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Abstract

First off, the term A¢ is for the smallest unit of time step. Now, due to rea-
sons we will discuss we state that, contrary to the wishes of a reviewer, the
author asserts that a full Galois theory analysis of a quintic is mandatory for
reasons which reflect about how the physics answers are all radically different
for abbreviated lower math tech answers to this problem. Ze. if one turns the
quantic to a quadratic, one gets answers materially different from when one
applies the Gauss-Lucas theorem. So, despite the distaste of some in the
physics community, this article pitches Galois theory for a restricted quintic.
We begin our analysis of if a quintic equation for a shift in time, as for a Kerr
Newman black hole affects possible temperature values, which may lead to
opening or closing of a worm hole throat. Following Juan Maldacena, et al,
we evaluate the total energy of a worm hole, with the proviso that the energy
of the worm hole, in four dimensions for a closed throat has energy of the
worm hole, as proportional to negative value of (temperature times a fermio-
nic number, q) which is if we view a worm hole as a connection between two
black holes, a way to show if there is a connection between quantization of
gravity, and if the worm hole throat is closed. Or open. For the quantic po-
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lynomial, we relate Af to a (At)5 + 4, -(At)2 +4, =0 Quintic polynomial
which has several combinations which Galois theoretical sense is generally
solvable. We find that 4, has a number, n of presumed produced gravitons,
in the time interval A¢ and that both 4, and 4, have an Ergosphere area,
due to the induced Kerr-Newman black hole. If Gravitons and Gravitinos
have the relationship the author purports in an article the author wrote years
ago, as cited in this publication, then we have a way to discuss if quantization
of gravity as affecting temperature T, in the worm hole tells us if a worm hole
is open or closed. And a choice of the solvable constraints affects temperature,
T, which in turn affects the sign of a worm hole throat is far harder to solve. We
explain the genesis of black hole physics negative temperature which is neces-
sary for a positive black hole entropy, and then state our results have something
very equivalent in terms of worm ding (At)5 + 4, -(At)2 +A4, =0 we will be
having X = At assumed to be negligible, We then look at a quadratic ver-
sion in the solution of X = At so we are looking at four regimes for solving
a quintic, with the infinitesimal value of Az effectively reduced our quintic
to a quadratic equation. Note that in the small A¢ limit ford =1, 3, 5, 7, we

cleanly avoid any imaginary time no matter what the sign of 7, is. In the

case where we have X = At assumed to be negligible, the connection in our
text about coupling constants, if d = 3, may in itself for infinitesimal At
lend toward supporting d = 3. This is different from the more general case for
general Galois solvability of (At)5 + 4 ~(At)2 +4,=0. d#1 means we need
to consider Galois theory. If d =2, 4, 6, need T, <0 for coefficient 4, to
be greater than zero. If d #1 and is instead d = 3, 5, 7, there is an absence of gen-
eral solutions in the Galois solution sense. This because if. d #1 4, <0 when-

ever d = 3, 5, 7. And when d = 1 in order to have any solvability one would need

X = At assumed to be infinitesimal in (A¢)’ + 4, (A1)’ + 4, =0.

Keywords

Kerr Newman Black Hole, High-Frequency Gravitational Waves (HGW), Solvable
Quintic Equations, Wormholes

1. Set up of the Problem: Precursor to Answering
Innumerable Issues

We assert that due to the fact that abbreviated lower math tech approximations
to the derived quintic yield incommensurate very different physics answers to
the delta #, At, problem, hence due to those very different answers, it is neces-
sary to stop convenient approximations and to solve the problem via Galois
theory. The godfather review of all solvable quintic problems is given here [1]
and although a reviewer refused to learn the points raised, a solution to this spe-
cialized quintic is given in [2]. Whereas it will be the job of explaining in sim-

ple language why this is necessary. What we found is that if one changed the
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quintic to a quadratic, that the answers for the A¢ problem look radically
different from what we get when we take the derivative of the quintic, chang-
ing it, to understanding that golly gee, the following are not commensurate
with each other. Note that the 2™ entry into Equation (1) below comes from
applying the Gauss-Lucas theorem [3] [4]. In the end the three different would
be general solutions to At in these three equations look very different from
each other. This is using manipulations of the original quintic as given by the
author in [5]

24
+=1=0

(ar)
different At answer from

A (M) +4,=0 (1)
versus needing Galois solution to

(Af) +4,-(Ar) +4,=0

A reviewer did the assertion that a specialized solution to the third equation
existed, whereas he was contravening several hundred years of Quintic poly-
nomial research [6] [7] [8]. We will in the end answer that. And now to the
physics of how the third equation the Quintic arose in the first place [5].

This document will address the problem of a worm hole, as to the question of
if its throat is opened or closed [9], in doing so, the author references an earlier
publication [5] which isolated a quintic polynomial in terms of delta ¢ ie. Af,
and claims that a general solution in terms of what is called a restricted Quintic,
with a fifth order term of helps determine the likelihood that a determination
can be made as to if gravity is semi classical, or could be quantized. The quintic
in question [5] is for a black hole [5] but if we make the assertion that a worm
hole may connect two black holes, with information transmitted between them
by quantum teleportation [10] [11] we then assert that in a general sense the
classical versus quantum nature of gravity of the worm hole may be ascertained.
A subsidiary issue is, does the existence of a solution to Az allow for a mini-
mum uncertainty principle solution for gravitons via [12] [13] AEAt=#, and if
AEAt =1 is solved, do we have a criteria to state if gravity and gravitation is
classical, semi classical or quantum? Note that the solution to the quintic, in [2]
may have as noted by a reviewer, to have particular solutions which are trivial.
We state for the record that such trivial solutions in no way contradict the com-
plexity of the general solution and that the readers of this document should
consult the Galois theory, and Abel’s insolvability theorem [7] [8] for general
quintic solutions as a good reason as to disregard trivial solutions to the quintic
as communicated to the author by a referee as given in [14]. Ze. one has to con-
sider generalized solutions to the quintic according to problems, but if we go to
higher dimensions, Ze. d #1 gets very complicated fast hence this long article.
And also, we will be dealing with the reviewers [14] distaste for negative temper-
ature, which is what started this inquiry in the first place due to comments raised

by the reviewer in [14] is related to Kaluza Klein cosmology as given in reference
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[15] where we have an explanation as with respect to reference [16] and negative
temperatures. As is noted in reference [16], negative temperatures when con-
nected with the solution to the quintic as in [2] and [5] do, in certain cases
which will be outlined connect solidly with negative temperatures. Contributing
to positive entropy in black holes, this is relatable to the physics in [17] [18]
which will be in our article. [2] due to the range of values of 4, and 4, in [5].
This in turns of the additional dimensionality, d, for space times above four di-
mensions specifies T}, . [5]. When d = 1 we have Kaluza Klein type physics,
and so it goes. The Kaluza Klein [15] situation with d =1 is by far and away the

easiest situation to work with, and with the least.

2. A Reviewer’s Complaints, and Four Cases to Consider

The paper confused a reviewer who did not understand the references as to neg-
ative temperature. Hence, the first main part of the document is with regards to.
negative temperature [15]. Then the idea of a general solution to a polynomial
equation, the quintic [2] [5].

Before we do this temperature discussion, Ze. the necessary condition for
picking the sign of T,

that (from the abstract) that, the following is what we adhere to.

is gone into, using results from [2], we can state then

There are here, though four cases to consider, and three of these arise if At
is infinitesimally small, in which we have the following rules for the sign of 7,,,,

We are here, revising what is brought up in the discussion of Equation (1)
which is that we have three different would be equations to contend with which
are linked to [5] and its results.

Case 1:

The first one, is for when we have an effective quadratic equation for A¢ due
to At being infinitesimally small. And we are avoiding at all costs having im-
aginary Af.

Note that for extra dimensions d = 1, 3, 5, 7, the coefficient 4, is always less
than zero, leading to no requirement for 7, to be < 0. If d = 2, 4, 6, need

temp
T, <0 for coefficient A to be less than zero. This will be shown to conflict

tem
witllll conditions for general Galois solvability of (At)5 + 4, -(At)2 + 4, =0. Note,
that special solutions for (At)5 + 4, -(Al‘)2 +4, =0 are easy to obtain, as a re-
viewer noted, but that we are referring to completely general solutions, not spe-
cific special case solutions.

Now for the sign of T, ,in terms of if we have 4, <0, and we claim this is
also convenient as to obtain an easily determined value of, for d=1, 2, 3, 4, 5, 6,
7, and a very small value of At

-1

2
(At)z _ 167'C(h) . ngraviton count (2)

an (s | (4T, ) an (Y
3 h d 3 h
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Note then that if d = 1, as in Kaluza Klein theory, we have then that there are
no questions of imaginary time, and also no T,

of the reviewer’s questions, we are avoiding having imaginary time, hence, this

restrictions. In answer to one

puts restrictions as to the choice of T,

temp *

Ironically, in the case of very small

At,if d=1, 3,5, 7, we have Ar always real valued and setting 7,,, >0 is not

temp

necessary. Ie. negative temperature 7,

'emp <0 may occur. In doing so, if we do

this, it means that there can could be positive entropy, for black holes, as is dis-
>0 and

then the case of if we have sufficiently small A¢ an unavoidable situation for

cussed in [16]. Whereas for d = 2, 4, 6, and above we must have T,
possible negative black hole entropy, no matter what which is discussed in [16].
Le. if we have small Ar and case 1 used, for d = 3 we may have a connection
with quantized gravity for reasons we will discuss later on in this manuscript.

Case 2, infinitesimal A¢ and d'= 1 the Kaluza Klein case.

We then always have A¢ real valued, and no restrictionson 7, .

Case 3, infinitesimal A¢, and the possibility that A could be imaginary. If d
=2,4,6,and Ttemp <0.

The reviewer does not like imaginary time. Therefore, for the time being this
is a mathematical demonstration only and will be only included in for com-

pleteness of this document. However, if we have d =2, 4, 6, and 7, <0 the

tem,
following limiting behavior is noted, in Equation (3). '

This in all of what the reviewer has asked for is putting a very strong prefe-
rence in for d= 1 as the Kaluza Klein case avoids multiple pathologies, but again
only in the case that A¢ to the fifth power is neglected.

Can this dropping off of Ar to the fifth power be justified. A full comment
on that issue will be in the final part of this manuscript.

For the record, this below is the case, and situation which the reviewer dis-
liked the most.

-1

161’[(h)2 ) ngraviton count
3 h d 3 h
167]: . (h)z ngraviton count
2\3 ’ d-1 3
3 h d 3 h

Le. imaginary time, for d =2,4,6,---

() -

e

d=2,4,6and Tp,,,, <0~

Note this cannot happen, i.e. imaginary time, for d=1, 3, 5, 7.
If we can accept imaginary time, then in the case of d = 2, 4, 6, we could have
Tnp <0. However, the reviewer of this manuscript has indicated that he does

not favor the existence or acceptance of imaginary time. Needless to say though,

for infinitesimal At if we wish to avoid imaginary times, it is best to consider
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dimensions d = 1, 3, 5, and above to have a situation for which Az infinitesimal
but real valued, no matter what the sign of 7, is. And d = 3 ties in directly
with the situation given in [17] [18] [19]; we have that there is a situation which
favors d= 3 for reasons which are given on page 639 of [19] and which indicate a
connection to coupling coefficients, of effective Yang Mills theory which will be
commented upon in a reply to the referee in the later part of this document.

Note that in the small Az limit for d= 1, 3, 5, 7 we cleanly avoid any imagi-
nary time no matter what the sign of 7, is. But that for small Az limit for d
= 2, 4, 6, we can have imaginary time. And this, plus the connection to the dis-
cussion on page 639 about coupling constant, if d = 3, reference [19], page 639
may in itself for infinitesimal At lend toward supporting d = 3. This arises also
because of the AdS/CFT correspondence bought up in [20] [21] which we use.

All this is well trod physics, and is not disturbing, but the problem becomes
glaring if we have At not as infinitesimal, in which then we have some truly
bizarre physics. Ze. in that case, we have to appeal to Galois theory and a quintic
Galois solution [5] [7] [8].

Case 4, when we have a generalized solution for a Quintic polynomial, when
At is not necessarily infinitesimal.

Note that for extra dimensions d= 1, 3, 5, 7, the coefficient A4, is always less
than zero, leading to no requirement for 7}, to be < 0. The problem is though,
that for d =1, 3, 5, 7 and above, that if [5] is true, then there is no generalized
Gauss theory solution to the restricted Quintic. As due to communication by the
referee which we will discuss at length, due to [5] he very quickly came up with a
specialized trivial example for solving this quintic, but in doing so he contra-
vened not only [5] but also [7] [8].

If we do not have an infinitesimal At andifd=1, 3,5, 7, the coefficient 4
is always less than zero, then if the Galois solvability criteria is correct for the
quintic as given in [5] as we will outline, we have a huge problem.

This for general Galois solvability of (At)5 +4 -(At)2 +4,=0.1fd=2,4,6,
need 7, <0 for coefficient 4 to be greater than zero. This for general Ga-
lois solvability of (Ar)’+4,-(At)'+4,=0. Note, that special solutions for
(Af) +4,-(Ar)" + 4, =0 are easy to obtain, as a reviewer noted, but that we are
referring to completely general solutions, not specific special case solutions.

As has been noted by Galois, and others, there are trivial specific solutions as
to the quintic, but what is referred to is a general polynomial solution to the
quintic fifth order is not solvable in a general algebraic sense. 7e. there are noted
fourth order general solutions to fourth order polynomial equations, but none in
the sense of generalized solutions for fifth order polynomials [2] [5] [7] [8]. A
reference to a Rocky mountain journal of mathematics is included for a general
solution to a specific fifth order equation [2] [5], and as correctly noted by the
reviewer, that in one sense the specialized general fifth order equation so derived
by the author has a trivial special case solution Precisely because we do not have
a physics reason for making the restriction to the specific special case solution
suggested by the reviewer, we have to appeal to a general solution, and that in-
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volves a decomposition rooted in Galois theory, among others.

Finally, a comment as to the minimum uncertainty principle, as a way to
imply quantization is included. Generally, as noted by the reviewer, the absence
of a solution to a problem in terms of the minimum uncertainty principle, in this
case delta E delta ¢ = A bar, written as AEAf =7 in itself is not evidence as to
quantization. In this case, it actually does imply quantization [5] [6] for a reason
given in this manuscript. The reviewer also is bothered by a discussion as to semi
classicality versus alleged quantum solutions via an AdS/CFT [2] [16] corres-
pondence discussion.

The main problem has been the Qintic polynomial, and this is taking up the
lions share of this manuscript. Ze. it is famously noted by Galois and others that
a generalized equation for completely general fifth order polynomials is not
solvable [5] [7] [8]. The restricted general fifth order polynomial, the restricted
quintic does have trivial specialized solutions, but it still s a very tough technical
problem, for generalized solutions. Again, as noted, there is a reference as to
solving the restricted fifth order general quintic polynomial [5] [7] [8]. And the
author urges that people actually read it. And also review a bit of the literature as
to Galois theory provided [5] [7] [8].

In doing so, the author is not suggesting that there are not numerical solutions
to the restricted fifth order quintic polynomial. Certainly they are, and the au-
thor actually has a PhD dissertation using Runge Kutta techniques [21] [22] [23]
[24] as to a condensed matter solution to a very tough condensed matter physics
problem [25]. In a sense, this entire article is motivated by the author’s PhD dis-
sertation, as of 2001 which had to be numerically iterated, via Runge Kutta and
also reviewed by quantum field theory to solve a similar extremely complicated
nonlinear problem [25]. Due to the comments of the reviewer, the author hopes
that readers take the time to review the Galois motivated manuscript, and realize
that the author has a mathematics degree in numerical analysis, so the author is
fully aware of the special case solution. The special case solution as alluded to by
the reviewer is not a general equation solution [14], for reasons in Galois theory,
and in other similar work by Abel and other mathematicians [5] [7] [8]. Having
said that, we get to the first complaint area of the reviewer, as to the physical
nature of assumed negative temperatures in black hole, and in our case, worm
hole physics. Keep in mind that we will relate the closure of a worm hole throat
to temperature, T, as given by Visser [9]. So, all this is physically pertinent.
The methods as to numerical interpolation were studied in [25] [26] [27], whe-
reas [26] and [27] actually reflect some of the modeling issues which show up
even today, and where the idea of gravitons, as information carriers, as given in
[22].

Before we proceed further, as a bridge to the negative temperature issue of
black holes, we wish to address the most direct complaint raised by the reviewer,
and that has to do with the problem of this formalism and its adherence to

String theory.
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3. How to Reconcile String Theory Which Is a Quantum
Gravity Regime, with Results Which Seem to Be
Inconsistent with Quantum Gravity

The reviewer, in [14] sent the following question which deserves an answer, Ze.

Quote

Another issue is that in all of this the author is working within a “stringy”
framework, for instance the values of d are chosen such as to be compatible with
string theory, AdS/CFT concepts are used throughout the work, and so on.
However, string theory is a theory of quantum gravity. How can you make as-
sumptions consistent with quantum gravity and then derive conditions which
are inconsistent with quantum gravity at the same time? This is very inconsistent.

End of quote

The author refers the readers to [19], specifically go to page 639 as to the
coupling constants used in super Yang Mills theory. ie. in the section labeled
“the Coupling constants”, [24] write that

Quote, from [19], page 639

“The dimensional effective coupling of super Yang Mills theory in d + 1 di-
mension is scale dependent. At an energy scale E, it is determined by dimen-

sional analysis to be
8ar (E) ~ g NE™ @)

This coupling is small, so that perturbation theory applies for large £ (the UV)
for d < 3, and for small E (the IR). The special case of d = 3 corresponds to
N =4 super Yang Mills theory in four dimensions, which is known to be a UV
finite, conformally invariant theory. In that case, gjﬁ (E) is independent of the

scale E'and corresponds to the t Hooft coupling constant
A~gmN (4)

This is the constant which is held constant in the large-V expansion of the
gauge theory discussed below.

End of quote from page 639 of [19].

Le. in our work, the question of d dependence will be crucial in the application
of the T, to the question of if we have adherence to quantum gravity, via if we
need a negative temperature, will show up as follows, namely.

If we have from [2] the following decomposition of the quintic polynomial,
and for this see Equation (6) below, we will be able to go look at the dynamics of
what may be occurring for d = 3, i.e. what if we have independence of a coupling
constant from energy, we have from d = 3 in the situation where we have no de-

pendence of the coefficient 4, upon the sign of the T, .If say we have a typical

temp
kT,

lied t t
dependence of system energy, say E, ppe e

statistical B we are saying, if

we believe that this removes the necessity of having a negative, or positive tem-
perature, that then the possibility of, say a black hole having negative entropy

(for positive temperature) as given by [15] is not important. But this would

DOI: 10.4236/jhepgc.2019.51014

242 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.4236/jhepgc.2019.51014

A. W. Beckwith

mean an effective statistically based negative energy, which would be for say
energy flowing into a black hole. However, in our derivation of the quintic po-
lynomial, in [2] we are dependent upon an entropy count based upon infinite
statistics counting algorithm based upon entropy being based upon an admitted
particle count, Ze. S~ particle count n, as given in [28]. The upshot is, that if we
have d= 3 that we have a string theory-based removal of the sign of energy, and
temperature in coupling which means that the coupling constant as given in
Equations (4) and (5) is also consistent with [29] and is also covered in [5] as we
derived it. 7e that the result we have, which uses [28] and [29], for d = 3 is fully
consistent with the Equation (4) and Equation (5) removal of the centrality of
how we evaluate energy, in terms of the sign of energy, if we in doing this regard

kyT,

__ ""B” applied temperature

our input energy, as say along the lines of E . In this

statistical 7

sense, our results in terms of removal of the importance of the sign of the tem-
perature, and by extension statistical energy, given in Equation (6) below may
make a partial linkage between Equation (6) below, and Equation (5) if we can

_ kB T;pplied temperature

write E, statistical 2

=F, as an input into Equation (5), with the

applied temperature T,

applied temperature = T;emp

( 5 _ ngravimn count ( )2 167t(h)2 0
nlly, | an () (Y
d 3\ n 3\ n
= A - _ ngraviton count
l —
d 3\ n
16n-(n)’

AN
dn (Je
3 h

=1, shouldbe negativeif d =2,4,6,--- for 4, >0

tem
= 7;6,,: does not have to be negative if 4 =1,3,5,7,--- for 4, <0
but the solvability requirement for a Galois solution, by [5]
is impossible. And 4, <0 all the time 4, >0
A~ g N (5)

If the removal of the sign of the temperature, as given in T, , is similar to

tel
reducing the importance of the sign of energy, as an input using

k,T,

B~ applied temperature

atisticasl = ———————— =£E, with £ used in Equation (5), we then have a
2

connection with string theory which is in a sense answering the referees objec-
tions. This is different from when we have sensitivity as to the sign.

In fact, as discussed earlier, using [2] and [5] we have that if we have this, that
we can only use d = 2, 4, 6, so as to have a preference for negative temperatures

and if [16] is believed, then a situation for which all black hole entropy is then
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positive. If we have positive entropy, and we model the worm hole as a connec-
tion between two black holes, then we may have a consistent physical model, in-
dicating positive entropy.

Le. for values of d =2, d= 4, d= 6, we have a situation where we are looking
for where we have would be quantum behavior, Ze. a solution for this quintic, if
we have negative temperatures. Ze. 4, >0. We claim then that we have a rela-
tionship to the situation given in Equation (5) above. And thereby answer the
reviewer’s question.

When d =1,3,5,--- we claim then that Equation (6) is in sync with Equation
(5) and that especially when d= 3 we have the tie in with Equation (6) and Equ-
ation (5). And most telling the d = 3 case appears to superimpose directly with
Equation (6) and the discussion as to what that implies given on page 639 but we
rule out d = 3, if we are looking at a generalized Galois solution given through

Equation (6).

4. Negative Temperatures

One of the complaints of a reviewer has been about the idea of negative temper-
atures. Before we begin our discussion, we will briefly allude to the history of
negative temperatures, and black hole physics, then allude as to what it may have
to do with our problem. [16] is the starting reference, i.e. we will reference nega-
tive temperature as far as the history of black hole physics.

The executive summary of black hole physics, is that, indeed, as given by [16]
and its additional references, as cited below that in order insure that the entropy
of a black hole is non-negative, ie. positive that we require having a negative
Hawking temperature.

From [16] we will follow the following quote.

II. New Hawking Temperatures from Thermodynamics

In the spin systems the temperature can be negative, due to the upper bound
of the energy spectrum [4]. Recently, a number of black hole solutions which
have similar upper bounds of the black hole masses have been discovered [30]
[31] [32] [33] [34] [35] I have argued that the Hawking temperatures for these
systems might not be given by the usual formula 7, = hK+/27T, [30] [31] [32]
[33] which is non-negative, but by new formulae which can be negative depend-
ing on the situations [34] [35]. The argument was based on the Hawking’s area
theorem and the second law. This has been found to agree completely with CF T
analysis, being related to the AdS/CF T correspondence, as far as the CF T anal-
ysis is available [34] [35].

End of quote

Admittedly, negative temperature appears to contravene the Hawking black
hole temperature formula.

Quote, from [35], here we are using our appendix entries to cover entries giv-
en in [35].

But this seems to be physically nonsensical since the entropy is non-negative,

DOI: 10.4236/jhepgc.2019.51014

244 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.4236/jhepgc.2019.51014

A. W. Beckwith

“by its definition” as a measure of disorderedness [36]; the positiveness of the
entropy is a “minimum” requirement that must be satisfied if the entropy has a
statistical mechanical origin [32] [37] [39]. Moreover, without the guarantee of
the second law, there would be no justification for identifying the entropies, even
though they satisfy the first law [33] [38]. So, in this paper I consider a different
approach which can resolve the two problems, simultaneously. The new resolu-
tion is to consider an entropy

2mr,
4Gh

S, =0

™)

which is non-negative manifestly and also satisfying the second law from the
area theorem, as in the case of §, in

A 21,

S, =Q 8
! 4Gh ®)
for a positive Q. But, in this case I must pay the price, by * considering a new
temperature
I =T, ©)
End of quote

The tack of reference [9] [30] [37] is that in order to have a positive black hole
entropy, that we have to entertain negative temperature, which is given in Equa-
tion (9) and which is elaborated on in page 5 of reference [9] [30] [37] ie. by the
following adage, ie. in order to have positive black hole entropy, the tempera-
ture has to be negative, ie. Equation (8) could give negative black hole entropy,
and in order to obtain positive entropy for a black hole, as given by Equation (7)
we have to have Equation (9) with negative temperature. To those whom still do
not believe this summary? Go to reference [9] [30] [37] [38] and look it up. Now
how does this connect worm holes? ie. a typical model of worm holes has in its
formulation a worm hole bridge between two black holes. The complete
Schwarzschild geometry consists of a black hole, a white hole, and two Universes
connected at their horizons by a wormhole [39]. We have already discussed that
negative temperature may exist in astrophysics, Ze. our next section is to link
that to worm holes [40].

5. Negative Temperatures, and the Total Energy of Worm Holes

As we will argue accessing Juan Maldacena, et al [41], the total energy of a

worm hole reads as follows, h namely
Ewormholc = —q/8f

g=2j+1 . (10)
l= 1/ 2 TET;cmpcraturc
In short, if the total wormhole T, . ... > temperature is less than zero, we

have, then that the E__, . is greater than zero. So, what does this mean? Neg-
ative energy appears in the speculative theory of wormholes, where it is needed

to keep the wormhole open. A wormbhole directly connects two locations which

DOI: 10.4236/jhepgc.2019.51014

245 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.4236/jhepgc.2019.51014

A. W. Beckwith

may be separated arbitrarily far apart in both space and time, and in principle
allows near-instantaneous travel between them [44].
Le. for a negative temperature, the worm hole throat is shut, and if the worm-

hole is open, the temperature has to be >0, indeed 7, is less than zero,

emperature
we have a shut worm hole. But we observe in [42] in its figure 1, of page 1446 a
figure 1, of [42] which has the likely interpretation of being a black hole, linked
to a white hole, with a worm hole specifying entanglement between the two re-

gimes. Of the two astrophysical objects. This is also part of [43].

6. Wormholes and Black Holes, and Possibly White Holes

As mentioned before, we have in [44] in its figure 1, of page 1446 of [42] a possi-
ble linkage between a black hole, to a white hole via a worm hole. In any case,
according to [3] there is a connection via quantum teleportation which may link
two black holes, hence, this is akin to [9] [36] [42] with some additional caveats/
Le. as seen in [4]. And [4], the subject of a linkage of transversal worm holes is
being revisited, and we claim also that we can add more specific structure to the
analysis, as recently presented. Note that in [4] that the introduction to the ab-
stract states, Ze. go to [4] and do not forget what is in [36] [42] [44] about quan-
tum teleportation linkage between two black holes as to a worm hole bridge,
Now, consider

Quote, from abstract of [4]

We study various aspects of wormholes that are made traversable by an inte-
raction between the two of boundaries. We concentrate on the case of near-
lyAdS2 gravity and discuss a very simple mechanical picture for the gravitational
dynamics.

End of quote

Our supposition goes beyond this, Ze. an analysis as to the physics of trans-
versable worm holes is built upon gravitational physics as it affects the energy
value, as given in Equation (9). ie. we assume a set of given conditions which
allow for if the temperature, T{, ... s positive or negative. To do this though
we will answer a complete mathematical mis understanding of quintic mathe-

matics by the referee.

7. Answering a Misunderstanding by the Referee as to the
Mathematical Solution of a Quintic Polynomial, Which Is
Used to Ascertain if Ttemperature Is Positive or Negative

First of all, we ask the readers to review Equation (9), and this will be to deter-
mine if T

temperature

the following Equations ((11), (12)) and then if Equation (12) holds, Equation

or positive and this comes from use of [2], i.e. we will look at

(13) below which mandates having A4 >0 in Equation (6) which then leads to
what the reviewer incorrectly found a trivial solution for, ie. the reviewer, and
also readers are expected to look at Galois theory to come up with a generalized,

as opposed to looking at Galois theory for general solvability.
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Note that for reasons which will be discussed in terms of its attendant physics
in the later part of the manuscript, that for extremely small (At)5 that in that
situation where we have a simple quadratic, that instead of having 4, >0 we

have, instead

n graviton count

A =- o - <0 when we have (At)5 about zero  (11)
2
Ty | 4w [ J
d 3 h

This is reflected in a simple general physics solution to

ngraviton count At 2 l6m- (h)z

- (M) +———5

4, | dn (g dn (e
d 3 LA 3 \n

If we have non-vanishing (At)s the situation changes, and we have then

(At)5 _ ngraviton count 2 167 (h)z

_ ()" +
anl, | an (40 an ()
d 3 /] 3 h

We will, in spite of the protests of the reviewer, avoid the specialized solution,

0 (12)

0 (13)

use a general solution, and then state

ngraviton count

A =- o —>0 when we have (At)5 still contributing (14)
2
ATy | 4m [ Je
d 3 A

If Equation (12) no longer holds due to the fact we no longer have a quadratic

equation due to (At)s not vanishing, we will have to go to what the reviewer
found so distasteful, ie. Equation (14), and then the odd situation of what is
given below. It is expected that the reviewer and also readers will take the time to
go to this reference, which is in [2] and also [11] and then take the time to read
some Galois theory. FTR we will then go back to Equation (6) when setting up
the usage of Equation (15) below.

Let a and b be nonzero rational numbers. We show that there are an infinite
number of essentially different, irreducible, solvable, quintic trinomials X +ax+b.
On the other hand, we show that there are only five essentially different, irre-

ducible, solvable, quintic trinomials x° +ax” +b, namely, by [2] [11]
X +5x%+3,
X7 +5x% 15,
X7 +25x% +300, (15)
X’ +100X7 +1000,
and X° +250X7 +625.

Here, X =At, and we change the dimensional scaling of 4, and 4,, so as
to be consistent with Equation (15), and in addition, the d in Equation (6) can

range in size from d = 2, 4, 6 so as to keep our construction consistent with
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String theory.
If d=1, 3, 5, 7 we have then that we could have then, with T

«wnp €ither great-

er than or less than zero, with the odd situation that at d = 1, a situation where
the sign, and the value of T, could even be zero itself, Ze. as an artifact of Ka-
luza Klein theory, but then all connection then to Equation (15) would be lost
and the following, at d=1 4, would always be negative. ie.

If d = 1, then the following would always be true, (Kaluza Klein theory) and

then we would be having

n._ .
graviton count
== (16)

<0
d 3 h

The only way to avoid having all connections with Kaluza Klein theory re-

moved is to say that in the case of d= 1 that we would have to have X =At¢ in-
finitesimally small, hence we state the following.

Theorem A

If d =1 in order to come up with solvable conditions for Equation (6)
X =At will be assumed to be negligible, 7.e. we then look at a quadratic version
in the solution of X = At of Equation (6), and that then only when d=1. e d
= 1 will presumably be having use of Equation (12), hence having a situation
which involves no requirement on T, being less than zero. In fact, T,

could be any value we wished including the positively weird situation that T,
could go to zero itself. So long as d= 1 that is allowed. Once d does not equal 1,
we have then very T, dependent behavior.

If d#1 we have then very T, dependent behavior. And then we have to
go to the weirdness which the referee found so objectionable.

Now we will take the position of directly quoting the referee in [10] [11] [12]
[13] [14] in full and to really answer him.

Quote

Let me now come to the main problem of the paper. All the arguments of the pa-
per rely on the fact that a given quintic polynomial of the form X° + 4 X> + 4, =0
is only solvable for certain choices of coefficients. In fact, the author says he
shows there are only five essentially different, irreducible, solvable, quintic tri-
nomials which are solvable. First of all, I don’t understand what “essentially dif-
ferent” means. Does it mean polynomials which are not multiples of each other?
I find it in any case very hard to believe that there are no other polynomials of
that type which are solvable. For instance, the following equation:
X°+X*-2=0, Equation (1) is trivially solved by X = 1, it is not a multiple of
any of the other polynomials (assuming that’s what is meant by essentially dif-
ferent) and is irreducible. And similarly, one can construct infinitely many other
examples. So, the author should clarify this point,

End of quote

In the case of d =1, ie Kaluza Klein there is no problem, ie. see Theorem 1

DOI: 10.4236/jhepgc.2019.51014

248 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.4236/jhepgc.2019.51014

A. W. Beckwith

above. and it becomes a trivial general solution which is reflected in Equation
(16) at d=1 A, would always be negative. And the quintic would in d =1 re-
duce to solving Equation (12), Ze. d =1 as being solvable would require (At)5
not contributing, presumably due to being negligible in the full sense of the
word and the only for Equation (12), and d = 1 we would then have (Kaluza
Klein) a situation where the sign of T, , and its magnitude do not play any
role in the determination of Ar.

In the case of d #1, we will then have to consider when (At)5 intrudes,
hence the following discussion below.

Le. the supposition given above is that there is a specific set of conditions for
which the author specifically refutes this by the following statement. Ze. that this
is verbatim. 7e. we are not using the specialized solution to the general solution
for Equation (17). In particular we have that for a generalized quintic, even in
trinomial form that one is not going to come up with a particular solution which
fits the requirements of a general solution. 7.e. what was done in [14] was to ar-
bitrarily demand that Equation (17) have 4, = -1 and A, = 1, and then from
there have a trivial solution made out which would simply satisfy the needed
delta t value, which the referee set as equal to 1. We say without reservation that
if we wish to have generalized inputs into A4, and A, of the quintic equation that
the following must be adhered to, and that without reservation we make, in the
spirit of a generalized polynomial solution the following statement as to the val-

ues of the quintic equation. Ze.

2
5 n raviton count 2 167[ (h)
(At) - Gk - —(Ar) + S =0

Al | dn (S an (g

d 3 h 3 h

n aviton coun
Al = — gl’;i t - - ;tl (17)
A1l | An (U
d 3 h
16m-(1)’

—3¢
4n [ Je
3 n

There are no conceivable conditions for which one would have such a situa-
tion. We are referring to general solvability. Of quintics, by what is known as by
radicals. See more on this as follows.

In order to make this a bit more to the point, the author will go to Galois
theory, temporarily, since the referee did not read the following Z.e. [6] [7] [8]
The next section of this paper will cite some of the foundational issues brought
up in [8] which shows specifically the problem. First will be how the uncer-
tainty principle is related to 5-dimensional physics, since this is one of the
reasons why we actually bothered to have a quintic equation formed upon the
minimum uncertainty given in the reference [5] which we will justify in our

document.
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8. How to Relate and Embed the Uncertainty Principle from
Five-Dimensional Physics

From [45] we have the following discussion which we find is very pertinent to d
= 1 Kaluza Klein physics and its relationship to the Ze. consider first Let us now,
briefly allude to the [46] [47] reference, namely:

Start with the idea of an embedding of four-dimensional space-time in a
5-dimensional time interval. [45] [46] and realize it inter connections with [46]

[47] [48] [49] where L = length of canonical metric in 5-Dimensional theory

2 2\?
dSSZ-dim = L_zdsj-dim _(L_ZJ dr*
/ /
x, =1=h/mc (18)
A=3/

L =scale of scale of (universe) Potential well

And then we present, the five momenta as given by

217 ¢ dx”
« =2 &
i dx (19)
20 dI
T e
Then, if
2, dxf
TP e
20 dl
TR 4 (20)

[Pdx" = [P,dx" + Rdl =0 iff dSZ, =0
o=l &(dlfds)=%I/L

One eventually, as given by [48] obtains the Heisenberg type of relations that
2
:h.{ﬁ.(ﬂj } (21)
c \ I

2
Depending upon how we evaluate {Etgj }, we can then say that if

|dp, dx*

c
n=L/l, and if we have L as the length of the additional dimension, that we have
from deterministic reasoning in 5 dimensions achieved Equation (20) which in
2
four dimensions, depending upon how {ﬁ(#) } is evaluated is in common
c
with AxAp># [50].

To proceed with this further in [51] we have that AEA¢ > 7, and that the fol-
lowing holds, in cosmological physics, in a general sense, Ze. in cosmology we
can depend upon the following assumptions, namely, as derived by the author in
[52]. We use the approximation as presented in [52] which we reproduce below
as also in [53] [54].
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% 1
(22)

g 2
(Ap), = AT, -6t-Ad

(a1), -

If we use the following, from the Roberson-Walker metric [52]

g, =1
—a* (t
grr = ( )2
l-k-r (23)
8o = —a? (t)~r
g, =—a’(1)-sin’ 6-dg¢’

2

Following Unruh [53] [54], write then, an uncertainty of metric tensor as,

with the following inputs
a’(t)~10""",r =1, ~107° meters (24)

Then, if AT, ~Ap [52] [53] [54]
V& =5t-A-r
> (25)

| =+

5gtt'A7;t 01+ AA4-

SR

h
< 5gll 'A];t ZW

This Equation (24) is such that we can extract, up to a point the HUP prin-
ciple for uncertainty in time and energy, with one very large caveat added,

namely if we use the fluid approximation of space-time [52]
T, = diag(p,~p,=p.—p) (26)

Then by [52]
AE
AT, ~Ap~ V(S) (27)

Then, by [52]
StAE> LT
og, 2 (28)

Unless §g,, ~ O(1)

In this case, looking at a rewrite of the Equation (21) to read, approximately as

~h{ﬁ[ﬂj } (29)
c [ 3

|dp, dx”

With the
2
o =0=|dp,dx’| ~ h- ﬁ(dlj = oiaE> 21 (30)

c o og, 2

Unless §g, ~O(1).
Having processed in how 5 dimensional geometry may allow for the HUP ac-

’ . 5
cording to the above argument let us now see how, if we do not have (At) not
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contributing, i.e. a quintic, in line with a simple reduction in complexity solution
to the Equation (16) problem, Ze. a quick and dirty solution [4] [49] [51] [55].

9. Applying the Gauss-Lucas Theorem to Equation (17)

Gauss-Lucas theorem gives a geometrical relation between the roots of a poly-
nomial Pand the roots of its derivative P! ie, If Pis a (nonconstant) polynomial
with complex coefficients, all zeros of P’'belong to the convex hull of the set of
zeros of P. [49]

2n

At 3 _ graviton count A 0 0
(A1) (| ax [ —(Ar)

) o (31)
= (At)3 — zngraviton count

(477 ) an (4
d 3 fi

Superficially, this imposes the same sort of restrictions upon Ar for d=1, 3,

5, but then
ATy | ()
. l6n-(n) d 3\ n

(Ar) =

4j LCZ ' ngraviton count
3 n
d-1\2
4T,
16m-(h)’ (dmpj
:>(AZ‘)E
ngraviton count
(32)
2n, .
3 raviton count
(At) ) 47T gd_l 2\’
5| e | AT [ JCT
d 3\ n
1/3
:( A — 2ngraviton count

(4T, | (4
d 30U h
Hence, we have to do further root analysis.

10. Brief Summary of Reference [8] and the Problem of a
Solution by Radicals

Readers are recommended to go to page 4 of [8] where the question of if a quin-
tic polynomial is exactly solvable. Well it is not.
The answer to why this is known as the Abel Ruffini theorem [49] ie. to look

at the following.
The theorem does not assert that some higher-degree polynomial equations
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have no solution. In fact, the opposite is true: every non-constant polynomial
equation in one unknown, with real or complex coefficients, has at least one
complex number as a solution (and thus, by polynomial division, as many com-
plex roots as its degree, counting repeated roots); this is the fundamental theo-
rem of algebra. These solutions can be computed to any desired degree of accu-
racy using numerical methods such as the Newton-Raphson method or the La-
guerre method, and in this way they are no different from solutions to poly-
nomial equations of the second, third, or fourth degrees. It also does not assert
that no higher-degree polynomial equations can be solved in radicals: the equa-
tion x” — 1 = 0 can be solved in radicals for every positive integer n, for example.
The theorem only shows that there is no general solution in radicals that applies
to all equations of a given degree greater than 4.

Also, see [55] [56], i.e. what the referee does not understand [14] is

Quote
no general solution in radicals for degree five generalized quintic equations
means the following cannot be done.

A general solution in radicals. An algebraic solution or solution in radicals is a
closed form expression, and more specifically a closed-form algebraic expression,
that is the solution of an algebraic equation in terms of the coefficients, relying
only on addition, subtraction, multiplication, division, raising to integer powers,
and the extraction of roots (square roots, cube roots, etc.).

As stated, we can also go to [57] ie. page 54 where the definition of solvability
by Radicals is done abstractly. See section 9, solvability of polynomials by radi-
cals. Also [58] [59].

The result of reference [11] which is mis understood here, is in determining if
a radical solution of the given quintic exists. Ze. in terms of Galois splitting field.
The results of Equation (32) ignored by the referee, is in obtaining a solution in
terms of radicals is only achievable with regards to the five linear combinations
of the sort given for coefficients given in Equation (33). Now if we restrict the

solution to the specialized quintic referred to in Equation (12).

11. Next Objection by the Referee. From [14], Is the Absence
of Being Able to Apply a Minimum Uncertainty Principle,
as a Proof of Lack of Quantum Gravity

Quote from [14]

It is unclear to me how the author reaches certain conclusions about a possi-
ble quantum nature of gravity. For instance, the whole line of real solving in Equa-
tion (12) is unclear. Why if 7'temperature > 0 then gravity must be semi-classical?
Is it because then one cannot have a minimum uncertainty principle? If so, then
it is unclear to me why the absence of a minimum uncertainty principle is in it-
self an indication that gravity cannot be quantum. Certainly, it hints in that di-
rection, but it is not a solid indication.

End of quote
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We will go to two cases, only since these are referred to in terms of first, very
small Az in the case of a definitely real value to the time interval, in which we
will be looking at in terms of d =1,3,5,7,---

Case one, Tiny time step, temperature 7T can either be less than or greater
than zero, and no imaginary time.

Again, as indicated by Equation (1) we have that for a very small-time step,

for a non-imaginary time, that no matter what the sign of Temperature, 7; that

16m- (1)’ d 3 ( n

(A) =—2 () - (d =135  (33)
41 . LCz ngraviton count
3 h

In this case, the referee’s question is pertinent. Ze. it is related to the minimum
uncertainty principle. We do not, in the case of very small-time step, have a situ-
ation for which temperature 7'is required to be either positive or negative, hence

we reduce this situation to being of the form AEAt=#

ie. (AEY = | Jamiveom ;35 (34)

4n 4n];emp !
d

The sign T, plays no role in the determination of an energy value, other

than that this conceivably be the minimum state of a graviton condensate.

Now let us consider what if d = 1, i.e. Kaluza Klein, 7.e. then we have

n raviton coun 1 n raviton coun
(AE)" = —mioncomt — |;d =1,3,5,- - tRiem (35
4n 4nT,,, 4n
d

We are then leading to, if we have a distance, we call a

gravition *
2 n, ...
|:(h/a ) ) . C:| ~ graviton count (36)
graviton 4
T
If in this situation we have i = Agaviion © 1/ Oyaviin
# 2 # ~ ngravilon count 1 d -1 3 5
( /agraviton>'c oc a)graviton ~ : s = 1,9,

4n 4n7;emp -
d

(37)
~ A

agraviton graviton o 1/a)gravit0n
ifd=1
2 n, ...
__ _graviton count
I:(h/agraviton ) ' C:| oc ha)graviton ~ An

We claim that in the case of d = 1 in the situation for which (At)5 — 0", that
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indeed the ground state, as referred to in Equation (37) is a strong indicator of
quantum gravity. Ze., The zero-point energy is dependent upon a graviton count,
Agraviton count *

We see that in the case of minimum uncertainty in quantum mechanics,
Quantum mechanically, the uncertainty principle forces the electron to have
non-zero momentum and non-zero expectation value of position. If a is an av-
erage distance electron-proton distance, the uncertainty principle informs us

that the minimum electron momentum is on the order of A/a. i.e. if we have the

same situation with a presumed graviton, and give it a mass of m,,;,, infinite-
simally small but not zero, and say we have a distance we call @, - So, the
minimum graviton momentum is

p(momentum)gmviton ~ h/agraviton (38)

Assume that gravitons are then endowed with mass, and then the mass vanishes

2 > 2 2 2
(pgravitonc) = Egraviton - (mgravitonc ) ~ [(h/agraviton ) ’ C‘:|

: (39)
= Egzraviton ~ [(h/agravimn ) ' C:| lf mgraviton - 0
leads to a minimum energy equation looking like
(1 uin )€ | oL | Semimeon 35, (40)

4n 4n7;emp .
d

The HUP is central to the discussion of if a minimum uncertainty exists. In
any stationary state ( p) =0 or at least is a constant so any system in which
there is a stationary state that has a gaussian wave function will have minimum
position/momentum uncertainty. One case where this occurs is the ground state

of the harmonic oscillator. In the case of a graviton we have that

l(= y) ) = ﬁ(s h J from the de Broglie hypothesis, we will answer in

— “graviton
p p graviton

the last part of the question the final issues of if the quantum condition is due to
a minimum uncertainty principle being satisfied.

Doing so means that we can, if d = 1, as in the case of Kaluza Klein theory,
and 5-dimensional cosmology [5] still stick with  Ti, ... <0. Other values of d
will lead to different situations. Ze, for d=0, d=2, d=4, and d = 6 there is a
chance for T,

temperature

for the X =Ar X= delta ¢substitution.

<0 leading to an exactly solvable value for Equation (7)

12. Three Theorems, So as to Have a Case by Case Rendition
of the Physics of Our Quintic Polynomial

(A1) + 4, -(Af)* + 4, =0

Theorem 1
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For d=0, d=2, d= 4, and d = 6, Equation (2) and Equation (3) are solvable,
in terms of X = At, hence, then for the 4, and 4, terms, contributing to a
value of X =At we do not have an exactly solvable Quintic polynomial. Hence,
then, Tl e <0 is not going to contribute to 4, being changed from a
negative value, as given in Equation (2) to a positive value so it would be com-
<0 changes 4, >0.

Hence, a necessary condition for exact solvability of the restricted quantic

mensurate with Equation (3). Hence, so that T e
commensurate for Equation (2) and Equation (3) and 4, >0 is that the di-
mensions, d, as far as AdS/CFT correspondence have even values.

Theorem 2

For d=0, d=2, d= 4, and d= 6, Equation (2), Equation (3) and Equation (4)
are solvable, hence we have that for these values of d, that we have an exact solu-
tion for X =A¢, hence then we do have a minimum uncertainty principle

quantum gravity. We will then say that we DON’T have semi classical treatment

of gravity.

Theorem 3

If we have d=1, d= 3, d=5, d =7 set in AdS/CFT in dimensions, so that
Temperanre <0 changing 4, >0 is NO LONGDER POSSIBLE. We have then no

solvability of Equation (2), Equation (3) and Equation (4), hence, then ODD
values of d, as given above, lead to SEMI Classical gravity.

Corollary is that then, ODD values of d, lead to SEMI classical treatment of
gravity, and we can say then that the Kaluza Klein [5] 5-dimensional treatment
is at best SEMI classical.

13. Analyzing When We Have a Very Small X = Ar
changing

(A1) +4,-(At) +4,=0
to

(Ar)’ +% =0 (41)

Theorem 4
X = At very small, so that the first quintic polynomial term being ignorable,

leads then to writing:
if (At) ~0°

temp

d

47T j - (42)

At) =+6 ~h2~(
( ) +67 p

graviton count

We claim that this is rather than a case of semi classical, versus quantum a
case of real and imaginary time, with a preference toward have d=1, d=3, d=5,
d =7 set in AdS/CFT in dimensions, so that 7

temperature

then we have the following d=1, d= 3, d= 5, d =7 to work with, so that we get

<0 is not necessary, and
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Theorem 5
Very small values of the sort with (At)5 ~0" lead to,if d=1,d=3,d=5,d=
7 then T;emperature

values of AEAt=#, so that AE is real valued. Also, then, AE is equivalent
to H, with A a Hamiltonian system, Ze. a 1-1 and onto linkage then to the Ha-

<0 is not necessary for real values of Az, and then we have

miltonian being the same as the total energy of our system. This is in line with
Abraham and Mardsen [6], Arnold [7], and Goldstein [8], as well as Spiegel [9]

of a condition where the Hamiltonian is equal to the total energy of a system.

14. Conclusion, Relevance to the Problem of the Closed
Throat of a Wormhole. And Small to Large Delta T Values

According to applying the criterial of [2] we have that if we look at a worm hole

Theorem 6

Ewonnhole = _q/8£ = _(ZJ + 1) T T;emperalure /8
E, oo < 0=>Open wormhole throat

W

. ) (43)
T > 0 = Semi Classical

temperature

< No quantum gravity if E <0

wormhole

Keep in mind that this is making a connection with a Gravitino, of a very light
mass, so as to be congruent with [2], we would have, say a gravitino of about.25
electron volts, Ze. see [10] whereas we make the connection to [11] as brought
up by the author as a link between gravitons and gravitinos, and Mach’s theorem.
Should this be fleshed out in further generality, we will have the conundrum of
addressing for very small delta £, Equation (43) in conjunction with Equation (44)
below compared to Equation (42)) being usefully compared with connections to
Equation (42)

if (A1) = 0°,(Ar) +4,-(Ar)' + 4, =0 = (A1)’ +% =0 (44)

1

This would d=1, d=3,d=5, d=7 then T e <O is not necessary for
real values of Af, and then we have values of AEAf=", so that AE is real
valued. And equal to the Hamiltonian.

Also, if Equation (43) does not hold.

Whereas for greater time step delta £ we have the consider the cases given in
Theorems 1, 2, and 3 above.

Whereif d= 1, d=3, d=5,d=7then T, ... <0,and then the following
summing up

Theorem 7
if Equation (44) does not hold, ie. for non-negligible delta ¢
ifd=1,d=3,d=5d=7then T ... <0,andthen

D) Eymnoe == 4/80= (2 +1) 7 T pruiure /8 > 0, HENCE the worm hole
throat is closed.

2) We also do not have classical gravity if (i) is true. i.e. we can have quantum

gravity.
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3) Open throat worm hole means we assume semi classical gravity.
Else

Theorem 8
if Equation (43) does hold, ie. for negligible delta t
ifd=1,d=3,d=5 d=7then T, . <O IS NOT NECESSARY, for real
values of Af, and then we have values of AEAt =1, so that AE is real valued.
And equal to the Hamiltonian. Note then if Ti, e <O IS NOT NECESSARY

for quantum gravity and then
Eqommpote == 4/80==(2j+1)- 7T,y e /8 <0 and we have an open worm hole
throat

ie. for very small At it is easy to come up with real values of Ar, and
non-imaginary AE and it’s easy to obtain
Eqormpote == 4/80==(2j+1)- 7T,y e /8 <0 for an OPEN worm hole throat.

Theorem 9

If At not so negligible, in order to obtain
Eqomoe = =4/80 ==(2j +1)- 1 Ty e /8 <0 for an OPEN worm hole throat.
We would then have to go to semi classical gravity. Due to the difficulty of ob-
taining T > 0

With regards to this problem, it is useful to make reference to [2], as its review
of the fact that a general solution to Quintic 5" order polynomials does not exist.
What we are doing is accessing instead results from Galois theory, as to Quintics,
(6] [7].

In a nutshell, we will be formally deriving (At)5 + 4, -(At)2 +4,=0 in our
next section and from there ascertaining if the polynomial so derived, is ex-
plainable in terms of [5], in terms of exactly solvable solutions for At. For the
sake of referencing the development of this article, we have as our motivating
hypothesis, that if (At)5 + 4 ~(At)2 +4, =0 isa polynomial in a form given in
[5] that indeed, since n will be in terms of a graviton count from a black hole
that then we have a NECESSARY condition for quantum gravity, at least in the
framework of aligning (At)5 + 4 -(At)2 +4, =0 in terms of the polynomials
given in [5] which are allegedly exactly solvable. If (At)5 + 4, -(At)2 +4,=0
does not meet the conditions given in [5], then we say that the criteria for exact
solvability of an expression for Afhave not been met, and that indeed, then we
have at best a semi classical treatment of gravity for reason which we will discuss
at the end of our manuscript.

Finally, the reference [9] by C. A. Pickett and J. D. Zunda gives an area calcu-
lation which neatly fits into [10] and [11], whereas there is in [10] a precise cal-
culation of entropy which also has an area to volume identification for black holes
and entropy calculations. We close after all of this in stating that the energy, will
be part of AE, as in the usual Heisenberg Uncertainty relationships, AEAt 21,
whereas we take the minimum condition of uncertainty by writing AEAt=#
[12], and [13] confirms that indeed we have that use of minimum uncertainty in

terms of data analysis has a long history if done correctly. Keep in mind that we
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do an abbreviation of
AE =mc® = h/ At = m = hf cAt (45)

This will allow us to obtain, in entropy a polynomial which we identify as
(At)5 + 4, -(Al‘)2 + A4, =0. The exact solution of this analysis, in terms of [2] will
then form the basis of our analysis of if we have classical gravity, or quantum gravity,
in terms of necessary conditions. If Equation (45) and(At)5 + 4 ~(At)2 +4,=0 is
not exactly solvable, in terms of [5] we will the assert that this means gravity, in the

case of the derived expression for Kerr-Newman black holes, is semi classical.

15. Derivation of the Polynomial (Ar)+ 4, -(Ar)’ + 4, =0

We begin by looking at [20] [21] for which we have that in terms of an AdS/CFT
representation of entropy that we have, especially if we use [9] for Area, and S
proportional to n for graviton count related to Entropy, as by [27], then

AE =mc® = h/At = m = h/cAt

¥ 3
A =16nm2+4_n.(ij =16no(h/cAt)2+4_n.(Jc'Atj
3 \m 3 7
2 2 )
ds* _L_z' _{1—[L] Jdt2+d;+dxidxj (46)
r r,

il d-1 2N (apr N
S, o _Lfry. 161t-(AE)2 +4_n. S || 2 e
» "G, 3 | AE d

oc ngraviton count

We then have the following representation for a polynomial in Af, namely if
we have conflating of the material in Equation (45) as far as a quantic treatment
of delta £ as by [5] we have that

d-1 -1 2y 4nT “
L [Lj d16m- (h/At)z + ﬂ . Je [ il j C Agraviton count (47)
4G, \r 3 ((n/ar) d

+

We will then, describe how to obtain from Equation (47), the Quintic
(A1) +4 -(At)2 +4,=0.

16. Obtaining (At)5 + 4, -(At)2 + A, =0 from Equation (47)

In order to obtain this, we make the following substitutions below, and we will
state specifically that in order to have a negative temperature in order to obtain
the conditions as given in [5] [59] for a Quintic polynomial which is solvable in
the sense of what that article [5] [59] is saying. We will later on describe this in
detail. But below we put in the substation needed so we can obtain the poly-
nomial in delta t, which we will then subsequently modify. This also uses [20]
and [21]

DOI: 10.4236/jhepgc.2019.51014

259 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.4236/jhepgc.2019.51014

A. W. Beckwith

d-1 -1 2 4nT
L . L -[167- (h/At)z + ﬂ . Je o OC Pyraviton count
4G, \r, 3 | (/) d e
47

=\ 16m-(h/At +_ o gravltoncoum
[ (h/aey [(fl/At J] 4nz;emp

(48)
N 167]:(71)2 ( 5 . 47'C [ grawton count (Af)z =0
(4n7—;emp j
( )5 _ ngraviton count 2 167[ . (h)z _ 0

- (A1) +——"
A, an (s (e
d 3 h 3 h

e in order to obtain, in a sense a Quintic equation which can be solved, [2] [5]

[59],
n 16m-(n)’
(At)5 _ gra\il;oncount . (At)2 n L ( ) - =0
anl,, | 4n (JS 4m [ Jc*
d 3 h 3 h
_ ngraviton count
- d-1 3
4nT, 2
ey | 4w [ Je” (49)
d 3 h

16m- (1)’

an (U
3 7
=T, should be negative

temp

17.Can We Have Negative Temperature?

This requires using [20] [21] and it is not clear that this is actually obtainable, in
the experimental set up as given in our [20] [21] input into a black hole.
What else do we need?
According to the abstract of [2] and which is used in [5]
Quote
Let a and b be nonzero rational numbers. We show that there are an infinite
number of essentially different, irreducible, solvable, quintic trinomials
X’ +ax+b. On the other hand, we show that there are only five essentially dif-
ferent, irreducible, solvable, quintic trinomials x° +ax” +5b =0, namely,
X +5x% +3,
X° +5x -15,
X +25x7 +300, (50)
X +100X7 +1000,
and X° +250X7 +625.
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End of quote

Aside from having a negative temperature, as for the reason given in Equation
(48) we have that if [20] [21] is satisfied and still commensurate with reference
[20] [21] that we also need to have a polynomial in delta ¢ which is commensu-
rate with Equation (49) (6) which is also influenced by Equation (50) which is
taken from the abstract in [2], [5] and is linkable to Equation (47).

18. Conclusion. i.e. A Necessary Condition for Quantization
of Induced Kerr Newman Black Hole

We first of all need to have a “negative” temperature. Ze. is this doable? This has
to be rigorously explored experimentally and determined.

Secondly our Equation (48) terms have to be consistently comparable to Equ-
ation (49). This requires rescaling of Equation (48) but this is doable pending
dimensional analysis, and perhaps Planckian physics units.

Both these conditions would be a NECESSARY condition for satisfying in
terms of reference [5]

(A1) +4,-(Ar)" + 4, =0 which we state would be due our construction a
necessary condition for a complete quantum gravity analysis of gravitons being
emitted from a Kerr-Newman black hole.

We state that these two points have to be determined and investigated, and
also that an optimal value of d, for dimensions for a problem, involving Kerr
Newman black holes would have to be ascertained in future research.

Finally, we refer the reader to references [59] [60] [61] [62] for additional
ideas which may be used in future projects.

Note also that Valev wrote [66]

ﬁ’graviton - LC (51)

graviton

and Valev indicates in his article that this gives a light year, or more length GW
of unimaginably low frequency. Obviously, in terms of experimental conditions,
this breaks down, Ze. in the limit of say a simulated worm hole in a laboratory,
so it would be useful to find ways to experimentally test and vet Equation (49) in
our review of basics.

Arguing further, the derivation done above, as for a HUP is likely doable and
obtainable from higher dimensions. The referee asked that if a minimum uncer-
tainty relation exists which is what I am asserting via [2] which is influenced by
[5] that there are then several cases.

In the situation of Kaluza Klein, d= 1 that we should assert the following.

Going to the text, there are two equations which bear examination. 7.e. see this
in the text. Recall Equation (36) and Equation (37) of this text. We will summar-
ize again what came in Equation (36) and Equation (37) as follows.

We are then leading to, if we have a distance, we call «a
(36) and Equation (37) that if in this situation we have
a ~ A oc 1/ o, We go to Equation (37) with the result that in the

graviton ‘graviton

And Equation

gravition *

raviton
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case of d= 1 in the situation for which (At)5 — 0", that indeed the ground state,
as referred to in Equation (37) is a strong indicator of quantum gravity. e, The
zero-point energy is dependent upon a graviton count, o count -

End of my argument here.

Le. my argument is that in the case of Equation (37) due to the last line, that
one is having a graviton count, as linked to lowest level uncertainty, for energy
and that this, in itself is supporting a quantum interpretation of gravity based
upon minimum time step.

Keep in mind, too, what is in the answer to my answer to the reviewers first
question. Ze. S (entropy) ~ 1 (graviton count) is put in directly into the deriva-
tion of Equation (6). There is no way to guarantee. S (entropy) ~ n (graviton
count) being positive as to two black holes at the two ends of a worm hole. Ze.
that is one of the wormhole configurations. Unless one has NEGATIVE temper-

ature. Ze. see the discussion of the text on this, and that ties in directly with the

n .
signof A4 ,asgivenin 4 =— e ~<0 d#1.
LT
d 3 Iz}
The d =1,3,5,--- cases have a different behavior than what is in

d =2,4,6,--- when we are looking at Equation (6) it really hits home. And the
sign of A, influences the solvability of finding Az which in turn affects the like-
lihood of Equation (37) above, and also, we have that we want a minimum
energy to depend upon graviton count, with that process being inherently

quantum nature of gravity.

n -
The d =1 case, as with having (AE)2 _ L | Pwiton coun ;d =1,3,5,--. ie

4n 4n];emp !
d

if d=1, our minimum uncertainty, which is solvable then will be giving us func-
tional linkage to gravity and gravitons.

End of quote

The tack of reference [9] [30] [37] is that in order to have a positive black hole
entropy, that we have to entertain negative temperature, which is given in Equa-
tion (9) and which is elaborated on in page 5 of reference [9] [30] [37]. ie, by
the following adage, 7.e. in order to have positive black hole entropy, the temper-
ature has to be negative, i.e. Equation (8) could give negative black hole entropy,
and in order to obtain positive entropy for a black hole, as given by Equation (7)
we have to have Equation (9) with negative temperature. To those whom still do
not believe this summary? Go to reference [9] [30] [37] and look it up. Now how
does this connect worm holes? ie, a typical model of worm holes has in its for-
mulation a worm hole bridge between two black holes. The complete Schwarz-
schild geometry consists of a black hole, a white hole, and two Universes con-
nected at their horizons by a wormhole [39]. We have already discussed that

negative temperature may exist in astrophysics, Ze. our next section is to link
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that to worm holes [40].

19. Negative Temperatures, and the Total Energy
of Worm Holes

As we will argue accessing Juan Maldacena, et al [39], the total energy of a
worm hole reads as follows, h namely given in Equation (10) which has
E oo =—4/8¢
qg=2j+1 . (10) reduplicated.
(= 1/ 2nT,

emperature

End of quote
So far this is not stringy, or linked to AdS/CFT correspondence, but then ob-
serve the following

From the text. Ze.

20. How to Reconcile String Theory Which Is a Qquantum
Gravity Regime, with Results Which Seem to Be
Inconsistent with Quantum Gravity

The reviewer, in [14] sent the following question which deserves an answer, Ze.

Quote

Another issue is that in all of this the author is working within a “stringy”
framework, for instance the values of d are chosen such as to be compatible with
string theory, AdS/CFT concepts are used throughout the work, and so on.
However, string theory is a theory of quantum gravity. How can you make as-
sumptions consistent with quantum gravity and then derive conditions which
are inconsistent with quantum gravity at the same time? This is very inconsistent

End of quote

The author refers the readers to [19], specifically go to page 639 as to the
coupling constants used in super Yang Mills theory. ie. in the section labeled
“the Coupling constants”, [23] write that

Quote, from [19], page 639

“The dimensional effective coupling of super Yang Mills theory in d + 1 di-
mension is scale dependent. At an energy scale Z it is determined by dimen-

sional analysis to be given by Equation (4) we write as

2y (E) ~ gy NE*” (4) reduplicated

This coupling is small, so that perturbation theory applies for large £ (the UV)
for d < 3, and for small E (the IR). The special case of d = 3 corresponds to
N =4 super Yang Mills theory in four dimensions, which is known to be a UV
finite, conformally invariant theory. In that case, g2, (E) is independent of the
scale E and corresponds to the tHooft coupling constant which we use the re-

sults of Equation (5) we write as
A~gi N (5) reduplicated

This is the constant which is held constant in the large- NV expansion of the
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gauge theory discussed below.

End of quote from page 639 of [19]

Le. in our work, the question of d dependence will be crucial in the application
of the T, to the question of if we have adherence to quantum gravity, via if we
need a negative temperature, will show up as follows, namely

If we have from [2] the following decomposition of the quintic polynomial,
and for this see Equation (6) duplicated below, we will be able to go look at the
dynamics of what may be occurring for d = 3, i.e. what if we have independence
of a coupling constant from energy, we have from d = 3 in the situation where
we have no dependence of the coefficient 4, upon the sign of the T, . If say we

_ kB T;xpplicd temperature

have a typical dependence of system energy, say E, we

tatistical — 2

are saying, if we believe that this removes the necessity of having a negative, or
positive temperature, that then the possibility of, say a black hole having nega-
tive entropy (for positive temperature) as given by [15] is not important. But this
would mean an effective statistically based negative energy, which would be for
say energy flowing into a black hole. However, in our derivation of the quintic
polynomial, in [2] we are dependent upon an entropy count based upon infinite
statistics counting algorithm based upon entropy being based upon an admitted
particle count, Ze. S~ particle count 1, as given in [29]. The upshot is, that if we
have d = 3 that we have a string theory-based removal of the sign of energy, and
temperature in coupling which means that the coupling constant as given in
Equation (4) and Equation (5) is also consistent with [30] and is also covered in
[5] as we derived it. i.e. that the result we have, which uses [28] and [29], for d=
3 is fully consistent with the Equation (4) and Equation (5) removal of the cen-
trality of how we evaluate energy, in terms of the sign of energy, if we in doing

E _ kB 7:1pplicd temperature

this regard our input energy, as say along the lines of E_,. ... = 5

In this sense, our results in terms of removal of the importance of the sign of the

temperature, and by extension statistical energy, given in Equation (6) may

make a partial linkage between Equation (6), and Equation (5) if we can write
kT

B~ applied temperature

=—————=F, as an input into Equation (5), with the applied

statistical — 2

temperatur € Tapplied temperature = T;emp .
21. Brief Summary of Reference [8] and the Problem of a
Solution by Radicals

Readers are recommended to go to page 4 of [8] where the question of if a quin-
tic polynomial is exactly solvable. Well it is not in general solvable. That is the
point of reference [2], and the trinomial quintic. And Equation (15).

The answer to why this is known as the Abel Ruffini theorem [49] ie. to look
at the following.

The theorem does not assert that some higher-degree polynomial equations

have no solution. In fact, the opposite is true: every non-constant polynomial
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equation in one unknown, with real or complex coefficients, has at least one
complex number as a solution (and thus, by polynomial division, as many com-
plex roots as its degree, counting repeated roots); this is the fundamental theo-
rem of algebra. These solutions can be computed to any desired degree of accu-
racy using numerical methods such as the Newton-Raphson method or the La-
guerre method, and in this way they are no different from solutions to poly-
nomial equations of the second, third, or fourth degrees. It also does not assert
that no higher-degree polynomial equations can be solved in radicals: the equa-
tion x” — 1 = 0 can be solved in radicals for every positive integer n, for example.
The theorem only shows that there is no general solution in radicals that applies
to all equations of a given degree greater than 4.

Also, see [8], i.e. what the referee does not understand is
quote
no general solution in radicals for degree five generalized quintic equations
means the following cannot be done.

A general solution in radicals an algebraic solution or solution in radicals is a
closed form expression, and more specifically a closed-form algebraic expression,
that is the solution of an algebraic equation in terms of the coefficients, relying
only on addition, subtraction, multiplication, division, raising to integer powers,
and the extraction of roots (square roots, cube roots, etc.).

As stated, we can also go to [57] ie. page 54 where the definition of solvability
by Radicals is done abstractly. See section 9, solvability of polynomials by radi-
cals. Also [58].

The result of reference [11] which is mis understood here, is in determining if
a radical solution of the given quintic exists. Ze.. In terms of Galois splitting field.
The results of Equation (5) ignored by the referee, is in obtaining a solution in
terms of radicals is only achievable with regards to the five linear combinations
of the sort given for coefficients given in Equation (15). Now if we restrict the
solution to the specialized quintic referred to in Equation (15).

End of quote

It is important to review the issues brought up in [59]-[67] before going to the
next point. Ze. what needs to be said is that we are looking at

a) A minimum condition for quantization.

b) Looking at what happens to algebraic theory as to precise delineation as to
roots.

¢) Basic conditions as to black hole and worm hole physics.

In order to parse this we should review the physics of why we are even going
to review the application of [2].

This closed form solution is a direct result of the failure of the quadratic equa-
tion approximation and the application of Gauss-Lucas theorem to have any
commonality.

We furthermore make the following observation, Ze.

Quote
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There are tons of references to Galois theory in this paper. ie. the readers
should READ them. And the following is, in lieu of Equation (32).

We say without reservation that if we wish to have generalized inputs into A1l
and A2 of the quintic equation that the following must be adhered to, and that
without reservation we make, in the spirit of a generalized polynomial solution
the following statement as to the values of the quintic equation. ie, as given be-

low we have a reduplication of Equation (17) to consider

2

5 n raviton count 2 167'C ) (h)

(At) - gd—l B 3(At) + N =0

AnT,, | 4n (Jc* Am [ Je”

d 3 h 3 h

n._.
Al __ gr;\:l;.()n count — #1 (17) reduplicated
A
d 3 h
16m-(n)’

—3i_
4 (Je
3

There are no conceivable conditions for which one would have such a situa-
tion for a GENERAL solution. We are referring to general solvability. Of quin-
tics, by what is known as by radicals. See more on this as follows

End of quote

The referee, and readers are enjoined to review this paper, and look at these
details. Secondly, and I cannot stress this more than once, READ the following
paper, ie. [2] Spearman, B. and Williams, K. (1998) On Solvable Quintics
X’ +ax+b and X’ +ax’ +b.Rocky Mountain Journal of Mathematics, 28.

Note that it is very important. Why was the Kerr Newman black hole chosen
as a statement about quantum gravity? What is special about it? How can this be
justified?

Here, I urge people to read the following

Quote, from [67]

The Kerr-Newman metric describes a very special rotating, charged mass and
is the most general of the asymptotically flat stationary 'black hole' solutions to
the Einstein-Maxwell equations of general relativity. We review the derivation of
this metric from the Reissner-Nordstrom solution by means of a complex trans-
formation algorithm and provide a brief overview of its basic geometric proper-
ties. We also include some discussion of interpretive issues, related metrics, and
higher-dimensional analogues

End of quote

It is the specific adage as to this black hole being the most GENERAL solution.
Le. this generality is why it was picked, as the most general, easily analyzed case.

We urge readers whom may not be satisfied by this to if they have to look at
more extensions of this black hole business to look at [68] which is an encyclo-

pedia of black holes in higher dimensions. It re enforces many of the same
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themes brought up here.

Keep in mind that the next final section has essential details as to solvability of
what is called the restricted trinomial quintic, which is the main focus of the
second array of complaints by the reviewer. This is highly specialized and is al-
gebraic field theory, and Galois theory. For your edification.

It is useful to include in the following.

22. Final Set of Comments as to the Suitability of Using
Galois Theory, i.e. [2], to Solve the Quintic, Due to
Additional Questions Raised

See page 398, of [69] ie. this came from subsequent questions in several addi-
tional rounds of inquiry by the referee, in [14]. Hence, to give a reality as to the
restricted nature of the coefficients of Equation (15) we first of all referred to the
following theorem, as to what not to use in our problem. This primarily because
the reviewer was so dead set against complex to imaginary time values. Ze. con-
sider the following basic theorem:

Theorem, the Fundamental theorem of algebra

The field of complex numbers is algebraically closed, that is, every polynomial
in C[x] has a rootin C ie. in our case, as requested by the referee, we will
be avoiding in analyzing a given polynomial(At)5 + 4, -(At)2 +A4, =0 having
any 4, and 4, with complex coefficients; so as to avoid Af be forced to be
arootin C.

Now, assume we are working with a real valued quintic equation. Ze.

In addition, we have Descartes’ rule of sign [69] is used to determine the
number of real zeros of a polynomial function, Ze. see this example. For the
number of positive real roots, look at the polynomial, written in descending or-
der, and count how many times the sign changes from term to term. This value
represents the maximum number of positive roots in the polynomial. For exam-
ple, in the polynomial f(x)=2x"-9x" —21x* +88x+48, you see two changes
in sign (don’t forget to include the plus sign of the first term!)—from the first
term (+2x%) to the second (-9x°) and from the third term (-21x%) to the fourth
term (88x). That means this equation can have up to two positive solutions.

Descartes’s rule of signs says the number of positive roots is equal to changes
in sign of Ax) or is less than that by an even number (so you keep subtracting 2
until you get either 1 or 0, ie. Negative real roots. For the number of negative
real roots, find f—x) and count again. Because negative numbers raised to even
powers are positive and negative numbers raised to odd powers are negative, this
change affects only terms with odd powers. This step is the same as changing
each term with an odd degree to its opposite sign and counting the sign changes
again, which gives you the maximum number of negative roots. The example
equation becomes f(—x)=2x"+9x’ —21x’ —88x+48, which changes signs
twice. There can be, at most, two negative roots. However, similar to the rule for

positive roots, the number of negative roots is equal to the changes in sign for
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A—x) or must be less than that by an even number. Therefore, this example can
have either 2 or 0 negative roots.

This has been generalized in [71] in the following manner, Ze. In the 1970s
Askold Georgevich Khovanskii developed the theory of fewnomials that genera-
lises Descartes' rule. The rule of signs can be thought of as stating that the num-
ber of real roots of a polynomial is dependent on the polynomial's complexity,
and that this complexity is proportional to the number of monomials it has, not
its degree. Khovanskii showed that this holds true not just for polynomials but
for algebraic combinations of many transcendental functions, the so-called Pfaf-
fian functions [72].

Here, a monomial is defined as [73], and in addition, note that If a polynomial
doesn’t factor, it’s called prime because its only factors are 1 and itself. Having
said that, let us now go to some other issues.

Note

Equation (15) is a carbon copy of part of the abstract result from [2]

Observe

Here is the question. See Equation (15)

The referee in [14] questioned as to the following, i.e. these are desired com-
bination of the given polynomial ( At)s +4,+( At)z + 4, =0. This in itself is fair.
But the allegation that Equation (14) from the text below was constructed out of
thin air is, actually from [2]. We use also, here that X = Az and that then we
will review the math descriptions given in [2]

From [2] and also Equation (15) of this manuscript. We observe that Equation
(15) is synchronized with the appendix entry of reference [2].

Let a and b be nonzero rational numbers. We show that there are an infinite
number of essentially different, irreducible, solvable, quintic trinomials
X’ +ax+b. On the other hand, we show that there are only five essentially dif-
ferent, irreducible, solvable, quintic trinomials x° +ax”+b, namely, by [2],
which is Equation (15) of the text.

The Descartes rule of signs would indicate that such combinations would al-
low for real valued X = Ar. Why is this important? First, the referee has stated
a preference for finding roots of X = At being real valued. ie don’t believe it?
Go to pages 28 and 29 of this manuscript where this preference is explicitly
stated. Secondly, if say a worm hole is in its throat permitting negative time, say
in conjunction that the time variable would become positive in the mouth of the
worm hole. Ze, what we have been doing is to look at the conditions of the time
dynamics in the throat of a worm hole. We shall go to the terms in reference [2]
and begin to describe them, mathematically speaking. 7.e. one of the first items is
that the coefficients 4, and A4, are at least real valued. In fact, we have that
from Equation (6) of the text, that the breakdown of the equation is, given. In
this case, go to Equation (6) of the text.

If we have that d = 2, 4, 6, the sign of temperature does not play a role, and we

will have then that we will have no commensurate connection with Equation (15)
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of the text. It also would indicate a positive time component, as to X = At
whereas we do wish to have the following convention:

a) For the throat, we would prefer to have negative time, which would transi-
tion to positive time, at the mouth of the worm hole. This so long as d=2, 4, 6.

b) If d=1, 3, 5, 7, then we could have, by use of the Descartes sign convention
negative time roots for time in the worm hole throat.

Using [69] [70] [71] [72] [73] we would have then a situation for which we
would first of all avoid having imaginary time, if we use the conventions of Equ-
ation (15) and also keep in mind the first part of Equation (6) from the text we
avoid imaginary, or complex time, which is what the referee would not stand for,
and in addition, negative roots for X = At as well as being real valued which is
what we would prefer to have.

Note, that a possible problem, about using [2] is that the field as specified in
Equation (15) would require that 4, and 4, have rational coefficients. The
restriction this would mean is that we would then say have to have, for the ap-

plication of Equation (15) the following, namely use this part of Equation (6)

ngraviton count

A =— ~ Term with 7 canceled out.

1 4757;6,,1}, d-1 4j ch 3
d 3 h
16m-(n)° .
=————— ~ Term with = canceled out.

-
4n [ Je
3\ n

In the case of 4, this happens immediately. As for 4, it likely would mean

{Part of Equation (6) from text}

defining n or some other input variables in such a way as to lead to a

graviton count

canceling out of the 7m term. Ze my preference would be to have T, and /

defined in such a way as to effectively cancel out the n term from 4, . Note if

n . effectively vanished, we would then have a very easy to solve equation

graviton coun
for X =Ar ie no problem in terms of a defined X = Ar. However, in doing
so we would have another problem in that the linkage to quantum gravity, i.e. a
linkage to gravitons and quantum mechanics would be effectively demolished.

Next, in this is a question of the different terms in reference [2]. We will review
them. First of all is the idea of irreducible polynomials. Let Fbe a finite field. As for
general fields, a non-constant polynomial fin F{x] is said to be irreducible over Fif
it is not the product of two polynomials of positive degree. A polynomial of posi-
tive degree that is not irreducible over Fis called reducible over F. [74]-[79].

Now a polynomial of positive degree is such that the degree of a polynomial
and the sign of its leading coefficient dictates its limiting behavior, and in our
case, we have positive degrees with the term (A’ .

Going back to [2] we have that the following shows up, ie.
If the equation Ax) = 0 is solvable by radicals, the quintic polynomial AX) is

said to be solvable. If AX) is solvable, its Galois group is solvable and is thus
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contained in the Frobenius group Fzo of order 20, and hence is isomorphic to
F,, . Here, polynomial fx) = 0 is solvable by radicals, means that definitions as
to solvability in [80] is satisfied in that we have operations given in the examples
delineated by [81].

To re capitulate, what we choose in [2] was largely chosen due to the physical
issues brought up in pages 48 to 51, as is conveniently brought up in Equation
(15) which was not arbitrarily chosen.

Also, due to another issue once again, Equation (16) of the text, as to what to
avoid reads as 4, =1, 4, =-2, and my objection is clearly rendered in Equa-
tion (17) which does not have 4 =1 and 4, =-2. As to avoiding, 4, =1
and 4, =-2 with these two values chosen not by me, and the equation below
representing what we wish to avoid. ie., Particular solutions in the case where
we want general solutions. Note the following as to what to avoid. ie. see Equa-
tion (17) In short, reference [2] was chosen as to its intersection with the Des-
cartes result as of, once again.

If we have that d = 2, 4, 6, the sign of temperature does not play a role, and we
will have then that we will have no commensurate connection with Equation (15)
of the text. It also would indicate a positive time component, as to X = At
whereas we do wish to have the following convention.

¢) For the throat, we would prefer to have negative time, which would transi-
tion to positive time, at the mouth of the worm hole. This so long as d=2, 4, 6.

d) If d=1, 3, 5, 7, then we could have, by use of the Descartes sign convention
negative time roots for time in the worm hole throat.

Using [69] [70] [71] [72] [73] we would have then a situation for which we
would first of all avoid having imaginary time, if we use the conventions of Equ-
ation (15) and also keep in mind the first part of Equation (6) from the text we
avoid imaginary, or complex time, which is what the referee would not stand for,
and in addition, negative roots for X = At as well as being real valued which is
what we would prefer to have.

Both physics and mathematics is well served, and we used [2] also in addition
to the above, due to Equation (1) which we render again as the three cases, with
the derivative of the polynomial having very different solution behavior for
X = At, than what we would obtain for the quadratic approximation. Plus again,
wishing to have by Descartes convention of signs the possibility of guaranteed
access to non-imaginary, real valued roots, which could have, by Descartes con-
vention of signs cases where not only could we have real valued X =A¢ but
also negative time for X = At in the throat of the wormhole.

See Equation (1) reproduced below as to giving us this starting point.

(ar) +2 =
different At answer from

A (M) +4,=0 (1) reduplicated again
versus needing Galois solution to

(At) +4,-(At) +4,=0

0
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Note in addition that there are other wormhole issues, vitally important which
will be brought up, extending these issues once review is commenced.

Keep in mind that we have one extension which will be stated here.

As a parting remark, this business of choice of sign, for temperature and the
behavior of a worm hole, and the question of if we have quantization behavior
has similarities to some of the research work goals done by John Klauder [82]
which we put in as the final reference as to our inquiry, especially if the worm
hole construction is prevalent in the early phases of the expansion of the un-
iverse, as given in this document. In all we will seek connections with Dr.
Klauder’s work in future extensions of our inquiry.

Finally, and not to be minimized, we view that not only is Dr. Klauder’s work
important that we also have what is known as the Jones Polynomials to compare
our polynomial idea with. 7.e. see [83], page 332.

Since we have referenced temperature, it would be expedient to go to page 332
where there is linkage to polynomials, and the idea of a partition function, and
in page 328. Undoubtedly there will be connections made to what is known as
the Alexander-Conway polynomial of the Hopf link, as given in Figure 45 of
page 328 of [83].

We close in stating also that there are more polynomial issues brought up in
[84] which are linked to higher order curvature terms, which will be playing a

role in our inquiries.

23. Final Remarks to Bring Up for Reference as to the Next
Publication as a Sequel to This Document

One of the issues which has been raised in conversations, has been about the
dimensionality of d. ie., see reference [85], it could be fractal or an irrational
number. Ze. a fractal d may, with some caveats so that one would have Equation
(33) be consistent with the Galois theory of reference [2] so we could use directly
the Rocky Mountain journal of mathematics as to having 4, and 4, with ra-
tional coefficients, which would make our results consistent with the choice of
Equation (15) and reference [2]. To do that we wish to have that the following
equation, as given below avoid having irrational number character. As presented

below.

ngraviton count

4, | 4n (Y (52)
d 3\ n

has no irrational character, but is a fraction

At the minimum, it would be also helpful to investigate if we could look at al-
so, the role of additional dimensions, in terms of gravitational waves, as brought
up in [86], as well as research done by Dr. Li, Dr. Wen Hao, and others in terms
of [87], as to how the character of gravitons which are in space time, as say in
scalar-tensor gravitational theories influences polarizations.

A suggested update as to this research would be to investigate both the issues
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of references [86], and [87] in terms of the worm hole physics, as given in this
document, as well as the extensions of worm hole physics brought up in [84].
Finally, [88], namely what Maggiore brought up in page 663 as to Thermal
Tunneling theory, as to a first order phase transition material which may have very
very strong similarities as to the generation of GW as seen in our model, should be
be further developed and compared with our model, 7.e. the Maggiore Tunneling
and the bounce section of this manuscript, as of [88] may have GW characteristics
tics similar to what we are bringing up in our problem. Ze. there is in page 668 of
[88] a tunneling rate, as given by the physics of Equation (33) below, which is for

GW and gravitons emerging from the worm hole.
I'=Aexp(-S,)
A = proportinality const (53)
S, = Value of Euclidian action

Is such a construction even remotely feasible for the tunneling rate of gravi-
tons say from a closed worm hole throat, to our present universe, and what is the
counter part to the Euclidian action in our model?

As of now, it is assuming a closed throat which appears to be consistent with
our paper, but then say what is the value of the Euclidian action? A final issue to
add, if this Equation (53) is relevant, to graviton production and say if we re-
stricted ourselves to d = 1, i.e. the Kaluza Klein case, could we also look at an in-
termixture of gravitons with the electromagnetic field, which is given in [89],
where from pages 295 to 299, the Kaluza Klein theory of electromagnetism is
brought up, a purported linkage between the fine structure constant, and a no-
minal topological charge, ie. if d= 1, look at say a linkage between a topological
charge, (. and a fine structure constant value. And possibly gravity itself as
from the worm hole throat, via linkage between gravitons, eventually, and the
1/7 gravitational potential. See this from [83] and its equations from 295 to 299
of [84] which gives an introduction to Kaluza Klein, and charges

2

/
a(fine structure const ) = —Hck
¢-r
¢ = scalar field
& (54)
nk |2
o =1 |2
ro\¢

The idea would be to make linkage between the production of Gravitons, and
a gravitational potential energy system, i.e. in this case through the 1/ potential
energy system. ZLe. along the lines of a first order approximation of gravitational
potential energy, as to a modification of the the 1/7 potential energy system, and
a linkage with that to gravitons, and then from there, using that, assuming some
variant of Equation (53) to then link graviton production behavior to the filling
in of detail as to creating charge, Q., ie. in this case creating a unification, via

n

the cosmological constant with the idea of gravitational characteristics, and elec-
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tromagnetics, in the d = 1 case. Keep in mind that as given in [90] there are ex-
tensions of the electromagnetic field, beyond Maxwell’s equation, as given by
Terence Barrett, and that what we are asking about is in the same spirit. Ze. this
is a long term project of linkage of electromagnetic field, with gravitation, in the
case of the wormhole throat, and is a step beyond our present endeavor we
should try for. ie. for d =1 linkage of gravitons, with a 1/ potential and gravity
and an open question of if this 1/ potential could be linked to the state of grav-
ity emerging from a worm hole, and charge Q of electromagnetic fields.
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