aQ s a Q

Based on the known optimal solution, a debugging 
procedure can be defined, which helps to ensure that the 
basic capabilities of a new algorithm are present. As-
suming the existence of an interface which allows 
switching between control tasks without changing the 
implementation of the algorithm, the implementation can 
be debugged with the presented direction finder control 
problem whose solution is exactly known in detail. 

Such a debugging procedure can be composed of five 
subsequent steps:   

1)  Implement the proposed control task, the direction 
finder, along with functions to calculate *V (s) and 

*Q (s,a).  

2)  Prove the action selection capabilities by applying 
it to *Q and compare the outcome of several runs with 

*V (s0).  
3)  Prove the approximation abilities by “setting” the 

current approximation Q  of the action value function 

to *Q as closely as possible, e.g. by using minimal 

least- squares.  
4)  Prove the stability of the algorithm by starting with 

the approximation of *Q  from the previous step, per-

forming several learning cycles and testing for simi-
larity of * ( , )  and *V (s).  max a Q s a

5)  Prove the convergence of the algorithm by starting 
with sparse or no previous knowledge and searching a 

“good” approximation Q (s,a) for *Q (s,a).  

These checks can be evaluated by comparing 
maxaQ

*(s,a) or  with V*(s) or using a meas-
ure like the detour coefficient as defined in (39). If an 

max ( , )aQ s a
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algorithm fails to pass this procedure, it will probably 
fail in more complex control tasks. 

The direction finder is an example problem suitable 
for the testing of algorithms which are able to work on 
two-dimensional continuous state spaces, but there are 
more use cases, e.g. with more dimensions of state 
and/or action spaces. A collection of similar control 
problems with known optimal solutions (e.g. more com-
plex or even simpler tasks) together with a debugging 
procedure can comprise a toolset for testing and com-
paring various Reinforcement Learning algorithms and 
their configurations respectively. 
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