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Abstract 
The black hole is a region in space where things may fall into it but nothing 
can come out. We present a study of the physics of a black hole using a 
quantum field theory frame based on the WZW model in a suitable mathe-
matical frame. Based on the Schwarzschild metric, we show the different re-
gions of our universe with the present singularities. Then we introduce the 
calculation of a black hole mass using the perturbation theory. We further 
discuss Hawking radiation and its quantum mechanical implications. At 
some limits, the space time can represent a black hole with a singularity hid-
den by the horizon. 
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1. Introduction 

One of the most interesting problems in string theory is the study of the solution 
of a black hole in two dimensions. So far, we have not been able to solve the 
many conceptual problems of 4-dimensional black holes. With the hope that 
string theory provides a natural framework for addressing these problems in a 
simplified context, Witten, in his articles [1] [2] [3], has proposed that exact 
conformal field theory that describes a black hole in space-time to two dimen-
sions can be formulated as a ( ) ( )2, 1SL Uℜ  gauge of the Wess-Zumino-Witten 
(WZW) model. 

WZW models are examples of nonlinear sigma models whose classical fields 
take values in non-flat target varieties [3]. For WZW models, the targets are Lie 
groups. We work in two dimensions CFT to simplify and we have two versions: 
Euclidian and Lorentzian, which are connected by a Wick rotation. 

Consider an application :g MΣ →  acting from a space Σ  called world- 
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sheet space to a space M called target space. If the metric of M is non linear, then 
the model is named sigma model [4]. 

According to the choice of the Lie group M, one can build the Lagrangian 
theory, and if the choice is ( ) ( )2, 1M SL U= ℜ  we obtain a consistent theory 
that describes a black hole with a target space in two dimensions of space time. If 
the group is ( )2,SL C , then there is a complex Lagrangian. 

The space world-sheet [5] describes the string that has a dimension, and when 
moving, it describes a two-dimensional surface. The theory is for bosonic strings 
(where there is an imaginary unstable particle of negative square mass called  

tachyon), the central charge is 62
2

c
k

= +
+

 ( 26c =  in string theory) and k is  

the algebra level of currents that can take values which are not integer because 
the representations are not unitary [5] [6]. 

The choice of ( )2,M SL= ℜ  [7] [8] gives an ungauged ( )2,SL ℜ  WZW ac-
tion and one needs a gauge fixing to get a consistent and invariant theory so we 
divide by ( )1U  [9] [10]. The possibility of choosing a gauge other than ( )1U  
help to obtain a black Euclidian or Lorentzian hole (which is obtained by an 
analytic continuation i.e. Wick rotation). 

With this in mind, in the current context, starting from the above introduc-
tion, this paper is organized as follows: In Section 2, we introduce the WZW ac-
tion in addition to mathematical group used and the corresponding metric. 
Then in Section 3, we explain the presence of the dilaton field and the compari-
son with the Liouville theory. In Section 4, we shall explore and discuss the ana-
lytical continuation of an Euclidean black hole. In Section 5, we will show the 
tachyon field and the singularity. Then in Section 6, we show the calculation of 
the black hole mass which is a consequence of time translation invariance. We 
present in Section 7 the Hawking radiation, and Section 8 is devoted to our con-
clusions. 

2. WZW Action 

The ungauged WZW action has the following form [3]:  

( ) ( )1 1 ,
8π

ij
i j

kL g hh Tr g gg g ik− −

Σ
= ∂ ∂ + Γ∫               (1) 

with Σ  is a Riemanian surface of metric ijh , and 2d det ijx h∫  to obtain an 
invariant form, and g is the variable field of the model. 

The term ikΓ  (Wess-Zumino term) is added for topological reasons and 
makes cancellations of anomalies. Without having to add it, we will have a mas-
sive theory at the quantum level that is non-conformal. 

The group ( )2,SL ℜ  is a noncompact 3-dimensional group and has three 
generators so three scalar fields g. The metric of the form ( ), ,− + +  is undefined 
and we will have problems with negative magnitudes. The lagrangian (1) has a 
global symmetry ( ) ( )2, 2,SL SLℜ × ℜ  which corresponds to an application  

1g agb−→  where ,a b  belong to ( )2,SL ℜ . But to move to a local symmetry, 
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it is necessary to fix the gauge by dividing by ( )1U  of dimension 1, then one 
obtain the two-dimensional metric ( ),+ +  which is completely Euclidian. 

This gauge fixation is equivalent to kill a degree of freedom, thus killing a field 
g of ( )2,SL ℜ  where g is in a specific frame (unitary gauge) [7] [11]. 

Introducing then an abelian gauged field A; As we know that ( ) ( )1 2U SO  
(rotation in the plane) and in order to obtain a gauge invariance with  

( ) ( )2, 1SL Uℜ , one can fix the gauge by choosing:  

cos sin
cosh sinh .

sin cos
g r r

θ θ
θ θ

 
= ⋅ +  − 

                  (2) 

Since the lagrangian contains a quadratic part in A, we say that A is not dy-
namic or does not have a kinetic term and it does not appear in the equations of 
motion, and the term of WZ contains a total derivative then we can forget them 
in the treatment of integrals. The following action represents then the lagrangian 
of the sigma model and the metric of ( )2,SL ℜ : 

( ) ( )2 2, d tanh .
4π

ij
i j i j

kI r x hh r r rθ θ θ= ∂ ∂ + ∂ ∂∫           (3) 

For large r, ( )r →∞ , tanh 1r →  (Euclidian metric ( ),+ + ), then the metric 
of the target space of the theory is 2 2d d

2
ks σ=  with 

( ) ( )2 22 2d d tanh d .r rσ θ= +                    (4) 

The metric has the shape of a semi-infinite cigar (see Figure 1); it is asymp-
totic when r →∞  to 1Sℜ× . This space-time is a good candidate to represent 
a black hole [2] [3]. 

3. Dilaton Field and Curvature 

Taking into account the quadratic term of the abelian field is similar to adding a 
coupling term to the action that represents the interaction between the expan-
sion field Φ  (function of the target space) and the curvature ( )2R  of the me-
tric of the world-sheet space h [12] [13] [14]. 

( ) ( ) ( ) ( )22 2 21, d tanh d , ,
4π 8π

ij
i j i j

kI r x hh r r r x h r Rθ θ θ θ= ∂ ∂ + ∂ ∂ − Φ∫ ∫   (5) 

With this lagrangian, we will have a conformal invariance, then the β  func-
tion of the coupling vanishes and we obtain the equation of motion  

ab a bR D D= Φ  where abR  is the Ricci tensor of the target space which has as a 
solution: 

( )2ln cosh ,r constantΦ = +                    (6) 
 

 
Figure 1. A semi infinite cigar. 
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This constant plays an important role in determining the mass of the black 
hole as we will see later. We notice that this constant doesn’t affect the string 
coupling Sg  which is proportional to e− Φ  since 0constante =   
( e ecte− Φ + − Φ= ). 

When r →∞  (asymptotic region at the end of the cigar) then Φ→∞  and 
0Sg → . Therefore, the coupling is weak and one can use the perturbation 

theory. 
We deduce that we can calculate the central charge in the asymptotic region  

and generalize it everywhere. Note that 62c
k

= +  is a little different from initial  

c because we made an incomplete calculation in the gauge fixing but the asymp-
totic behavior of the dilaton field remains the same because in this minimal 
coupling 1 1 1 2k k k′ = − . 

We can make a comparison with the Liouville theory [15] which is with a sca-
lar field coupled with gravity and has two coordinates ,ϕ θ  and we find that ϕ  
plays the same role as r with the same conditions at limits. This leads us to re-
place the standard Liouville theory with an Euclidean black hole (i.e. no tempor-
al component). It is always necessary to choose an action with counter-terms so 
that we will have an invariant conformal theory, and it is necessary to specify the 
infinitesimal variations of the transformations of the fields with a good gauge 
fixing. 

According to the light cone, the space-like and time-like regions are discon-
nected and we cannot go from one to the other by a Lorentz transformation but 
we can use a conformal transformation to eliminate a coordinate of time or 
space (either 0 0X =  or 1 0X = ). And so we deduce a theory of critical strings 
at D dimensions from another non-critical at ( )1D −  dimensions. 

Consider the transformation of Liouville for an Euclidean black hole where a 
degree of freedom is gauged away:  

1 tanh , 0.
2

r r
k

δ δθ= =
′

                    (7) 

if r tends to infinity then one can eliminate it and we obtain a single degree of 
freedom which is the scalar field θ  to a single dimension. 

4. Analytical Continuation and Lorentz Signature of a Black  
Hole 

To discuss the Lorentzian black hole, the analytic continuation of the Euclidean, 
we make a Wick rotation itθ =  then the metric will be: 

( ) ( )2 22 2d d tanh d ,r r tσ = −                     (8) 

where r is Liouville coordinate interpreted as spatial coordinate, and θ  is for 
time. In this metric, we have a singularity due to the choice of coordinates and  

not a physical singularity because the scalar curvature 2

4
cosh

R
r

=  is regular 

for 0r = . 
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Similar to the case of the Schwarzschild metric in four dimensions1, we can 
use a suitable change of variables (Kruskal coordinates): ( )2ln 1 e rr r −′ = + − , we 
have 

( ) ( )2 22 2d tanh d d ,r r tσ  ′= −                    (9) 

and with  
2 22 e , 2 e 1 cosh , sinh ,r t r tu v uv r r uv′ ′− += − = ⇒ − = = −         (10) 

we get  

2 d dd
1

u v
uv

σ = −
−

                      (11) 

We obtain the analytically continued black hole space time represented in 
Figure 2. 

Clearly, region I is our asymptotically flat half-space. The physical singularity 
is at 1uv =  because the curvature blows up:  

2

4 4
1cosh

R
uvr

= = → +∞
−

. 

Region II: Future branch which is the black hole singularity, from which no 
signal can cross the horizon to an observer in region I. 

Region III: Past branch which is the white hole-the time reversal of black holes. 
This region contains naked singularity i.e. a gravitational singularity without an 
event horizon. 

Region IV: Is another asymptotically flat region where no signal can propagate 
from this region to region I and vice versa. Now, for 1uv > , one can find two 
additional asymptotically flat spaces regions V and VI. It should be noted that 
the singularity at 1uv =  appears at the end of the spatial world to an observer 
in region V or VI and it is a naked singularity. 

One can verify that regions V and VI are space-times with negative mass 
squared. Indeed, this is due to the presence of unstable sub-atomic particle called 
Tachyon. It moves faster than the speed of light, posses an imaginary mass and 
vibrates in open strings in the string theory. 

Such regions with negative mass singularity appear in the four dimensional 
Schwarzschild solution if one continues past the singularity. One might think 
that the singularity of the black hole is a result of bad gauge choice. However we 
can argue that this is not the right interpretation. 

Indeed given the initial data in region I one cannot without solving the prob-
lem of free will predict whether a black hole will form because there is time like 
loops that can lead to possibility of killing one’s own remote ancestors. To obtain 
a consistent conformal theory, it is necessary to work in regions that do not 
contain singularities, i.e. 2Orbifold Z 2. Then the remaining regions are (I, IV). 

 

 

1Schwarzschild metric: 
1

2 2 2 2 22 2d 1 d 1 d dGM GMs t r r
r r

−
   = − − + − + Ω   
   

. 

2Orbifold: region with singularity. We have 2 strings: open string (1/r) and closed string (circle r) 
which are dual. The compression of the circle gives a segment and the singularities are at the end. 
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Figure 2. The analytically continued black hole space time. 

 
In order to obtain the Lorentzian form of a black hole with an analytical con-

tinuation, one can use a conformal theory of the fields by gauging different sub-
groups of ( )2,SL ℜ . 

, 1.
a u

g ab uv
v b

 
= + = − 

                (12) 

The gauge invariance are:  
2
2

0

i i

a a
b b
u v
A

δ
δ
δ δ
δ

=
= −
= =
= −∂






                         (13) 

Then, one can obtain a gauged WZW action after coupling with an auxiliary 
field A. 

( )

( )

( )
( ) ( )

2

2

d
4π

d
2π

4 4 ln

z z z z z z z z

z z z z z

z z z z z

z z z z z z

kL z u v u v a b a b

k z A b a a b u v v u

A b a a b u v v u

A A uv a u v u v

= − ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂

+ ∂ − ∂ + ∂ − ∂

+ ∂ − ∂ − ∂ + ∂

+ − + ∂ ∂ − ∂ ∂ 

∫

∫          (14) 

where a and b are family of group element of ( )2,SL ℜ  manifold. A gauge fix-
ing a b=  is equivalent to kill one degree of freedom. In the region where 
1 0uv− > , 1ab uv+ =  ⇒  0, 0a b> >  or 0, 0a b< < . Therefore we obtain 
two copies of regions I, IV. If a b= −  then 1 0uv− <  and we obtain two copies 
of regions V, VI. 

We can also see this result in a mathematical way by reasoning on ( )2,SL ℜ  
which has 2 copies and its universal covering contain an infinity of copies. To 
explain this idea, let’s take an example: The metric in this case is Lorentzian (and 
not Euclidean), from a mathematical point of view, ( )2,SL ℜ  is not divided by 
( )1U  which is a compact group but by ( )1,1SO  which is non-compact to 1 

dimension so it remains the Lorentzian metric only. 
To fix the problem of simple connectivity, one should use the universal cov-

ering:  

( ) ( ) ( )universal cover fundamental group space it .self  
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There is an analogy between ( )2,SL ℜ  and ( ) ( )22 3SU Z SO . ( )2SU  
has 2 copies (spinor representation) and ( )3SO  has an infinity of copies. 

( )2SU  is simply connected but ( )3SO  is not, then there is an algebraic object 
that measures the default of ( )3SO  to be simply connected which is  

( )( )1 23SO Zπ  . 

5. Tachyon Field and Singularity 

Recall that the study of a black hole is equivalent to the study of the σ-Model 
metric [4], then this analogy with the groups gives us a lot of information and 
symmetries in the black hole. In this gauge a b=  and after the elimination of 
the auxiliary field A, we will have this action:  

2d .
4π 1

i jij u vkL x hh
uv

∂ ∂
= −

−∫                  (15) 

The singularity at 1uv =  i.e. r →∞  treats the asymptotic region where the 
perturbation theory can be applied in 1/k. We consider for this the tachyon be-
cause it is unstable and disappears but it gives physical results. Let us consider 
the propagation of a small tachyon disturbance in the black hole background. 
Because of the underlying ( ) ( )2, 1SL Uℜ , it may be possible to solve exactly 
for the tachyon vertex operators, but we will simply consider perturbation  

theory in 1
k

. The Dilaton is a particle of a scalar field φ , follows the Klein-  

Gordon equation and couples with gravity. The exponential of its vacuum ex-
pectation value determines the coupling constant: eg φ= . Therefore the 
coupling constant is a dynamical variable in string theory, unlike the case of 
quantum field theory where it is constant. The tachyon field ( ),T u v , to lowest 
order, is governed by an effective action in space-time:  

( ) 2 2d e 8 .ij
i jL T X g g T T Tφ  = ∂ ∂ − ∫               (16) 

In the black hole space time, this action is:  

( ) ( ) 216d d 1 .u vL T u v uv T T T
k

 = − ∂ ∂ − ′ ∫              (17) 

The tachyon field equations are therefore:  

( )( ) ( )( ) 161 1 0.u v v uuv T uv T T
k

∂ − ∂ + ∂ − ∂ + =
′

           (18) 

One can look for ansatz solution in the form ( ) ( ), ,uT u v f u v
v

γ
 =  
 

 using  

the symmetry of space-time under: ( etu u→ , e tv v−→ ). We then reach to a 
second order differential equation which has two linearly independent solutions: 

A regular solution near 1 0x uv= − = , that can be expanded in power series,  
( ) 11 n

nnf x a x∞

=
= +∑ . 

A logarithmic solution singularity, ( ) ( )ln lnf x x O x x= + . The physical 
problems of the black hole are not solved, despite the fact that the conformal 
theory is non-singular at 1uv = . 
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6. Black Hole Mass 

About the mass of a black hole, we know that the metric in general can be writ-
ten as ( )2 2d dtts g r t spherical term= + . If we take ( ) 0ttg r =  then we can find 
the horizon, and if we apply Taylor expansion of ( )ttg r  then the term of order 
(1/r) contains a constant coefficient which is the mass that is called ADM mass. 

Let us write the effective action, to the lowest order in world-sheet perturba-
tion theory, of the graviton-dilaton system:  

( ) 2 8d e ,ij
i jL T X g R g

k
φ  = + ∂ Φ∂ Φ + ′ ∫              (19) 

we deduce the equation of motion for the gravitational field:  

1 4 0,
2

k k
il i l il k kQ D D g D D D D

k
 = − Φ + Φ + Φ Φ − = ′ 

          (20) 

and the equation of motion for the dilaton field:  

82 0.k k
k kD D D D R

k
Φ+ Φ Φ − − =

′
                (21) 

These equations have a flat solution (standard Liouville solution) in a space- 
time of coordinates ρ  and τ . This solution is also an asymptotic solution of a 
black hole (of coordinates r and t) with a simple change of variables. 

2 2 2 8d d d , .s
k

ρ τ ρ= − Φ =
′

                 (22) 

This solution is invariant under time translations and hence a conserved 
energy in the fluctuation about it, so the mass is conserved. Therefore we can 
study the asymptotic region of a black hole to know its mass.  

After the calculation of the asymptotically conserved current iS , the con-
served charge 0S  is calculated by making a perturbation of the solution and the 
metric to have an analogy between  

8 ,
k

ρ ϕΦ = +
′

                    (23) 

where ϕ  is zero at infinity and  

( )2ln cosh .r aΦ = +                  (24) 

Consider the solution (23) that is asymptotic to the flat solution space with  

.ij ij ijg hη= +                      (25) 

Note that ϕ  and h vanish for ρ →∞ , and η  is the flat space metric cor-
responding to 2 2d dρ τ− . Let ij ijQ q=  + terms of higher orders; where ijq  are 
the linear terms of ijQ . The quantity j

i ijS q v=  is the asymptotically conserved 
current, where jv  the time translation generator. The corresponding conserved 
charge density 0S  is always a total divergence and as a result the conserved 
charge can be measured as a surface term at ρ → +∞ . After long straight for-
ward calculation of 0S , we then get the mass M of the black hole at ρ → +∞ : 
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2 e .aM
k

=
′

                         (26) 

We see that the significance of the possibility of adding a constant to the dila-
ton field will determine the mass of the black hole. It is important to notice that 
adding a constant Φ  does not change the physical state at ρ → +∞  since we 
can always absorb this constant in the translation of ρ . This is why the black 
hole with ( )2ln cosh r aΦ = +  can be regarded as a family of objects of variable 
mass inserted in a fixed space-time background. At the horizon, the value of the 
dilaton field is:  

( )0 ln .
2
kr a M

 ′
Φ = = =   

 
                  (27) 

7. Hawking Radiation 

Stephen Hawking states that black holes have finite non-zero temperature ob-
tained by the inverse of the circle radius at infinity in a solution of an Euclidean 
black hole [16]-[21]. According to the quantum mechanical uncertainty prin-
ciple, black holes should create and emit particles. The emission process is 
known as the Hawking radiation, reduces the mass of the black hole and leads 
therefore to the black hole evaporation. According to (27), the mass loss means 
that the value of the dilaton field on the horizon will diminish and thus the 
string coupling constant will get stronger there. For massless black hole, the 
physics approaches more and more the idealized flat space solution. Because  

0M →  means that a → −∞ , and consequently from (26) 8
k

ρΦ →
′

. Thus  

this flat space solution would appear to be the end point of the black-hole eva-
poration which produce two copies of the standard space time [22]. The flat so-
lution (22) is the solution with the greatest symmetry and is described asymp-
totically i.e. the space time is the end point of Hawking radiation. This space 
time can represent a black hole with a singularity hidden by the horizon. 

Consider a perturbation of this flat space by sending a particle of energy  . 
To make an analogy with a black hole, it is necessary that the particle exceeds 
what is called Schwarzschild radius in 4 dimensions and which will be, in our 
case, the coordinate ρ :  

( ) 8ln .
8
k

k
ρ

 ′
=   ′ 

                       (28) 

Either the particle will be reflected before reaching its Schwarzschild radius. 
Or if it reaches its Schwarzschild radius, a horizon will appear to form but pre-
sumably the energy   involved will be re-emitted as some form of Hawking 
radiation. Consequently, what we expect to see is a quantum-mechanical S 
matrix, with particles coming in and ultimately being ejected in one form or 
another. 

To determine whether the S matrix is a reflection or radiation of particles, we 
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will introduce the cosmological constant: A tachyon field with ( ) 8, eT ρρ τ µ −=  
which can be the perturbation added to the flat solution (22). Introducing this 
field in the Φ  of the flat space, will affect the suppressing string propagation 
into the region ρ → −∞  where the string coupling become strong. 

So the possibility of changing the radius of the circle at infinity i.e. the tem-
perature of the black hole is equivalent to change the cosmological constant be-
cause, as we have seen, it is the perturbation in the solution of an Euclidean 
black hole. 

In the light of this context, we consider the recent improvement to Hawkings 
evaporation theory, that is the so called Bohr-like approach to black hole quan-
tum physics [23] [24] [25]. It has been shown that, in the semi-classical ap-
proximation, the Schwarzschild black hole is the gravitational analogous of Bohr 
hydrogen atom. This approach is important not only in the context of black 
holes in the light of quantum mechanics, but also because it presents a strong, 
independent solution to the black hole information paradox. 

8. Conclusion 

In the present work, we studied the solution of a black hole in a field theory 
frame based on the concepts of general relativity in a gauged WZW model. We 
have reviewed the WZW action, the different region of a black hole space time 
and the gauge fixing in a suitable mathematical frame. The black hole does not 
provide us by information from this point of view. However, from quantum 
mechanics, Hawking radiation tells us that black holes emit radiations i.e. give 
information. So we cannot put general relativity and quantum mechanics in the 
same frame. 
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