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Abstract 
A physical description of the orbital mechanics of stars around a galactic core 
has proved difficult. Notably, there is insufficient mass to account for ob-
served star velocities. The mystery is one of few in modern science that defy 
the known laws of physics. It has been conjectured that there is a new form of 
matter that interacts gravitationally while otherwise remaining undetectable. 
In this paper we resolve the mystery. The expressions do not modify the 
known laws of physics, contain no free variables or fitting and are entirely 
classical in nature. Using the notion of counts of the fundamental meas-
ures—length, mass and time—it is shown that measure is bounded. Ac-
counting for this bound and the expansion of space reveal that the conjecture 
is unnecessary thus resolving the dark matter mystery.  
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1. Introduction 

The focus of this paper will be a discussion of galactic rotation and the processes 
that affect and constrain gravity at galactic scales. The effect is an outcome of 
physically significant smallest units of measure, each of the three measures con-
strained by an upper and lower count bound with respect to the remaining two. 
A framework of countable units of measure—the fundamental measures—provides 
a mathematical foundation with which to describe phenomena with quantum 
precision. Most importantly, when a count bound is exceeded additional mass 
counts overlap; this is what constrains gravity at the galactic scale. 
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The idea of units of measure is most commonly known as Planck’s Units 
which we denote with a subscript p: length lp, mass mp, and time tp. Planck’s 
Units differ slightly from that resolved with measurement quantization, the lat-
ter units referred to as fundamental units and distinguished with a subscript f.  

By first describing gravity using the Pythagorean Theorem an approach to 
bounded measure may be applied. Resolving the upper bound to mass counts 
with respect to counts of the remaining two measures allows us to describe ga-
lactic orbital dynamics. Each relation is tightly constrained, a function of con-
stants. When applied to the Milky Way, the minimum mass density, the cros-
sover point between Newtonian and non-Newtonian behavior and the associated 
mass and velocity curves are resolved. The expansion of space is also integrated. 
Most importantly, a classical description is presented that does not require the 
presence of dark matter. 

After applying the approach to existing Milky Way data, the expressions are 
then modeled with an even mass distribution to demonstrate what an average of 
thousands of galaxies would look like. As expected, orbital velocities flat-line. 
The magnitude of that velocity is correlated to the excess mass above the mass 
frequency bound (i.e. the upper count bound of mass with respect to time). 

The presentation addresses the ΛCDM [1] dark matter distribution presently 
considered the leading candidate with respect to this phenomenon. Expressions 
for each distribution are presented, but ΛCDM is not used to resolve the distri-
bution values. Instead measurement quantization [2] is used; an approach which 
differs from the Standard Model only in that it recognizes the physical signific-
ance of smallest units of measure. The advantage of this approach is that a base 
expression with no free variables may be resolved. The approach allows an in-
spection that resolves a concise understanding of distribution traits and differ-
ences.  

Also addressed are existing proposals. For one, MOND models have provided 
a good correlation with observed star velocities. Alternatives such as that used by 
McCulloch modify inertial mass by assuming it is caused by Unruh radiation 
[3]. Each of these approaches incorporates some element of data dependence, 
but it is their dependence on less established mass distribution and expansion 
expressions (i.e. ΛCDM) that present conflicts. The expressions herein clarify 
the physical description of each mass distribution and why existing applications 
to galactic phenomena are in conflict. 

Yet other approaches to describing dark matter may be demonstrated with 
extended theories of gravity, but importantly that landscape has increasingly 
been mitigated as a result of several runs at the LHC. In Corda’s paper, “Interfe-
rometric detection of gravitational waves: the definitive test for General Relativ-
ity” [4], the field is further defined and reduced, specifically where Corda has 
presented constraints as a function of the interferometer response functions of a 
gravitational wave event. With respect to each of these observations we begin 
with a new approach to describing gravity that successfully avoids each of the 
concerns noted above. 
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2. Methods 
2.1. Quantum Gravity 

Quantum gravity is a consequence of measurement quantization. Informativi-
ty—a term that describes the application of measurement quantization to the 
description of phenomena—rests on evidentiary support for the physical signi-
ficance of fundamental units of measure. This property of observation differs 
from what might be understood with respect to observations first proposed by 
Planck. Specifically, the fundamental measures do not imply that nature is dis-
crete, only that measure is discrete. Thus, while nature is infinitely divisible in 
length, mass, and time, there are physically significant count bounds to what can 
be measured. Those bounds constrain the behavior of matter as much as they 
constrain the behavior of gravity. 

We will discuss the evidence only briefly and refer the reader to the paper 
“Measurement Quantization Unites Classical and Quantum Physics” [2] for a more 
complete treatment of the subject. We also refer the reader to the paper “Mea-
surement Quantization Unifies Relativistic Effects, Describes Inflation/Expansion 
Transition, Matches CMB Data” [5] for examples of the application of mea-
surement quantization to the distortion of measure, quantum inflation, the tran-
sition event that ends quantum inflation, initiates expansion and marks the for-
mation of a Cosmic Microwave Background (CMB). For those familiar with 
these papers you may skip directly to Section 3. 

For those new to Informativity, we will review gravity as described in the first 
paper [2]. We begin with the premise, that there exists a physically significant 
smallest unit of measure (i.e. a reference), which will then be supported with 
observational data. A reference is the source thing used to ascertain and describe 
some other thing. By example, the fundamental measure of length lf is the refer-
ence that may be used to describe any length. This is accomplished as a whole-unit 
count of the reference. A fractional count violates the definition of a reference 
indicating that the identified source is not the reference. In such a case, the new-
ly identified target becomes the reference until no smaller candidates are found. 
We can describe this mathematically. 

Consider that we wish to describe an unknown distance on side c of the trian-
gle described in Figure 1 as a count of the reference. For long side c and short 
sides a = 1 (the reference) and b (a count of the reference) of any chosen integer 
count of a right-angle triangle, we may resolve a count representing the uncer-
tain distance, 

( )1 221 Lb fc n l= +                            (1) 

Any non-whole-unit count describes a change in distance and may be de-
scribed by rounding up (repulsion) or down (attraction). The remainder lost to 
rounding will be denoted by QL. Notably, QL is less than half and thus attractive. 
The model describes a count of the reference that is closer by 

( )1 221L Lb LbQ n n= + − ,                        (2) 
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Figure 1. Count of distance measures between an observer and target where nb = 4. 

 
at every instant in time. To demonstrate the math, if nLb = 4, then  

( )417 4 0.1231 4L LbQ n = − = . Because side c always rounds down, we find 
that nLr always equals nLb. As such, we will always refer to the “observed measure 
count” as nLr. Moreover, note that the reference measure against which all counts 
are measured is defined by nLa = 1. With this we conjecture that we have com-
posed an expression for gravity such that the loss of the remainder relative to the 
whole-unit count is QL/nLr. 

We proceed with that hypothesis by presenting the ratio in meters per second 
squared (m/s2). We multiply by lf for meters and divide by 2

ft  together describ-
ing the distance loss at the maximum sample rate of one sampling every tf 
seconds per second, 

2
Lf f

Lr f

Q l
n t

,                             (3) 

Also note that this quantity is scaled and hence requires a scaling constant; we 
multiply by the speed of light c and divide by a scaling constant S. Setting r = 
nLrlf and c = lf/tf, then 

22 3

2
L f L fL L

Lr f Lr f fLr f

Q l Q l cQ c Q cc
S n t S n l t S rSn t
= = = .                (4) 

The ratio c/S may be understood as 1/kg or a maximum count of mf per kilo-
gram; it may also be thought of as the corresponding mass frequency associated 
with gravity. Where S = 3.26239, this expression is now equivalent to G/r2 to five 
significant digits for all distances greater than 103lf. Where quantum differences 
are not a consideration, we may set the expression equal to G/r2 and thus 

3

2
LQ c G
rS r

= ,                           (5) 

3
LQ rc GS= .                          (6) 

The expression may be reduced where the ( ) 1lim 2r L Lrf Q n→∞ =  as demon-
strated in Appendix A.1. Such that r = nLrlf then the expression becomes 

3 2

L L Lr f f

c S S S
G Q r Q n l l

= = = .                    (7) 
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Our focus now turns to the scaling constant. What is it and how do we meas-
ure it? There are two physically significant phenomena where S may be meas-
ured. First, we may measure S as momentum; hence the units for these expres-
sions will match accordingly. But, as described in Figure 2 S is also an angular 
measure and described by the expression 

3

22 2 2
f f

ff

l lcS
G ll

  
= = =       

                      (8) 

It follows where S = ħ /2lf, then the arc length of a circle of radius lf and angle 
S is 

2 2f
f

L l
l

rθ
 

= =  
 

=
  .                     (9) 

with respect to this reference, the units for S are radians. Explicitly, the units for 
S depend on the frame of reference. For this reason we use θsi throughout all In-
formativity expressions, not because the term always denotes a radian measure, 
but to emphasize that the value of θsi is invariant for all frames of reference. The 
subscript s and the subscript i exist for historical purpose denoting the signal 
and the idler measures in the Shwartz and Harris quantum entanglement expe-
riments [6], both of which are precisely 3.26239 radians. 

When θsi is described with respect to other measures in the local inertial frame, 
either units of momentum or radians will apply depending on what is being 
measured. When θsi is described with respect to a measurement bound (i.e. the 
age or diameter of the universe), the term is dimensionless. This is most evident 
in a unity expression for which an example will be presented later. In each case, 
the value of θsi is the same. Most expressions are with respect to a bound, but 
where there is exception notes will be provided. A more complex example is 
examined in Appendix A.3. 

Lastly, a notable example of cross-referenced expressions, combine both the 
momentum and angular expressions. Planck’s expression for Planck’s length is 
then 

 

 
Figure 2. Arc length of a circle of radius lf and subtending angle θ = S radians. 
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3

2 2
f

f

l c
G l

=
 ,                          (10) 

1 2

3f
Gl

c
 =  
 

 .                         (11) 

Planck’s mass and time expressions are also in the same class of cross-referenced 
expressions and as such all of his unit work is a derivative of two frames of ref-
erence. Mixing frames of reference may seem inappropriate. But, doing so also 
offers physically significant descriptions of nature. With that, care must be taken 
with each Informativity expression to track units and resolve them. 

Evidence does not rest on one or even several experimental results. There are, 
at present, more than 20 verifiable predictions of the model [2] [5] in disciplines 
that include quantum physics (Table 1), quantum gravity Equation (6), classical 
physics, the distortion of measure (i.e. also described by relativity) ([5], Section 
3.1), quantum inflation ([5], Section 3.14 - 3.15), expansion ([2], Section 3.12), 
and cosmology ([2], Section 3.10). One measure of θsi is published in Shwartz 
and Harris’s 2011 paper, “Polarization Entangled Photons at X-Ray Energies” in 
Physical Review Letters [6]. Using Informativity, their measures can be de-
scribed to the same precision as calculated in Table 1. 

Most importantly, in recognition of physically significant units of measure, 
Informativity provides an approach that mathematically correlates measurement 
quantization to gravity. It follows, where bounds to measure are found, a cor-
responding bounding effect must also be found with respect to gravity. In the 
next section we will further explore the reference measures to build a toolset ne-
cessary for describing how gravity is bounded. 

2.2. Fundamental Measures 

The physical significance of fundamental units of measure is instrumental to de-
scribing galactic rotation. It is because the fundamental units are countable, 
having a smallest and greatest count with respect to the remaining two measures 
that gravity is constrained. A review of the fundamental units, their values and 
definitions provide the foundation for the expressions to follow. Thus, with Eq-
uation (7) and a measured value of θsi equal to 3.26239 each of the fundamental 
measures can be resolved. When defined with respect to the fundamental meas-
ures, the units for θsi are that of momentum kg⋅m/s. Thus, 
 
Table 1. Angle setting in radians of the k vectors of the pump, signal, and idler for max-
imally entangled states at the degenerate frequency with corresponding Shwartz and Har-
ris values (Ref. [6]). 

Bell’s State 
k vector angle 

θp θs θi 

( ), , 2s i s iH V V H+  (lfc3/2G) − π(0.1208) π − (lfc3/2G)(−0.1208) π − (lfc3/2G)(−0.1208) 

 
2π − (lfc3/2G)(3.02079) (lfc3/2G)(3.26239) (lfc3/2G)(3.26239) 
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11
35

3 3

2 2 6.67408 10 3.26239 1.61620 10 m
299792458

si
f

G
l

c
θ −

−× × ×
= = = × ,     (12) 

11
44

4 4

2 2 6.67408 10 3.26239 5.39106 10 s
299792458

f si
f

l G
t

c c
θ −

−× × ×
= = = = × ,   (13) 

3
82 2 3.26239 2.17643 10 kg

299792458
si

f f
cm t
G c

θ −×
= = = = × .         (14) 

To describe a count of lf, mf and tf with respect to time divide the rate by the 
respective measure. 

8 432.99792458 10 1.85492 units s10L fn l= × = × ,          (15) 

35 43 unit4.0371111 10 1.8 s5492 s10M fn m= × = × ,         (16) 

431 1.85492 10 units sT fn t= = × .                 (17) 

The term mass frequency as used throughout describes a count of mass units 
relative to a count of time units. The upper count bound of mass units per second is 
1.85492 × 1043. The same count applies also to length frequency and frequency, 
the rate of time itself. Mass-to-length frequency is distinctly different and im-
portant to an understanding of galactic orbital dynamics. 

Another often used expression in Informativity is the fundamental expression. 
This may be resolved from Equation (14) mf = 2θsi/c where c = lf/tf, 

2f f si fl m tθ= .                          (18) 

Lastly, while we have demonstrated the importance of θsi in describing gravity, 
in resolving the fundamental units, in describing momentum, in defining Planck’s 
constant and in resolving Planck’s Unit expression for length, we haven’t specif-
ically discussed the evidence for physical significant measure. To that end, consider 
Heisenberg’s Uncertainty Principle where applied to the position and momentum 
of a particle. Such that r = nLrlf multiplied by QLnLr (i.e. ( ) 1lim 2r L Lrf Q n→∞ = ) 
to place distance measure in quantum form, m = nMθsi/QLnLrc generalized from 
the fundamental expression and v = nLlf/nTtf, then Heisenberg’s expression may 
be reduced to the counts nL, nM, nT, and the length count between a target and a 
center of mass nLr such that 

2X Pσ σ ≥
 ,                           (19) 

( ) ( ) ( )2 M si
Lr f L Lr si f

L Lr

n
f r f mv n l Q n v l

Q n c
θ

θ
 

= ≥ 
 

,            (20) 

( )2 1M
Lr

n vn
c

  ≥ 
 

,                        (21) 

( )2 1L f f
Lr M

T f f

n l t
n n

n t l
 

≥  
 

,                     (22) 

2 M Lr L Tn n n n≥ .                         (23) 

Before parsing, consider that gravity may be described as a loss of the frac-
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tional length count QL above and beyond the whole-unit count of the reference. 
The description of QL arises from the Pythagorean Theorem, a mathematical 
description of the measure of length. Thus, the interpretation implies two quali-
ties. Firstly, nature is infinitely divisible or at least to the extent as described by 
all solutions to QL. Secondly, measure is discrete. 

Consider now a description of light c = nLlf/nTtf, a whole-unit count of the ref-
erence such that 1L Tn n= =  in Heisenberg’s reduced expression. It follows that 
the remaining counts of nM = 1/2 and nLr = 1. The expression confirms the con-
jecture. Where we find support for the Heisenberg Uncertainty Principle, we al-
so find the fundamental measures to be of physical significance, defining the 
threshold. The threshold between certainty and uncertainty is precisely at nM = 
1/2, nL = 1 and nT = 1 such that nLr = 1. 

2.3. Nomenclature 

Informativity uses a distinct nomenclature to describe length, mass, time, unit 
counts of those measures and the measure of several other quantities in the de-
scription of phenomena. Let us take this moment to discuss nomenclature. 

The description of fundamental units with respect to the three measures are 
denoted as lf for length, mf for mass, and tf for time. The description of counts of 
the fundamental measures is denoted with the symbol n, each measure recog-
nized by a corresponding capitalized subscript, L for length, M for mass, and T 
for time. To avoid confusion between length descriptions of motion and those of 
gravitational fields, a subscript r (i.e. nLr) is used when describing a count of lf 
between a static frame of reference and a center of gravity. Similarly, a subscript 
m (i.e. nLm) is used when describing a change in the count of lf with respect to a 
target in motion to the observer. 

With respect to mass distributions associated with the universe there are sev-
eral categories. The total mass of the universe is distinguished with the term Mtot. 
The total may be divided into two parts, dark mass Mdkm and observable mass 
Mobs. The dark mass distribution is more commonly attributed to dark energy, 
but as presented in Section 3.1, is also the mass that can never be seen because it 
exists at such a distance that the expansion of the universe prevents light from 
ever reaching the observer.  

Also important, if we now subtract the visible Mvis from the observable mass 
Mobs, we resolve that which will be observed, the unobserved mass Muobs. The 
unobserved mass is that which will eventually be visible given sufficient elapsed 
time. The distribution is typically attributed to dark matter. There is also one 
more term, the fundamental mass Mf. This mass is associated with the mass fre-
quency bound ([2], Equation (93)) 

f
f U

f
si

m
M A

t
= θ ,                         (24) 

and is instrumental to the calculation of all the mass distributions. While the 
distribution values are the same as those resolved with ΛCDM, the two ap-
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proaches differ significantly. The Informativity approach is an outcome, a pre-
diction of Informativity implicit to physically significant quantized measure. 
There are no free variables and as such the precision is constrained only by the 
measure of θsi, six significant digits. Each expression will be presented in Section 
3.1 along with discussion as to their meaning, differences and why one may con-
clude that the only physical difference between the distributions is if and when 
mass is visible. 

Lastly, the expansion of the universe can be described with respect to two 
measures. Stellar expansion, the measure of increasing distance between galaxies, 
follows the traditional understanding in modern theory. When discussing stellar 
expansion, we describe the effect using Hubble’s constant Ho which is quoted in 
kilometers per second per megaparsec. Conversely, universal expansion HU de-
scribes the expansion of the universe when defined with respect to the universe. 
SI units are used, but the reference is fixed with respect to the age AU and di-
ameter DU of the universe. Universal expansion describes an increasing space 
that is isotropic. 

A listing of symbols used and there definitions may be found in Section 7. 

2.4. Terminology 

There are several terms often used when describing galaxies. As we have intro-
duced the nomenclature for describing expansion, consider now the expression 
for universal expansion ([2], Equation (87)),  

2 2 3.26239 13.799 90.035 blyU si UD Aθ= = × × = .            (25) 

The rate of expansion follows from definition 1/AU and may be resolved in the 
customary units, 

19

9
1 1

7

km Mpc 3.08567758 10 km Mpc 70.860
13.799 10 y 3.15576 10

km s Mpc
s yU

H
A

− −×
= = = ⋅ ⋅

× × ×
,(26) 

when defined with respect to the universe DU/AU, expansion is invariant ([2], 
Equation (81)) 

2U siH θ= .                            (27) 

Resolving a description of phenomena with respect to the universe can pro-
vide a perspective that is straight-forward with which to build a cohesive under-
standing of many presently unsolved physical phenomena.  

We consider the universe, in this application, a frame of reference. As there is 
no outside reference to the universe, the universe is recognized as a self-defining 
frame. Terms that describe the universe are part of a class recognized as system 
bounds. For instance, the age and diameter of the universe describe the upper 
bound to elapsed time and length. Conversely, a thing defined relatively with 
respect to some other thing is called self-referencing. One’s choice of frame in no 
way identifies a physically significant difference. But, self-defining expressions 
are often invariant (i.e. HU = 2θsi). Self-referencing expressions often vary (i.e. H 
= ((km/Mpc)/AU). And the units for θsi depend on which frame is chosen. 
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While not as central to our discussion, it should be noted that the system con-
stant 2θsi is often present in physical description. The value is fundamental to the 
description of matter. For example, we may describe the expansion of the un-
iverse with respect to measure or as a function of 2θsi. Use the fundamental ex-
pression to convert between them. 

21 3 2

1f Lm

f f Lc

t n
l m n

      + =         
,                   (28) 

( )

2

2 3 2

1 1
2

Lm

Lcsi

n
nθ

+ = .                       (29) 

Many expressions are modifications of these unity expressions. There are two 
classes. Relations are expressions that may be reduced to the fundamental ex-
pression. Boundary expressions describe upper and lower count bounds rela-
tively between measures.  

It should not go unnoticed as to what anchors measure, the fundamental 
measures—(lfmf/tf) = 2θsi—or the corresponding rate of universal expansion nLm. 
This can be a difficult inquiry as measure is relatively defined. But their relation 
is fixed, distinguishing θsi as perhaps the most fundamental constant. Many of 
the known constants may be reduced to include only θsi, the fundamental meas-
ures or counts thereof. Several examples are ([2], Equation (36), Equation (49), 
Equation (81)) 

2 si flθ= ,                           (30) 

2f si f fE l tθ= ,                         (31) 

2U siH θ= .                           (32) 

As noted before, θsi has units of kg⋅m⋅s−1 in the first two examples, but the lat-
er is a system bound and thus dimensionless. Conversely, the speed of light and 
the gravitational constant (see Appendix A.2) are examples of boundary expres-
sions, 

f fc l t= ,                           (33) 

f f f f

f f f f

l l l t
G

t t t m
= .                        (34) 

Lastly, the terms, quantum, and, quantized, are often used. Neither should be 
understood as having a relation with respect to quantum mechanics. Rather, the 
term quantum is intended to mean small as in a few tens, hundreds or thousands 
of fundamental units of measure. The term quantized is intended to mean that 
expressions are composed of terms that are whole-unit counts of the fundamen-
tal measures. 

A quantized expression possesses qualities that are immensely valuable in our 
effort to describe nature. For one, quantized expressions are defined for the en-
tire measurement domain. Second, quantized expressions are nondimensiona-
lized. Nondimensionalization is not in itself a valuable endeavor but demon-

https://doi.org/10.4236/jhepgc.2019.52028


J. Geiger 
 

 

DOI: 10.4236/jhepgc.2019.52028 483 Journal of High Energy Physics, Gravitation and Cosmology 
 

strating that all phenomena may be expressed entirely with nondimensionalized 
whole-unit counts of the fundamental measures contributes to a new under-
standing of measure that is finite and discrete. 

A listing of terms used in Informativity may be found in Section 6. 

3. Results 

In the sections that follow we will use Informativity to present expressions de-
scribing the motion of stars in galaxies. As noted at the outset, when averaging 
hundreds or thousands of galactic rotational curves, the curve is nearly invariant 
at a given radius and outward. Star velocities are in conflict with Newton’s law of 
gravitation which describes a decreasing velocity with increasing distance.  

A second anomaly concerns the magnitude of these velocities, a value that is 
significantly higher than expected. To describe these phenomena, incorporation 
of the effects of expansion and a new constraint to the behavior of matter will be 
entertained. While expansion is a seemingly straight-forward application, the 
constraint—mass frequency—is a new concept to modern theory. Like length 
frequency, c = lf/tf, mass frequency describes that bound where counts of mf may 
no longer be distinguished, greater than 1.85492 × 1043 units per second, Equa-
tion (16).  

The upper bound to mass frequency is physically significant and cannot be 
exceeded any more than a length frequency greater than 1 to 1 (i.e. nLlf/nTtf > c). 
As we work through an understanding of mass frequency we will demonstrate 
how counts above and beyond this bound correspond to measure smaller than 
the reference. Not only does a mass frequency above a frequency bound (i.e. a 
smaller value for mf in the expression 1/mf) describe a point in space-time sub-
ject to indistinguishable count of mf, it also describes a faster-than-light rela-
tionship between length and time, identifiable using the fundamental expression, 
lfmf = 2θsitf (i.e. a smaller value for mf implies a larger value for lf where c = lf/tf 
then a faster-than-light relation). 

3.1. Mass Distribution 

Galactic rotation follows classical theory with adjustments made for the effects 
described by relativity, the Informativity differential (Appendix A.1) and uni-
versal expansion. To simplify the expressions, the first two effects will not be in-
tegrated into the results. But, the third effect, expansion, is significant in magni-
tude. We begin with a review of expansion as described in the first paper fol-
lowed by mass distribution. 

Stellar expansion—the modern understanding of expansion—which is a func-
tion of universal expansion plus those forces of interaction since the earliest 
epoch will not be discussed. Universal expansion, conversely, describes the in-
creasing space in the universe. The rate when defined with respect to the un-
iverse is Equation (27), 

2U siH θ= .                          (35) 
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The constant 2θsi is referred to as the system constant. With it universal ex-
pansion may be described using familiar terms ([2], Equation (87)) such as the 
diameter DU of the universe in billions of light-years and the age AU of the un-
iverse in billions of years. 

2 2 3.26239 13.799 90.035 blyU si UD Aθ= = × × = ,         (36) 

with these parameters we may now summarize the mass distribution expressions 
starting with fundamental mass ([2], Equation (93)) which is then used to derive 
the distributions, 

f
f U si

f

m
M A

t
θ= .                         (37) 

Because our frame of reference is the universe, θsi carries no units. A complete 
derivation is provided in the first paper ([2], Section 3.12). The advantage of this 
approach is that each distribution is clearly defined. The total is divided such 
that the dark mass Mdkm is that mass sufficiently distant that expansion prevents 
the light (i.e. information) from ever reaching the observer. The observable mass 
Mobs makes up the remainder. The observable may then be divided into two cat-
egories, that which is presently visible Mvis and the unobserved Muobs which will 
be visible given sufficient elapsed time. Each distribution ([2], Equation (109), 
Equation (110), Equation (113), and Equation (115)) precisely matches the ∆CDM 
results. We learn here that each is invariant, 

2

2

2
68.3624%

2
si

dkm
si

M
θ

=
θ

−
=

+
,                     (38) 

2

4 31.6376%
2obs

si

M
θ

= =
+

,                     (39) 

1 4.84884%
2 2

obs obs
vis

si tot si

M M
M

Mθ θ
= = = ,                (40) 

31.6376 4.84884 26.7888%uobs obs visM M M= − = − = .        (41) 

In modern theory Mdkm is recognized as dark energy; Muobs is recognized as 
dark matter. As neither reflects the calculations, the terms are accordingly re-
placed.  

This brings us to an important observation as described in Equation (40), 

2obs si visM Mθ= .                           (42) 

If the visible is that which is presently visible and the unobserved is that which 
becomes visible with elapsed time, then with respect to the earliest epoch nearly 
all the visible we see today was previously unobserved (i.e. dark matter). The 
idea that dark matter is different than what we presently identify as visible is in 
conflict. Further technical details regarding the treatment of mass distributions 
are provided in Appendix A.6. 

Consider now that the Informativity distributions precisely match the ∆CDM 
calculations. This is accomplished with only an understanding of fundamental 
mass Mf. Combining the distributions we find that ([2], Equation (118))  

https://doi.org/10.4236/jhepgc.2019.52028


J. Geiger 
 

 

DOI: 10.4236/jhepgc.2019.52028 485 Journal of High Energy Physics, Gravitation and Cosmology 
 

2
tot obs

f
tot obs

M M
M

M M
=

−
,                      (43) 

but this seemingly reveals a problem. If the expressions are invariant why are the 
distributions properly resolved while mass is moving from the unobserved to the 
visible? From yet another point of view, such that Mf is a function of time, must 
not Mtot increase? Yes, evidence that the total mass of the universe is increasing 
follows. 

The CMB calculations are just one inevitable outcome of mass accretion Macr 
([2], Equation (135)). The age, quantity, density and temperature of the CMB 
may each be calculated such that  

3

17.36 units unit11
2
si

acr f fmM t
θ

= = .               (44) 

Most importantly, “there are no free variables”, in the calculation. Density and 
temperature, naturally, are a function of the elapsed time we identify as being 
the present, 

33 2 13e 1.14652 10 s 363309 ysi
UA θ= = × = ,              (45) 

3
501.50159 10 kg

2
si

tot Tu fM n m
θ

= = × ,                (46) 

2
3144.17041 10 J mtot

U

M c
V

ρ −= = × ,                 (47) 

1 4

2.72468 KT
a
ρ = = 

 
.                     (48) 

The calculations are a direct result of Macr. The universe beings as a quantum 
bubble unable to expand at the speed of light because there exists no means to 
resolve a point outside of the bubble until the universe reaches a radius of 3 fl . 
This trigger ends quantum inflation precisely at 363,309 years, releases the ac-
creted mass/energy (which occurs at the noted rate of 3 2siθ  units of mf per unit of 
tf) as CMB and initiates expansion as we see it today. There is no faster-than-light 
inflationary period and the results match our best observational data precisely. 
The calculations and details were published in the Journal of High Energy Phys-
ics, Gravitation and Cosmology ([2], Section 3.15) with additional explanation of 
the effects of measurement distortion following ([5], Section 3.6). 

A graphical representation of the distributions is also presented in Figure 3. 
The mass values are constrained to the precision of the age of the universe, 
13.799 billion years [7], as our most accurate measure of the universe. 

For a more complete list of mass distribution conversions refer to Appendix 
A.5. 

Finally, to provide a reference for the expressions to follow we will use the 
Milky Way as our target. The calculations consider only the mass within the first 
84,000 light-years. The corresponding value for observable mass is then 

418.56060 10 kgobsM = × .                     (49) 

https://doi.org/10.4236/jhepgc.2019.52028


J. Geiger 
 

 

DOI: 10.4236/jhepgc.2019.52028 486 Journal of High Energy Physics, Gravitation and Cosmology 
 

 
Figure 3. Relative measure of mass. 
 

All mass, density and velocity data for the Milky Way comes from Stacy 
McGaugh’s 2018 Milky Way mass models [8].  

3.2. Orbital Velocity Bound 

Count bounds are an important and physically significant attribute in describing 
the behavior of matter. Length frequency is the most well-known count bound c 
= lf/tf; for each count of fundamental time there can be at most one count of 
fundamental length. Any count of lf greater than tf would correspond to a veloc-
ity greater than the speed of light. The physical significance of fundamental units 
of measure is what distinguishes measurement quantization from an unbounded 
description of nature.  

There also exist upper and lower count bounds for mf/tf and mf/lf. We respec-
tively call these bounds mass frequency and mass-to-length frequency. The or-
bital velocity of a star is subject to all three bounds in addition to the effects of 
expansion. A description may be resolved starting with the classical expression 
for orbital velocity, 

3 2

3 2
f f M f f M M

f Lr f Lr Lrf f

l t n m l n nGMv c
R m n l n nt t

= = = = .          (50) 

As described in Appendix A.2 the upper mass-to-length count bound with 
respect to orbital velocity is 1 to 1, nM < nLr. But, the relation we seek is the 
mass-to-length count bound with respect to the escape velocity 

2 M Lrn n< .                           (51) 

Consider now that the smallest count of mf with respect to lf may not be less 
than the precision offered by the reference 82.17647 10 kgfm −×= . To translate 
this to a whole-unit count of the reference scale the ratio, 

8

7

2.17643 10 units 1 unit 1
1 unit 14.59468 10 units

f f
Mb

f ff

m m
n

l ml

−×
= = =

×
.    (52) 

Combining both bounds the ratio is then 2 units of mf per unit of lf where 
1/(1/mf). Thus, 2(1/(1/mf)) = 2mf. Where nMb and mf are equal in value and have 
no units, then the classical velocity bound is 

2M
bc f

Lr

nv c c m
n

= = .                      (53) 
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The expression does not account for the expansion of space HU = 2θsi, Equa-
tion (27). Such that HU is relative to the diameter of the universe, divide by 2. 
The radial expansion respective of orbital and escape velocity may be written in 
two ways using the fundamental expression to convert between them: 

12 204.0 km4 s5b si fv c mθ −= ⋅= ,                  (54) 

1204. k054 m sb f siv cm cθ −= = ⋅ .                  (55) 

As a reminder, both θsi and our substitution of mf for nMb carry no units. This 
is the velocity bound corresponding to the upper count bound of mf that may be 
discerned at a point in space. To resolve a corresponding mass bound set vb 
equal to the same as expressed with Newton’s expression and reduce with the 
fundamental expression. The derivation may be found in Appendix A.3 along 
with an explanation of units, 

( )

3

-
f

sib f R
f

m
M R

t
θ= .                         (56) 

The mass bound Mb-f(R) is a function of the mass within the target orbital radius 
f(R). By example, a galaxy with a radius of 84,000 light-years 207.94157 10 mR ×=  
would need more than  

( )
41

- 4.95454 10 kgb f RM = ×                      (57) 

of mass, 2.49 × 1011 solar masses to display behavior associated with a measure-
ment quantization bound. Such a mass reflects 11 112.49 10 4.30 10 57.9%× =×  
of the estimated mass of the Milky Way. Equation (54) describes the upper 
bound to measurable mass unadjusted for total mass and a mass density profile. 
If mass density exceeds this bound, the upper mass count bound will exceed the 
mass frequency bound causing additional mass count to be indistinguishable. 

Lastly, consider what a higher or lesser velocity bound implies. We may dem-
onstrate by reorganizing the fundamental expression mflf = 2θsitf into a form that 
resolves the length count presented in the denominator of Equation (52), 1/mf = 
4.59468 × 107. Thus, a count 100 units greater implies a corresponding speed of 

( )7 112 2 4.59468 10 100 299793 m s110f
si si

f f

l
c

t m
θ θ −= = × + ⋅=≈ .   (58) 

a 652 m/s increase above the speed of light. The increase also corresponds to a 
velocity bound of 

( )
122 204.053

1 1
k

0
m s

0b si Mb si
f

v c n c
m

θ θ −≈ ⋅= =
+

,        (59) 

a decrease of 1 m⋅s−1. This does not mean that the speed of a star may not fall 
below 204.054 km⋅s−1. The expression describes an upper bound with which to 
discern mass counts and as such an upper bound to the gravitational pull on a 
star. When the mass count exceeds the mass count bound, the target is unable to 
distinguish additional mass and as such the gravitational effect of mass on a star 
reaches a maximum.  
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This investigation also does not imply that stars cannot have velocities greater 
than 204.054 km⋅s−1. While these expressions are invariant, we have not inte-
grated the effects of an uneven mass distribution typical of a galaxy. This will be 
the subject of the next section. 

3.3. Galactic Rotation and the Milky Way 

Using the velocity bound, an expression may now be developed as a function of 
mass distribution in a galaxy. The relation follows the same form as that which 
describes visible Mvis and unobserved Muobs (aka dark matter) mass, Equation 
(A.5.6) from Appendix A.5, 

( )2 1uobs vis siM M θ= − .                      (60) 

Replacing the dimensionless speed parameter θsi with the ratio of observed 
over bound vo/vb (i.e. in relativity then v/c) will provide the corresponding rela-
tion between the effective and mass bound. But, an understanding of the geome-
try of the substitution is difficult. For that reason, we will follow an algebraic ap-
proach that resolves the speed parameter β as a relative percent difference ∆%o-b 
of the bound.  

( )
-% 1o b o

o b
b b

v v v
v v
−

∆ = = − .                    (61) 

To reduce, also needed is the velocity bound vb from Equation (54), vb = 
θsic(2mf)1/2. The expression for mass is then the product of the mass bound Mb-f(R) 
and 2∆%o-b, hereafter referred to as the effective mass Me-f(R). The symbol f(R) in 
subscript indicates that the mass considered is the mass within the orbital radius 
R from a galactic center. Like the relation presented in Equation (54), the speed 
parameter ∆%o-b is doubled to describe mass in terms of the bound for escape 
velocity. 

( ) ( ) ( ) ( )-- - -2Δ% 1 2 2 1o
o be f R b f R b f R

b

v
M M M

v
 

= + = − + 
 

,       (62) 

( ) ( )- - 2 1o
e f R b f R

b

v
M M

v
 

= − 
 

.                 (63) 

when incorporating expansion we realize that the observer’s view of the universe 
is skewed; the effect suggests the presence of more mass than is actually present. 
In Figure 4 the observable Mo-f(R), bound Mb-f(R), and effective Me-f(R) mass are 
displayed.  

Where the effective mass is less than the bound, the orbital velocity of stars 
follow a classical behavior. Conversely, an effective mass greater than the bound 
presents a mass count greater than the mass frequency bound. Some count of mf 
will be indistinguishable leading to a constraining effect on gravity and corres-
ponding star velocities. The crossover from classical to non-classical behavior 
occurs at 9.32848 × 103 light-years. 

Notice that the observable and effective mass differ by a factor of 3.9 at  
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Figure 4. Galactic mass corresponding to actual (green), mass frequency bound (red) and 
relative mass frequency bound (purple). 
 

384 10R = ×  light-years; 74% of the mass is missing. The magnitude of this ef-
fect depends on the total mass of the galaxy or galaxies considered. A second 
notable factor regards mass distribution. As discussed, excess mass count is in-
distinguishable creating a mitigating gravitational effect. Which mass counts are 
lost? This is presently unknown, but also less significant in a well-organized sys-
tem such as a galaxy. Conversely, consideration of an uneven distribution (i.e. 
several galaxies) will present a center-of-mass offset respective of the indistin-
guishable mass count. 

Both effects are notably evident in the Bullet Cluster. For one, the cluster ex-
hibits a missing mass of approximately 90%. The cluster also exhibits a cen-
ter-of-mass offset as would be expected with a lost mass count, the latter being of 
considerable interest for future research. 

Using Newton’s expression for velocity, ( )( )1 2

-b fb Rv GM R=  and the expres-
sion for the mass bound ( )

3
- s fR fb f iM m R tθ=  from Equation (56), we may now 

resolve the effective star velocity  

( ) ( )
1 2 1 2

- - 2 1e f R b f R o
e

b

GM GM v
v

R R v
    

= = −           
,           (64) 

1 2
3

2 1
2

f o
e si

f si f

m vGv R
R t c m
θ

θ

  
  = −

    
,              (65) 

1 2

2 2
2

o
e si si

f

v
v c

m
θ θ

 
 = −
 
 

.                  (66) 

while it may seem more appropriate to use a mass or mass density dataset the 
choice is irrelevant. One may modify the expression to enter velocity, mass or 
mass density and still arrive at the same expression. For example, as resolved in 
Appendix A.4, we may substitute the observable velocity vo in Equation (66) for 
this equivalent function written in terms of the effective mass, 
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( )-
32

e f Rf f
o si

f

Mm l
v c

R m
θ

 
= +  

 
.                 (67) 

More importantly, Newton’s expression for velocity does not produce the ob-
servable velocity curve. Informativity succeeds because the expression for effec-
tive velocity is a function of the mass count bound, Equation (54), an invariant 
expression with no free variables. To highlight that fact, we retain the corres-
ponding velocity bound vb in Figure 5 to demonstrate the natural tendency for 
stars to approach the bound when the mass count reaching a star exceeds the ef-
fective bound. The remaining curves are as follows. The effective velocity ve is 
plotted in red. The observable velocity vo is plotted in green. And the classical 
velocity vc is plotted in blue; that’s Newton’s expression. 

There are two points of view in conflict. That is, the classical velocity implies 
that what we observe is moving too fast. The curve also suggests that there is a 
missing dark matter holding the stars in orbit. At the same time, the observable 
velocity suggests correspondence to variations in mass density. 

The Informativity approach resolves the discrepancy describing an effective 
velocity that follows the bound when the effective mass exceeds the mass bound. 
When effective mass does not exceed the bound, orbital velocities follow a clas-
sical behavior. 

Although the bound is invariant—204.054 km⋅s−1—variations in galactic mass 
density do affect the gravitational pull on a star. These effects may be evened out 
when taking an average of thousands of galaxies. Except near the galactic core 
where the crossover between classical and Informativistic behavior varies from 
one galaxy to the next, the velocity curve levels out reflecting an averaging of 
mass profiles. 

An unexpected effect of mass count bounds is apparent between 4 and 8 
thousand light-years where star velocities level out until otherwise affected by 
increasing mass density. The cause of this effect is a subject of interest. Perhaps 
physically insignificant, but star velocity may favor classical behavior at the 
crossover between the effective and mass bound. 

The mass bound delineates two behaviors. Recall from Equation (56), 

( )
3

- si f fb f RM R m tθ=  that the mass bound is a function of how much mass is 
within a given radius. Variations in mass density imply increases or decreases in 
the spherical space described by R for a fixed amount of mass. If we fix R in con-
sideration of a region of greater mass density, then the effective velocity will be 
higher, describing measured velocities that rise above the bound (i.e. 204.054 
km⋅s−1). The opposite effect applies for less dense regions such that velocities 
lesson. 

To further demonstrate this effect, consider Figure 6 where a model galaxy 
with the same mass as the Milky Way is presented, but mass distribution has 
been evened as though we were averaging the mass profile of thousands of ga-
laxies. To be clear, a mass equal to that for R < 1000 light-years of the Milky Way 
center is taken. Then the remaining mass (where the total considered is only the  
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Figure 5. Stellar velocities corresponding to observed (green), relative mass frequency 
bound (red), mass frequency bound (purple) and Newton’s expression (blue). 
 

 
Figure 6. Stellar velocities corresponding to actual (green), an even mass distribution 
(orange) and the mass frequency bound (red). 
 
mass in the first 84,000 light-years) is evenly divided across the remaining 83 
thousand light-years. The corresponding effective velocity (orange) is drawn. As 
expected, the curve levels out just above the bound velocity (purple) with a mag-
nitude that is in proportion to the excess mass above the bound. An average of 
thousands of galaxies will demonstrate a level velocity curve with a magnitude 
that corresponds to the mass in excess of the mass bound. 

As a final note, separation of the velocity term in Equation (63) from the data 
can be challenging. It is the mass density data that characterizes the galaxy under 
consideration. The argument may be extended to demonstrate that it is also ir-
relevant what dataset is chosen: mass, mass density or velocity. As each measure 
is mathematically related, an argument for data independence by favoring any 
dataset over another cannot be made. 

But, there are two remaining considerations that are data independent. Nota-
bly, an expression must describe a phenomenon with the correct magnitude. The 

https://doi.org/10.4236/jhepgc.2019.52028


J. Geiger 
 

 

DOI: 10.4236/jhepgc.2019.52028 492 Journal of High Energy Physics, Gravitation and Cosmology 
 

Informativity expression properly accommodates the effects of a mass count 
bound in an expanding universe. Where Newton’s expression does not provide 
the observed magnitude in describing orbital velocity, the Informativity expres-
sion does. 

Also providing support is the bound itself, the purple line denoting an inva-
riant velocity of 204.054 km⋅s−1. The bound expression contains no measurement 
data, no free variables and as such no “fitting”, ( )1 2

2b si fv c mθ= . Referring to 
Figure 5, star velocities favor the bound. But, that will not always be clearly evi-
dent. What is clear is that the bound is the baseline measure from which the 
magnitude of the Informativity expression is calculated. If the bound were not 
physically significant, the magnitude would be incorrect and the resulting curve 
would not match the observational data. 

Returning to our initial discussion our goal was to develop a mass expression 
defined with respect to a bound. To this we can compare the effective and unob-
served mass expressions, each taking the form M1 = M2(2β − 1). 

( ) ( )- - 2 1o
e f R b f R

b

v
M M

v
 

= − 
 

,                     (68) 

( )2 1uobs vis siM M θ= − .                       (69) 

The details of the speed parameter depend on the masses being compared. In 
the case of orbital velocity, the parameter is found on the right-side of this ex-
pression ([5], Equation (68)) 

2 22
2

2 2 2Lm f T f Lm M

T f Lc f LrLc

n l n t n nv
n t n l nc n

β
 

= = = =  
 

                (70) 

which predicts and demonstrates equivalence between the phenomena of motion 
and gravitation. Respecting the difference between orbital motion v = (GM/R)1/2 
and escape velocity v = (2GM/R)1/2, we remove the factor of 2. Then Equation 
(50) may be completed 

2

2
M

Lr

nGM vv c c v
R n c

= = = =                    (71) 

and recognized as the same speed parameter β commonly found in relativistic 
expressions. And finally, comparison of Equation (50) and Equation (68) suc-
cessfully confirm the correlation between motion and gravitation (i.e. mass) as 
expected.  

3.4. What Does the 26.7888% Distribution Describe 

In this section, we will discuss why the dark matter phenomenon has been so 
closely associated with the ΛCDM distribution also distinguished by the same 
name. We will not be using the ΛCDM approach to discuss mass distribution 
but instead use the Informativity expressions, such that each distribution is a 
function of one physical constant θsi. Theta has been accurately measured to 6 
significant digits [6]. 
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We begin with the unobserved mass 

31.6376 4.84884 26.7888%uobs obs visM M M= − = − = ,        (72) 

which describes the mass that will be observable Mobs Equation (39), but is not 
presently visible Mvis Equation (41). This is one interpretation. Using Equation 
(40) Mobs = 2θsiMvis, we can also resolve this distribution as 

2uobs si vis visM M Mθ= − .                       (73) 

Such that HU = 2θsi Equation (27), then ( )1uobs vis UM M H= − . The dark mat-
ter distribution Muobs is then the energy of expansion as a function of the visible 
mass HUMvis minus the energy associated with the visible mass Mvis. 

The two interpretations—mass and energy—while mathematically equivalent 
have led to significant confusion. Additionally, mass distributions are defined 
with respect to the universe. But, the rate of expansion is much less than 2θsi in a 
region the size of a galaxy. As such, application of a distribution such as dark 
matter to the description of a galaxy is questionable.  

With respect to existing observational support, Informativity does not imply 
that the mass we measure in a galaxy is all the mass present. There are studies 
that suggest there is additional non- or low-light-absorbing fine dust [9]. While 
there is a great deal to learn about galactic mass composition, Informativity con-
strains the magnitude of this mass to the observable distribution Mobs. It should 
be added that gravitational lensing studies are not an indicator of missing mass. 
Rather, these studies will need to incorporate effective mass which accounts for 
expansion and the mass frequency bound. With this approach the bending of 
light conforms to the effective mass as is demonstrated by the effective velocity 
curve.  

3.5. Interpretation of Mass 

At this point we have a better understanding of the unobserved distribution and 
its relation to expansion, but have not resolved a clear understanding of the 
bound.  

We present three expressions each describing the mass bound against which 
effective mass is measured. Equation (54) set equal to Newton’s velocity expres-
sion describes the mass bound in terms of the fundamental measures (Appendix 
A.3). 

2b si fv c mθ= ,                         (74) 

( )
1

-
2

b f R
b

GM
v

R
 

=   
 

,                       (75) 

( )
2 2 2 2

3- 2 f f f
b si f siR

f
b f

f
f

l m RmR RM v c m c m
G G t c t

θ θ
 

= = =   
 

,         (76) 

( )-

3
f

sf
f

b R i

m
M R

t
θ= .                       (77) 
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For the next two expressions, consider one point on the mass bound curve 
such that the radius is that of the universe (Appendix A.5, Equation (A.5.20)), 

2
Ub f f siM M m θ= .                        (78) 

In a similar fashion, consider the mass bound in terms of mass distributions 
(Appendix A.5, Equation (A.5.10)), 

( )2 tot f obs tot fM M M M M= + ,                  (79) 

2 2

2
tot obs tot obs

Ub si f si f
tot obs tot dkm

M M M M
M m m

M M M M
θ θ= =

− +
.          (80) 

while each approach offers opportunity to present the mass bound as a function 
of mass, energy or physical constants, Equation (77) presents the clearest de-
scription, a line. The relation demonstrates that geometry is at work.  

With the bound more clearly understood, return to Equation (63) and resolve 
the effective mass, 

( ) ( )- - 2 1o

b
e f R b f R

v
M M

v
 

= − 
 

,                  (81) 

( )

3

- 2 1
2

f o
si

f
e f R

si f

m v
M R

t c m
θ

θ

 
 = −
 
 

,              (82) 

( )

3 3

- 2
2

f f
o si

ff
e R

f
f

m m
M v R R

tl m
θ= − .               (83) 

Built on Equation (77), velocity vo is the only new variable, a data dependent 
value that characterizes the target. The result is quantum in detail and valid for 
the entire measurement domain. When effective mass rises above or falls below 
the mass bound so does the velocity. When the effective and bound masses are 
equal, then the velocities are as well.  

We may summarize effective mass as having one of two states. The first serves 
as the reference, defined where the effective and bound mass are equal, a purely 
geometric description ( )

3
- si f fb f RM Rm tθ= . The second state we call the offset 

Equation (83). Collectively the two states describe observed velocity as a func-
tion of the effective mass that characterizes the target. 

Several studies of galaxies and galaxy clusters have suggested the presence of a 
gravitational force that does not coincide with the visible matter. Notably, the 
effective mass of a given matter field describes force that is unexpected from our 
point of view. While we will not review the specific calculations of existing in-
vestigations, it is expected with respect to this model that the effects of a mass 
frequency bound when integrated with that of expansion must produce an offset 
and that offset will be even more pronounced when describing disorganized tar-
gets. 

Importantly, expansion does not explain the dark matter mass discrepancy 
because mass alone does not determine orbital velocity as Newton had surmised. 
Several effects are at work. Thus, Newton’s expression is correct so long as ex-
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pansion, mass frequency, measurement distortion (i.e. also described by relativ-
ity) and the Informativity differential are not significant factors.  

Modern physical descriptions use mass to describe gravity, but the effective 
mass is significantly greater in magnitude than the observed mass described by 
Newton. The bound describes a geometric reference with an offset swinging 
from one side to the other like a weight on a rubber band. While the Informativ-
ity and Newton expressions coincide for systems having less mass density, veloc-
ity is not solely a function of mass. Thus, the question, where is the missing 
mass, is not valid. 

Bounded gravity may also be applied to the early universe when mass density 
was significant. When expressions that incorporate bounded gravity are used 
some doors may open with early universe modeling. While not the focus of this 
paper, a detailed account of quantum inflation, the trigger event that ends this 
epoch and the ensuing expansion are described in the first paper ([1], Section 
3.15) with additional explanation of the effects of measurement distortion de-
scribed in the second paper ([5], Section 3.6). Notably, the solution as presented 
in Equations (45)-(48) is a function of one physical constant. 

A final question is why should the measured mass of a galaxy be attributed to 
the observable and not the visible distribution? The answer is primarily subjec-
tive as mass distributions may not be used to describe a galaxy. That said, one 
may note with elapsed time that a specific amount of observable mass becomes 
visible. Because the mass of a galaxy does not increase, the label “observable” is 
more appropriate. 

In practice, the issue with scaling distributions is that the scaling process 
changes the properties that the distributions are defined against. To succeed any 
application must retain each property of the initial definition. For instance, the 
scaling would require that the outer edge of the galaxy expand at the speed of 
light. Loss of this property is immediately obvious. For one, dark mass cannot 
even exist. As well, the visible and observable distributions are always the same.  

3.6. Kinetic Energy 

As a follow up to mass frequency, we may provide one final confirmation of our 
understanding of nM/nLr = 2mf by reducing the Informativity interpretation to 
demonstrate the equation for kinetic energy. Notably, the classical expression 
does not include the radial expansion parameter θsi which is defined with respect 
to a bound and thus carries no units. So, we start with the static radial form. 
Such that mf = 2θsi/c from the fundamental expression and the expression for 
half a fundamental unit of mass Ef = 2θsic ([2], Equation (49)), then the static 
velocity bound is 

4
2 4 2si

f si fv c m c c E
c
θ

θ= = = = .            (84) 

22 2 22
1f

f M M

cv c m c c
m n n

= = = = ,            (85) 
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22 41 2 2si si

f M M f

cc Ev
c m n n m m
θ θ 

= = =  
 

,            (86) 

and may then be reduced to resolve the kinetic energy associated with any mass, 
2

2
mvE = .                         (87) 

One may compare the first and last velocity expressions and wonder why the 
latter has a mass value in the denominator. The mass value is what generalizes 
the expression for any mass, velocity and energy. The initial expression is an in-
variant description of the smallest unit of energy Ef corresponding to a mass 
count bound of nM = 1/mf. That ratio is precisely 1 leaving us with 2Ef under the 
square root operator.  

4. Discussion 

Perhaps the most significant outcome of this research is not a model of galactic 
orbital dynamics, but the inclusion of expansion, the mass frequency bound and 
mass density into a single description of orbital velocity, since the time of New-
ton mass has been considered the primary factor describing the effects of gravi-
tation. There have been modifications to that understanding (i.e. relativity), but 
such modifications have been a fine-tuning of the broader expressions set forth 
by Newton, mass and radial distance being the variables that determine orbital 
motion. But, with the expressions set forth here, mass is one of several factors. 
The mass frequency bound now designates the demarcation point; it is quantum 
and valid for the entire measurement domain. 

Finally, where there have been several proposals describing solutions to galac-
tic orbital dynamics [10], the traditional approach is one of resolving data de-
pendent expressions. Informativity takes a uniquely different view of the un-
iverse, that physical expression is an outcome of bounds to measure. The mass 
frequency bound is an outcome of this axiom, a geometric expression that iden-
tifies a reference and an offset against which the effective mass is resolved. Ma-
thematics of counts of the fundamental measures is all that is needed to unravel 
the motions of the stars. 
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Appendix 
A.1. Numerical Limits to QLnLr 

The term QLnLr is referred to as the Informativity differential in recognition of 
the central role it plays in describing how fractional values less than the refer-
ence measure reflect a distorting effect in distance measurement. Knowing the 
limits to QLnLr is essential in resolving the fundamental measures. 

QLnLr is Equation (2) multiplied by nLb. 

( )21L Lr Lb Lb LbQ n n n n= + − .                (A.1.1) 

Note, what is measured always equals a whole-unit count of a fundamental 
measure, and with a = 1 we find that nLb = nLr for all values. This is easily verified 
in that the highest value for QL is obtained for nLb = 1 where  

( )0.521 1 1 0.414+ − =  and the “observed” distance of c presented as a count nLr is 
always rounded down to the highest integer value equal to the count nLb with QL 
= 0.414 at its highest and quickly approaching 0 with increasing nLb. Therefore, 

( )21L Lr Lr Lr LrQ n n n n= + − .                (A.1.2) 

The lower limit where nLr = 1 is easily produced, ( )1lim 2 1r L Lrf Q n= = − . 
Conversely, if we divide by nLr, then add nLr, square, subtract 2

Lrn , and divide by 
2, we find that 

2 1
2 2

L
L Lr

Q Q n+ = .                    (A.1.3) 

QL decreases with increasing nLr until the left term drops out. Distance does 
not need to be significant to reduce the Informativity differential. At just 104lf, 
QLnLr rounds to 0.5 to nine significant digits. 

A.2. Upper Bound Relationship between Length and Mass 

To resolve the upper bound relation between length and mass, we begin with the 
expression for escape velocity, set velocity equal to the speed of light denoting 
the upper bound and then substitute fundamental units for each of the terms. 
Notably, the expression for G follows from Equation (6) as 

3 3 3 3

2
Lf Lf Lf f f f f f f f

si si si f f f f f

Q rc Q r l c c l c t l l l t
G

m t t t mθ θ θ
= = = = = .     (A.2.1) 

Likewise, a generalized mass count nM of mf follows from the fundamental ex-
pression lfmf = 2θsitf. Where the ( ) 1lim 2r L Lrf Q n→∞ =  as resolved in Appen-
dix A.1, then 

2 si si
f

Lf Lf

m
c Q r c
θ θ

= = .                      (A.2.2) 

and where c = lf/tf, the expression for escape velocity may be reduced to show that 
1 22GMv

r
 =  
 

,                        (A.2.3) 
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1 2 1 23 222 M siL M

si L Lr Lr

nQ rc n cc
r Q n c n

θ
θ

   
> >   
   

,              (A.2.4) 

2Lr Mn n> .                         (A.2.5) 

Using escape velocity the upper bound of a count of nM with respect to nLr is 
resolved. Conversely, for orbital velocity, the expression is v = (GM/r)1/2. The re-
lation differs by a factor of two, 

Lr Mn n> .                         (A.2.6) 

A.3. Observable Mass Bound 

The observable mass may be resolved by setting the bound velocity equal to the 
classical velocity and reducing. Where G = c3tf/mf, then 

( )-2si f
b f RGM

c m
R

θ = ,                  (A.3.1) 

( )
2 2 2 2

- 3

12 2b
f

siR f s ff i
f

m
M Rc m Rc m

G c t
θ θ= = ,          (A.3.2) 

( )

2
2

-
2 2

32 2f f
si f si

ff
b f R

m m
M Rc m R

lc t
θ θ= = ,            (A.3.3) 

( )

2 2
2

- 2 2
2

f f f f
si si

f f f
b f R

m m l m
M R R

l t l
θ θ= = ,            (A.3.4) 

( )-

3
f

sf
f

b R i

m
M R

t
θ= .                   (A.3.5) 

Recall, the left portion of the vb expression in Equation (A.3.1) has a value of 
mf which is a dimensionless substitute for nMb. There are no units. This is fine 
until Equation (A.3.4) where R in meters cancels with lf in meters leaving one of 
the two 2

fm  with a single kilograms describing Mb-f(R). But in Equation (A.3.1) 
we introduce the dimensionless expression θsi = mflf/2tf. Several cancellations 
leave both R, tf and an additional mf each dimensionless. The result is kilograms, 

( )

2 3
2

- 2 f f
si si

f f
b f R

m mkgM R m R kg
l m t

θ θ= = .           (A.3.6) 

A.4. Resolving Effective Velocity as a Function of Mass 

The effective and observed velocities can be the same in value, yet each term is 
identified separately. This calls into question the use of one to identify the other 
if they are not physically different.  

The two terms operate as a limit where the estimated value for vo constrains 
the resulting value for ve. The correct physical description is where the modeled 
value for vo produces a value for ve that is closer than any other combination. 

1 2

2 2
2

o
e si si

f

v
v c

m
θ θ

 
 = −
 
 

.                 (A.4.1) 
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There may exist theoretical argument that use of an observed velocity to re-
solve the effective velocity is still in principle problematic. For that reason, an 
alternative is offered whereby the observable velocity is replaced by a function 
with effective mass as the only free variable, 

( ) ( )- - 2 1o

b
e f R b f R

v
M M

v
 

= − 
 

,                  (A.4.2) 

( )

( )

-

-

1 1
2

e f R

b

o

fb R

Mv
v M

 
 = +
 
 

,                    (A.4.3) 

( )

( )

-

-

2 1e f R

b f
o

R
b

M
v v

M

 
 = +
 
 

,                   (A.4.4) 

( )

3

-2 2 / 1f
o e f Rsi f si

f

m
v c m M R

t
θ θ

  
 = +     

,           (A.4.5) 

( )-
32

f f
o si

f

e f RMm l
v c

R m
θ

 
= +  

 
.              (A.4.6) 

while it is not possible to produce a data independent expression that characte-
rizes any target galaxy, the initial expression can now be resolved as a function of 
the effective mass and that can be resolved as a function of observed mass. In 
short, the effective velocity may be resolved as a function of the observed mass. 

A.5. Mass Distribution Conversions 

Following are a list of commonly used mass distribution conversion expressions. 
Several are resolved from the first paper ([2], Equation (113), Equation (110), 
Equation (109), and Equation (108)). Notably, many of the expressions in the 
first paper are percentage expressions of a total mass. To resolve distribution 
values in kilograms, multiply the distribution percentage by Mtot in kilograms. 

2obs si visM Mθ= ,                     (A.5.1) 

2

4
2obs tot

si

M M
θ

=
+

,                   (A.5.2) 

2

2

2
2

si
dkm tot

si

M M
θ
θ

−
=

+
,                   (A.5.3) 

tot obs dkmM M M= + ,                   (A.5.4) 

uobs obs visM M M= − .                   (A.5.5) 

These are resolved from the prior, 

( )2 1uobs vis siM M θ= − ,                 (A.5.6) 

( )22 2tot vis si siM M θ θ= + ,                (A.5.7) 

( )2 2

4
si

dkm obsM M
θ −

= ,                 (A.5.8) 
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( )2 2

2
si si

dkm visM M
θ θ −

= .                    (A.5.9) 

And from the first paper ([2], Equation (118)) we may also resolve 

( )2 tot f obs tot fM M M M M= + ,                (A.5.10) 

( )tot f si vis tot fM M M M Mθ= + ,               (A.5.11) 

tot si vis
f

tot si vis

M M
M

M M
θ
θ

=
−

.                   (A.5.12) 

We may also derive the relationship between the total and fundamental mass 
using the expression for total mass ([2], Equation (134)) and the expression for 
fundamental mass ([2], Equation (128)),  

3

2
si

tot Tu fM n m
θ

= ,                     (A.5.13) 

f Tu f siM n m θ= ,                      (A.5.14) 

2

2
si

tot fM M
θ

= ,                      (A.5.15) 

2

2f

tot si

M
M θ

= .                        (A.5.16) 

Such that the fundamental mass from Equation (24) is reduced with 
2 2U U si UD R Aθ= =  from Equation (25) and set equal to the bound mass in Eq-

uation (77), then the mass bound for the universe MUb is 

f f
f U si U

f f

m m
M A R

t t
θ= = ,                (A.5.17) 

( )-

3
f

si
f

b f R

m
M R

t
θ= ,                   (A.5.18) 

2
fUb

f
ff si

mM
R M

tm θ
= = ,                  (A.5.19) 

2
Ub f f siM M m θ= .                   (A.5.20) 

Lastly, given the observable vobs and visible vvis velocity and Equation (A.5.1), 
then  

( )

( )

-

-

obs f Robs

vis vis f R

GM Rv
v GM R

= ,                 (A.5.21) 

( )

( )

( )

( )

- -

- -

2
2siobs f R vis f Robs

si
vis vis f R vis f R

M Mv
v M M

θ
θ= = = .        (A.5.22) 

In terms of mass visible corresponds to the 4.84884% distribution as de-
scribed in Equation (40). The observable corresponds to the 31.6376% distri-
bution as described in Equation (39) and incorporates universal expansion, Mobs 
= HUMvis. 
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A.6. Clarifying Interpretation of Mass Distributions 

Distribution expressions may take a percentage or mass value. An expression 
demonstrating percentages may be converted to kilograms by multiplying the 
result by Mtot in kilograms. Depending on the substitutions elected, a resulting 
expression can lead to an incorrect interpretation. To demonstrate the issue, 
consider Equation (42), 

2 obs
si

vis

M
M

θ = ,                         (A.6.1) 

2 3

2 1 obs

vissi si

M
Mθ θ

= .                        (A.6.2) 

Then set the two expressions equal to one another, 

3 3

21 1 4
2

f obs si vis vis

tot vis obs si si obssi si

M M M M
M M M M

θ
θ θθ θ

= = = ,           (A.6.3) 

4si obs f vis TotM M M Mθ = .                   (A.6.4) 

And finally where 
3

2
si

tot Tu fM n m
θ

= .                      (A.6.5) 

is a known function of time ([2], Equation (134)), we may reduce Equation 
(A.6.4) such that time is the only free variable.  

( )2 tot f obs tot fM M M M M= + ,                 (A.6.6) 

2 22 2 2Tot Tot
tot obs tot

si si

M M
M M M

θ θ
 

= + 
 

,              (A.6.7) 

2 22 4 0si tot obs Tot obs TotM M M M Mθ + − = ,              (A.6.8) 
3 3 6

2 2 22 4 0
2 2 4
si si si

si Tu f obs Tu f obs Tu fn m M n m M n m
θ θ θ

θ + − = ,        (A.6.9) 

5
3 2 2 6 0

2
si

Tu f obs Tu f si obs Tu f sin m M n m M n m
θ

θ θ+ − = ,        (A.6.10) 

2
3 0

2
si

obs obs Tu f siM M n m
θ

θ+ − = ,               (A.6.11) 

2
31

2
si

obs Tu f siM n m
θ

θ
 

+ = 
 

,                (A.6.12) 

3

22
2

si
obs Tu f

si

M n m
θ

θ
=

+
.                 (A.6.13) 

with elapsed time nTu one might assume that the observable mass distribution 
Mobs is increasing. This is not a complete picture. The observable and total mass 
(A.6.5) are both increasing while the distributions remain invariant, 

3

2

4
2 2
si

obs Tu f
si

M n m
θ

θ
 

=  
+ 

,               (A.6.14) 

https://doi.org/10.4236/jhepgc.2019.52028


J. Geiger 
 

 

DOI: 10.4236/jhepgc.2019.52028 503 Journal of High Energy Physics, Gravitation and Cosmology 
 

2

4
2obs tot

si

M M
θ

=
+

.                 (A.6.15) 

The result was demonstrated in the first paper ([2], Equation (110)). 

Glossary of Terms 

Framework 
A frame of reference against a system of measure is applied. Frameworks are 

commonly discussed in Informativity and are typically either that of the observ-
er’s inertial frame, the observed target or that of the universe. 

Fundamental Expression 
The simplest expression correlating the three fundamental measures, lfmf = 

2θsitf. 
Fundamental Mass 
The fundamental mass of the universe distinguishes a specific amount of mass 

whereby from a point in space-time additional mass would cause overlapping 
mass events that could not be distinguished due to physically significant bounds 
to the measure of fundamental units of mass. Understanding and resolving fun-
damental mass in turn allows one to solve for all the mass distributions presently 
understood only with ΛCDM. 

Fundamental Measure 
One of the measures length lf, mass mf, and time tf along with their correlation 

called the fundamental expression. Using measurement data from the Shwartz 
and Harris experiments in combination with Heisenberg’s Uncertainty Prin-
ciple, each are macroscopically defined and physically significant. 

Informativity Differential 
The Informativity differential QLnLr describes a new form of length contrac-

tion associated with the lower bound to measure. The loss of immeasurable 
space at each increment of tf describes gravity. 

Observable Mass 
The observable mass includes the mass which is visible in the present and the 

mass which will be visible at some point in the future. The observable mass 
represents all the mass that can be known in the universe. This is as opposed to 
mass that exists sufficiently distant that it is beyond the horizon and as such, due 
to the expansion of the universe, the light from that mass will never reach the 
observer. 

Quantum 
The term quantum is intended to mean a small measure such as a few tens, 

hundreds or thousands of fundamental units of measure.  
Quantized 
The term quantized is intended to mean that expressions are composed of 

terms that are whole-unit counts of the fundamental units and that those units 
are physically significant. 

Visible Mass 
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The visible mass is that mass which is presently visible. In relation to the un-
iverse this would be the mass of those stars, dust or other forms of mass that are 
visible in the present as opposed to the mass corresponding to light that will be 
visible in the future. 

Symbol Definitions 

HU is the expansion of the universe defined with respect to the universe (di-
ameter). This differs slightly from stellar expansion (i.e. Hubble’s description). 

lf, mf and tf are effectively Planck’s Units for length, mass, and time, but not 
precisely the same. 

θsi, is 3.26239 radians or kg⋅m⋅s−1 (momentum) or no units at all a function of 
the chosen frame of reference. This is a new constant to modern theory and ex-
ists in nearly every equation of the model. It may be measured macroscopically 
given specific Bell states necessary for quantum entanglement of X-rays such as 
those carried out by Shwartz and Harris. 

β is the speed parameter typically found in relativistic expressions. The para-
meter varies depending on the measures being compared.  

As-ref is the dilated age of the universe as measured from our point of view in-
side an expanding universe.  

As-def is the non-dilated age of the universe as would be measured if the un-
iverse were not expanding. 

Mvis is the mass that is presently seen from a point in space. 
Mobs is the mass that is presently or will eventually be seen from a point in 

space. 
Mdkm is the mass that is beyond the observable mass, mass which will never be 

seen from a given point in space. 
Muobs is the mass that will eventually be seen from a point in space, but has not 

presently in view. 
Mtot is all the mass in the universe. 
Mf is the fundamental mass. Mass in excess of the fundamental mass exceeds 

the number of mass events per unit of time that can be distinguished at a point 
in space. 

Macr is the rate of mass accretion with respect to the universe. 
Mo-f(R) is the observable mass within a given radial orbit of a target galaxy 
Me-f(R) is the Informativity effective radial mass within of a target galaxy. The 

value incorporates Newton’s expression and the effects of universal expansion. 
Mb-f(R) is the Informativity mass frequency bound radial mass which corres-

ponds to upper mass bound of mass events that equals but does not exceed the 
upper mass-to-length frequency bound. 

M


 is one solar mass. 
AU is the age of the universe. 
RU is the radius of the universe. 
DU is the diameter of the universe. 
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HU is the rate of universal expansion with units light-years per year. 
nMu is a count of mf equal to the total of mass/energy in the universe. 
nTu is a count of tf equal to the age of the universe. 
nLu is a count of lf equal to the diameter of the universe. 
nLo is a count of lf that is being observed. 
nLr is a count of lf from the observer to a center of gravity. 
nLl is a count of lf as measured in the local frame of reference. 
nTl is the count of tf as measured in the local frame of reference. 
nTo is the count of tf that is being observed. 
nLm is the change in position of the target as a count of lf as measured in the 

local frame of reference. 
nLc is the change in position of light as a count of lf as measured in the local 

frame of reference. 
nM is a count of mf representing the mass corresponding to a gravitational 

field. 
nL is a count of lf representing the length between an observer and the target. 
nT is a count of tf representing the time elapsed between two events. 
nLf is a known count of lf typically used when describing distance with respect 

to an observer. 
QL is the fractional portion of a count of lf when engaging in a more precise 

calculation. 
nLb is a known distance, a count of the reference lf. 
vn is the radial velocity of a star plotted with respect to Newton’s expression 

for gravity. 
vo is the observed radial velocity of a star when accounting for all 

well-established effects. 
ve is the Informativity effective velocity of a star in orbit around a galactic 

core. The expression may resolve using Newton’s expression and the effective 
radial mass for a given radius. 

vb is the Informativity mass frequency bound velocity which corresponds to 
upper mass bound of mass events that equals but does not exceed the upper 
mass-to-length frequency bound. 

G is Newton’s gravitational constant. 
S is the symbol assigned to the unknown constant when resolving a descrip-

tion of gravity. The symbol is replaced with θsi. 
c is the speed of light which may also be written as c = lf/tf. 
v is velocity measured between an observer and a target. 
r is some unknown distance between an observer and a target. 
h is Planck’s constant adjusted to reflect the quantum effects of the Informa-

tivity differential. 
ħ is Planck’s reduced constant adjusted for the Informativity differential as a 

function of distance to target. 
σx is a description of the uncertainty in the position of a particle. 
σP is a description of the uncertainty in the momentum of a particle. 
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k is the Boltzmann constant. 
ρ is the energy density of mass/energy accumulated at a given age of the un-

iverse. 
a is the total energy radiated as described with respect to blackbody radiation 

(i.e. the Stefan-Boltzmann law). 
T is the temperature of the Cosmic Microwave Background. 
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