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Abstract 
First off, the term t∆  is for the smallest unit of time step. Now, due to rea-
sons we will discuss we state that, contrary to the wishes of a reviewer, the 
author asserts that a full Galois theory analysis of a quintic is mandatory for 
reasons which reflect about how the physics answers are all radically different 
for abbreviated lower math tech answers to this problem. i.e. if one turns the 
quantic to a quadratic, one gets answers materially different from when one 
applies the Gauss-Lucas theorem. So, despite the distaste of some in the 
physics community, this article pitches Galois theory for a restricted quintic. 
We begin our analysis of if a quintic equation for a shift in time, as for a Kerr 
Newman black hole affects possible temperature values, which may lead to 
opening or closing of a worm hole throat. Following Juan Maldacena, et al., 
we evaluate the total energy of a worm hole, with the proviso that the energy 
of the worm hole, in four dimensions for a closed throat has energy of the 
worm hole, as proportional to negative value of (temperature times a fermio-
nic number, q) which is if we view a worm hole as a connection between two 
black holes, a way to show if there is a connection between quantization of 
gravity, and if the worm hole throat is closed. Or open. For the quantic po-
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lynomial, we relate t∆  to a ( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + =  Quintic polynomial 

which has several combinations which Galois theoretical sense is generally 
solvable. We find that 2A  has a number, n of presumed produced gravitons, 
in the time interval t∆  and that both 1A  and 2A  have an Ergosphere area, 
due to the induced Kerr-Newman black hole. If Gravitons and Gravitinos 
have the relationship the author purports in an article the author wrote years 
ago, as cited in this publication, then we have a way to discuss if quantization 
of gravity as affecting temperature T, in the worm hole tells us if a worm hole 
is open or closed. And a choice of the solvable constraints affects temperature, 
T, which in turn affects the sign of a worm hole throat is far harder to solve. We 
explain the genesis of black hole physics negative temperature which is neces-
sary for a positive black hole entropy, and then state our results have something 

very equivalent in terms of worm ding ( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + =  we will be 

having X t= ∆  assumed to be negligible, We then look at a quadratic ver-
sion in the solution of X t= ∆  so we are looking at four regimes for solving 
a quintic, with the infinitesimal value of t∆  effectively reduced our quintic 
to a quadratic equation. Note that in the small t∆  limit for d = 1, 3, 5, 7, we 
cleanly avoid any imaginary time no matter what the sign of tempT  is. In the 
case where we have X t= ∆  assumed to be negligible, the connection in our 
text about coupling constants, if d = 3, may in itself for infinitesimal t∆  
lend toward supporting d = 3. This is different from the more general case for 

general Galois solvability of ( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + = . 1d ≠  means we need 

to consider Galois theory. If d = 2, 4, 6, need 0tempT <  for coefficient 1A  to 
be greater than zero. If 1d ≠  and is instead d = 3, 5, 7, there is an absence of gen-
eral solutions in the Galois solution sense. This because if. 1d ≠  1 0A <  when-
ever d = 3, 5, 7. And when d = 1 in order to have any solvability one would need 

X t= ∆  assumed to be infinitesimal in ( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + = . 
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1. Set up of the Problem: Precursor to Answering  
Innumerable Issues 

We assert that due to the fact that abbreviated lower math tech approximations 
to the derived quintic yield incommensurate very different physics answers to 
the delta t, t∆ , problem, hence due to those very different answers, it is neces-
sary to stop convenient approximations and to solve the problem via Galois 
theory. The godfather review of all solvable quintic problems is given here [1] 
and although a reviewer refused to learn the points raised, a solution to this spe-
cialized quintic is given in [2]. Whereas it will be the job of explaining in sim-
ple language why this is necessary. What we found is that if one changed the 
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quintic to a quadratic, that the answers for the t∆  problem look radically 
different from what we get when we take the derivative of the quintic, chang-
ing it, to understanding that golly gee, the following are not commensurate 
with each other. Note that the 2nd entry into Equation (1) below comes from 
applying the Gauss-Lucas theorem [3] [4]. In the end the three different would 
be general solutions to t∆  in these three equations look very different from 
each other. This is using manipulations of the original quintic as given by the 
author in [5] 

( )

( )

( ) ( )
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A reviewer did the assertion that a specialized solution to the third equation 
existed, whereas he was contravening several hundred years of Quintic poly-
nomial research [6] [7] [8]. We will in the end answer that. And now to the 
physics of how the third equation the Quintic arose in the first place [5]. 

This document will address the problem of a worm hole, as to the question of 
if its throat is opened or closed [9], in doing so, the author references an earlier 
publication [5] which isolated a quintic polynomial in terms of delta t, i.e. t∆ , 
and claims that a general solution in terms of what is called a restricted Quintic, 
with a fifth order term of helps determine the likelihood that a determination 
can be made as to if gravity is semi classical, or could be quantized. The quintic 
in question [5] is for a black hole [5] but if we make the assertion that a worm 
hole may connect two black holes, with information transmitted between them 
by quantum teleportation [10] [11] we then assert that in a general sense the 
classical versus quantum nature of gravity of the worm hole may be ascertained. 
A subsidiary issue is, does the existence of a solution to t∆  allow for a mini-
mum uncertainty principle solution for gravitons via [12] [13] E t∆ ∆ � � , and if 

E t∆ ∆ � �  is solved, do we have a criteria to state if gravity and gravitation is 
classical, semi classical or quantum? Note that the solution to the quintic, in [2] 
may have as noted by a reviewer, to have particular solutions which are trivial. 
We state for the record that such trivial solutions in no way contradict the com-
plexity of the general solution and that the readers of this document should 
consult the Galois theory, and Abel’s insolvability theorem [7] [8] for general 
quintic solutions as a good reason as to disregard trivial solutions to the quintic 
as communicated to the author by a referee as given in [14]. i.e. one has to con-
sider generalized solutions to the quintic according to problems, but if we go to 
higher dimensions, i.e. 1d ≠  gets very complicated fast hence this long article. 
And also, we will be dealing with the reviewers [14] distaste for negative temper-
ature, which is what started this inquiry in the first place due to comments raised 
by the reviewer in [14] is related to Kaluza Klein cosmology as given in reference 
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[15] where we have an explanation as with respect to reference [16] and negative 
temperatures. As is noted in reference [16], negative temperatures when con-
nected with the solution to the quintic as in [2] and [5] do, in certain cases 
which will be outlined connect solidly with negative temperatures. Contributing 
to positive entropy in black holes, this is relatable to the physics in [17] [18] 
which will be in our article. [2] due to the range of values of 1A  and 2A  in [5]. 
This in turns of the additional dimensionality, d, for space times above four di-
mensions specifies tempT . [5]. When d = 1 we have Kaluza Klein type physics, 
and so it goes. The Kaluza Klein [15] situation with d = 1 is by far and away the 
easiest situation to work with, and with the least. 

2. A Reviewer’s Complaints, and Four Cases to Consider 

The paper confused a reviewer who did not understand the references as to neg-
ative temperature. Hence, the first main part of the document is with regards to. 
negative temperature [15]. Then the idea of a general solution to a polynomial 
equation, the quintic [2] [5]. 

Before we do this temperature discussion, i.e. the necessary condition for 
picking the sign of tempT  is gone into, using results from [2], we can state then 
that (from the abstract) that, the following is what we adhere to. 

There are here, though four cases to consider, and three of these arise if t∆  
is infinitesimally small, in which we have the following rules for the sign of tempT  

We are here, revising what is brought up in the discussion of Equation (1) 
which is that we have three different would be equations to contend with which 
are linked to [5] and its results. 

Case 1: 
The first one, is for when we have an effective quadratic equation for t∆  due 

to t∆  being infinitesimally small. And we are avoiding at all costs having im-
aginary t∆ . 

Note that for extra dimensions d = 1, 3, 5, 7, the coefficient 1A  is always less 
than zero, leading to no requirement for tempT  to be < 0. If d = 2, 4, 6, need 

0tempT <  for coefficient 1A  to be less than zero. This will be shown to conflict 
with conditions for general Galois solvability of ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + = . Note, 
that special solutions for ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + =  are easy to obtain, as a re-
viewer noted, but that we are referring to completely general solutions, not spe-
cific special case solutions. 

Now for the sign of tempT , in terms of if we have 1 0A < , and we claim this is 
also convenient as to obtain an easily determined value of, for d = 1, 2, 3, 4, 5, 6, 
7, and a very small value of t∆
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Note then that if d = 1, as in Kaluza Klein theory, we have then that there are 
no questions of imaginary time, and also no tempT  restrictions. In answer to one 
of the reviewer’s questions, we are avoiding having imaginary time, hence, this 
puts restrictions as to the choice of tempT . Ironically, in the case of very small 

t∆ , if d = 1, 3, 5, 7, we have t∆  always real valued and setting 0tempT >  is not 
necessary. i.e. negative temperature 0tempT <  may occur. In doing so, if we do 
this, it means that there can could be positive entropy, for black holes, as is dis-
cussed in [16]. Whereas for d = 2, 4, 6, and above we must have 0tempT >  and 
then the case of if we have sufficiently small t∆  an unavoidable situation for 
possible negative black hole entropy, no matter what which is discussed in [16]. 
i.e. if we have small t∆  and case 1 used, for d = 3 we may have a connection 
with quantized gravity for reasons we will discuss later on in this manuscript. 

Case 2, infinitesimal t∆  and d = 1 the Kaluza Klein case. 
We then always have t∆  real valued, and no restrictions on tempT . 
Case 3, infinitesimal t∆ , and the possibility that t∆  could be imaginary. If d 

= 2, 4, 6, and 0tempT < . 
The reviewer does not like imaginary time. Therefore, for the time being this 

is a mathematical demonstration only and will be only included in for com-
pleteness of this document. However, if we have d = 2, 4, 6, and 0tempT <  the 
following limiting behavior is noted, in Equation (3). 

This in all of what the reviewer has asked for is putting a very strong prefe-
rence in for d = 1 as the Kaluza Klein case avoids multiple pathologies, but again 
only in the case that t∆  to the fifth power is neglected. 

Can this dropping off of t∆  to the fifth power be justified. A full comment 
on that issue will be in the final part of this manuscript. 

For the record, this below is the case, and situation which the reviewer dis-
liked the most. 
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i.e. imaginary time, for 2, 4,6,d = �  
Note this cannot happen, i.e. imaginary time, for d = 1, 3, 5, 7. 
If we can accept imaginary time, then in the case of d = 2, 4, 6, we could have 

0tempT < . However, the reviewer of this manuscript has indicated that he does 
not favor the existence or acceptance of imaginary time. Needless to say though, 
for infinitesimal t∆  if we wish to avoid imaginary times, it is best to consider 
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dimensions d = 1, 3, 5, and above to have a situation for which t∆  infinitesimal 
but real valued, no matter what the sign of tempT  is. And d = 3 ties in directly 
with the situation given in [17] [18] [19]; we have that there is a situation which 
favors d = 3 for reasons which are given on page 639 of [19] and which indicate a 
connection to coupling coefficients, of effective Yang Mills theory which will be 
commented upon in a reply to the referee in the later part of this document. 

Note that in the small t∆  limit for d = 1, 3, 5, 7 we cleanly avoid any imagi-
nary time no matter what the sign of tempT  is. But that for small t∆  limit for d 
= 2, 4, 6, we can have imaginary time. And this, plus the connection to the dis-
cussion on page 639 about coupling constant, if d = 3, reference [19], page 639 
may in itself for infinitesimal t∆  lend toward supporting d = 3. This arises also 
because of the AdS/CFT correspondence bought up in [20] [21] which we use. 

All this is well trod physics, and is not disturbing, but the problem becomes 
glaring if we have t∆  not as infinitesimal, in which then we have some truly 
bizarre physics. i.e. in that case, we have to appeal to Galois theory and a quintic 
Galois solution [5] [7] [8]. 

Case 4, when we have a generalized solution for a Quintic polynomial, when 
t∆  is not necessarily infinitesimal. 
Note that for extra dimensions d = 1, 3, 5, 7, the coefficient 1A  is always less 

than zero, leading to no requirement for tempT  to be < 0. The problem is though, 
that for d = 1, 3, 5, 7 and above, that if [5] is true, then there is no generalized 
Gauss theory solution to the restricted Quintic. As due to communication by the 
referee which we will discuss at length, due to [5] he very quickly came up with a 
specialized trivial example for solving this quintic, but in doing so he contra-
vened not only [5] but also [7] [8]. 

If we do not have an infinitesimal t∆  and if d = 1, 3, 5, 7, the coefficient 1A  
is always less than zero, then if the Galois solvability criteria is correct for the 
quintic as given in [5] as we will outline, we have a huge problem. 

This for general Galois solvability of ( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + = . If d = 2, 4, 6, 

need 0tempT <  for coefficient 1A  to be greater than zero. This for general Ga-
lois solvability of ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + = . Note, that special solutions for 
( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + =  are easy to obtain, as a reviewer noted, but that we are 
referring to completely general solutions, not specific special case solutions. 

As has been noted by Galois, and others, there are trivial specific solutions as 
to the quintic, but what is referred to is a general polynomial solution to the 
quintic fifth order is not solvable in a general algebraic sense. i.e. there are noted 
fourth order general solutions to fourth order polynomial equations, but none in 
the sense of generalized solutions for fifth order polynomials [2] [5] [7] [8]. A 
reference to a Rocky mountain journal of mathematics is included for a general 
solution to a specific fifth order equation [2] [5], and as correctly noted by the 
reviewer, that in one sense the specialized general fifth order equation so derived 
by the author has a trivial special case solution Precisely because we do not have 
a physics reason for making the restriction to the specific special case solution 
suggested by the reviewer, we have to appeal to a general solution, and that in-
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volves a decomposition rooted in Galois theory, among others. 
Finally, a comment as to the minimum uncertainty principle, as a way to 

imply quantization is included. Generally, as noted by the reviewer, the absence 
of a solution to a problem in terms of the minimum uncertainty principle, in this 
case delta E delta t = h bar, written as E t∆ ∆ � �  in itself is not evidence as to 
quantization. In this case, it actually does imply quantization [5] [6] for a reason 
given in this manuscript. The reviewer also is bothered by a discussion as to semi 
classicality versus alleged quantum solutions via an AdS/CFT [2] [16] corres-
pondence discussion. 

The main problem has been the Qintic polynomial, and this is taking up the 
lions share of this manuscript. i.e. it is famously noted by Galois and others that 
a generalized equation for completely general fifth order polynomials is not 
solvable [5] [7] [8]. The restricted general fifth order polynomial, the restricted 
quintic does have trivial specialized solutions, but it still s a very tough technical 
problem, for generalized solutions. Again, as noted, there is a reference as to 
solving the restricted fifth order general quintic polynomial [5] [7] [8]. And the 
author urges that people actually read it. And also review a bit of the literature as 
to Galois theory provided [5] [7] [8]. 

In doing so, the author is not suggesting that there are not numerical solutions 
to the restricted fifth order quintic polynomial. Certainly they are, and the au-
thor actually has a PhD dissertation using Runge Kutta techniques [21] [22] [23] 
[24] as to a condensed matter solution to a very tough condensed matter physics 
problem [25]. In a sense, this entire article is motivated by the author’s PhD dis-
sertation, as of 2001 which had to be numerically iterated, via Runge Kutta and 
also reviewed by quantum field theory to solve a similar extremely complicated 
nonlinear problem [25]. Due to the comments of the reviewer, the author hopes 
that readers take the time to review the Galois motivated manuscript, and realize 
that the author has a mathematics degree in numerical analysis, so the author is 
fully aware of the special case solution. The special case solution as alluded to by 
the reviewer is not a general equation solution [14], for reasons in Galois theory, 
and in other similar work by Abel and other mathematicians [5] [7] [8]. Having 
said that, we get to the first complaint area of the reviewer, as to the physical 
nature of assumed negative temperatures in black hole, and in our case, worm 
hole physics. Keep in mind that we will relate the closure of a worm hole throat 
to temperature, tempT  as given by Visser [9]. So, all this is physically pertinent. 
The methods as to numerical interpolation were studied in [25] [26] [27], whe-
reas [26] and [27] actually reflect some of the modeling issues which show up 
even today, and where the idea of gravitons, as information carriers, as given in 
[22]. 

Before we proceed further, as a bridge to the negative temperature issue of 
black holes, we wish to address the most direct complaint raised by the reviewer, 
and that has to do with the problem of this formalism and its adherence to 
String theory. 
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3. How to Reconcile String Theory Which Is a Quantum 
Gravity Regime, with Results Which Seem to Be  
Inconsistent with Quantum Gravity 

The reviewer, in [14] sent the following question which deserves an answer, i.e. 
Quote 
Another issue is that in all of this the author is working within a “stringy” 

framework, for instance the values of d are chosen such as to be compatible with 
string theory, AdS/CFT concepts are used throughout the work, and so on. 
However, string theory is a theory of quantum gravity. How can you make as-
sumptions consistent with quantum gravity and then derive conditions which 
are inconsistent with quantum gravity at the same time? This is very inconsistent. 

End of quote 
The author refers the readers to [19], specifically go to page 639 as to the 

coupling constants used in super Yang Mills theory. i.e. in the section labeled 
“the Coupling constants”, [24] write that 

Quote, from [19], page 639 
“The dimensional effective coupling of super Yang Mills theory in d + 1 di-

mension is scale dependent. At an energy scale E, it is determined by dimen-
sional analysis to be 

( )2 2 3d
eff YMg E g NE −∼                       (4) 

This coupling is small, so that perturbation theory applies for large E (the UV) 
for d < 3, and for small E (the IR). The special case of d = 3 corresponds to 

4=�  super Yang Mills theory in four dimensions, which is known to be a UV 
finite, conformally invariant theory. In that case, ( )2

effg E  is independent of the 
scale E and corresponds to the t’Hooft coupling constant 

2
YMg Nλ ∼                           (4) 

This is the constant which is held constant in the large-N expansion of the 
gauge theory discussed below. 

End of quote from page 639 of [19]. 
i.e. in our work, the question of d dependence will be crucial in the application 

of the tempT  to the question of if we have adherence to quantum gravity, via if we 
need a negative temperature, will show up as follows, namely. 

If we have from [2] the following decomposition of the quintic polynomial, 
and for this see Equation (6) below, we will be able to go look at the dynamics of 
what may be occurring for d = 3, i.e. what if we have independence of a coupling 
constant from energy, we have from d = 3 in the situation where we have no de-
pendence of the coefficient 1A  upon the sign of the tempT . If say we have a typical  

dependence of system energy, say applied temperature
statistical 2

Bk T
E =  we are saying, if  

we believe that this removes the necessity of having a negative, or positive tem-
perature, that then the possibility of, say a black hole having negative entropy 
(for positive temperature) as given by [15] is not important. But this would 
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mean an effective statistically based negative energy, which would be for say 
energy flowing into a black hole. However, in our derivation of the quintic po-
lynomial, in [2] we are dependent upon an entropy count based upon infinite 
statistics counting algorithm based upon entropy being based upon an admitted 
particle count, i.e. S ~ particle count n, as given in [28]. The upshot is, that if we 
have d = 3 that we have a string theory-based removal of the sign of energy, and 
temperature in coupling which means that the coupling constant as given in 
Equations (4) and (5) is also consistent with [29] and is also covered in [5] as we 
derived it. i.e. that the result we have, which uses [28] and [29], for d = 3 is fully 
consistent with the Equation (4) and Equation (5) removal of the centrality of 
how we evaluate energy, in terms of the sign of energy, if we in doing this regard  

our input energy, as say along the lines of applied temperature
statistical 2

Bk T
E = . In this 

sense, our results in terms of removal of the importance of the sign of the tem-
perature, and by extension statistical energy, given in Equation (6) below may 
make a partial linkage between Equation (6) below, and Equation (5) if we can 

write applied temperature
statistical 2

Bk T
E E= = , as an input into Equation (5), with the 

applied temperature applied temperature tempT T=  

( ) ( ) ( )2
5 2graviton count
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tempT⇒  should be negative if 2,4,6,d = �  for 1 0A >  

tempT⇒  does not have to be negative if 1,3,5,7,d = �  for 1 0A <  
but the solvability requirement for a Galois solution, by [5] 
is impossible. And 1 0A <  all the time 1 0A >  

2
YMg Nλ ∼                            (5) 

If the removal of the sign of the temperature, as given in tempT , is similar to 
reducing the importance of the sign of energy, as an input using  

applied temperature
statistical 2

Bk T
E E= = , with E used in Equation (5), we then have a 

connection with string theory which is in a sense answering the referees objec-
tions. This is different from when we have sensitivity as to the sign. 

In fact, as discussed earlier, using [2] and [5] we have that if we have this, that 
we can only use d = 2, 4, 6, so as to have a preference for negative temperatures 
and if [16] is believed, then a situation for which all black hole entropy is then 
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positive. If we have positive entropy, and we model the worm hole as a connec-
tion between two black holes, then we may have a consistent physical model, in-
dicating positive entropy. 

i.e. for values of d = 2, d = 4, d = 6, we have a situation where we are looking 
for where we have would be quantum behavior, i.e. a solution for this quintic, if 
we have negative temperatures. i.e. 1 0A > . We claim then that we have a rela-
tionship to the situation given in Equation (5) above. And thereby answer the 
reviewer’s question. 

When 1,3,5,d = �  we claim then that Equation (6) is in sync with Equation 
(5) and that especially when d = 3 we have the tie in with Equation (6) and Equ-
ation (5). And most telling the d = 3 case appears to superimpose directly with 
Equation (6) and the discussion as to what that implies given on page 639 but we 
rule out d = 3, if we are looking at a generalized Galois solution given through 
Equation (6). 

4. Negative Temperatures 

One of the complaints of a reviewer has been about the idea of negative temper-
atures. Before we begin our discussion, we will briefly allude to the history of 
negative temperatures, and black hole physics, then allude as to what it may have 
to do with our problem. [16] is the starting reference, i.e. we will reference nega-
tive temperature as far as the history of black hole physics. 

The executive summary of black hole physics, is that, indeed, as given by [16] 
and its additional references, as cited below that in order insure that the entropy 
of a black hole is non-negative, i.e. positive that we require having a negative 
Hawking temperature. 

From [16] we will follow the following quote. 
II. New Hawking Temperatures from Thermodynamics 
In the spin systems the temperature can be negative, due to the upper bound 

of the energy spectrum [4]. Recently, a number of black hole solutions which 
have similar upper bounds of the black hole masses have been discovered [30] 
[31] [32] [33] [34] [35] I have argued that the Hawking temperatures for these 
systems might not be given by the usual formula 2πT κ+ += �  [30] [31] [32] 
[33] which is non-negative, but by new formulae which can be negative depend-
ing on the situations [34] [35]. The argument was based on the Hawking’s area 
theorem and the second law. This has been found to agree completely with CF T 
analysis, being related to the AdS/CF T correspondence, as far as the CF T anal-
ysis is available [34] [35]. 

End of quote 
Admittedly, negative temperature appears to contravene the Hawking black 

hole temperature formula. 
Quote, from [35], here we are using our appendix entries to cover entries giv-

en in [35]. 
But this seems to be physically nonsensical since the entropy is non-negative, 
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“by its definition” as a measure of disorderedness [36]; the positiveness of the 
entropy is a “minimum” requirement that must be satisfied if the entropy has a 
statistical mechanical origin [32] [37] [39]. Moreover, without the guarantee of 
the second law, there would be no justification for identifying the entropies, even 
though they satisfy the first law [33] [38]. So, in this paper I consider a different 
approach which can resolve the two problems, simultaneously. The new resolu-
tion is to consider an entropy 

2π
4w

rS
G

+
′ = Ω ⋅
�

�                         
 (7) 

which is non-negative manifestly and also satisfying the second law from the 
area theorem, as in the case of wS  in 

2π
4w

rS
G

+= Ω ⋅
�

�
                         (8) 

for a positive Ω. But, in this case I must pay the price, by ˆ considering a new 
temperature 

T T+ +′ ≡ −                            (9) 

End of quote 
The tack of reference [9] [30] [37] is that in order to have a positive black hole 

entropy, that we have to entertain negative temperature, which is given in Equa-
tion (9) and which is elaborated on in page 5 of reference [9] [30] [37] i.e. by the 
following adage, i.e. in order to have positive black hole entropy, the tempera-
ture has to be negative, i.e. Equation (8) could give negative black hole entropy, 
and in order to obtain positive entropy for a black hole, as given by Equation (7) 
we have to have Equation (9) with negative temperature. To those whom still do 
not believe this summary? Go to reference [9] [30] [37] [38] and look it up. Now 
how does this connect worm holes? i.e. a typical model of worm holes has in its 
formulation a worm hole bridge between two black holes. The complete 
Schwarzschild geometry consists of a black hole, a white hole, and two Universes 
connected at their horizons by a wormhole [39]. We have already discussed that 
negative temperature may exist in astrophysics, i.e. our next section is to link 
that to worm holes [40]. 

5. Negative Temperatures, and the Total Energy of Worm Holes 

As we will argue accessing Juan Maldacena, et al. [41], the total energy of a 
worm hole reads as follows, h namely 

wormhole

temperature

8
2 1
1 2π

E q
q j

T

= −

= +
=

�

�
.                       (10) 

In short, if the total wormhole temperatureT , temperature is less than zero, we 
have, then that the wormholeE  is greater than zero. So, what does this mean? Neg-
ative energy appears in the speculative theory of wormholes, where it is needed 
to keep the wormhole open. A wormhole directly connects two locations which 
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may be separated arbitrarily far apart in both space and time, and in principle 
allows near-instantaneous travel between them [44]. 

i.e. for a negative temperature, the worm hole throat is shut, and if the worm-
hole is open, the temperature has to be >0, indeed temperatureT  is less than zero, 
we have a shut worm hole. But we observe in [42] in its figure 1, of page 1446 a 
figure 1, of [42] which has the likely interpretation of being a black hole, linked 
to a white hole, with a worm hole specifying entanglement between the two re-
gimes. Of the two astrophysical objects. This is also part of [43]. 

6. Wormholes and Black Holes, and Possibly White Holes 

As mentioned before, we have in [44] in its figure 1, of page 1446 of [42] a possi-
ble linkage between a black hole, to a white hole via a worm hole. In any case, 
according to [3] there is a connection via quantum teleportation which may link 
two black holes, hence, this is akin to [9] [36] [42] with some additional caveats/ 
i.e. as seen in [4]. And [4], the subject of a linkage of transversal worm holes is 
being revisited, and we claim also that we can add more specific structure to the 
analysis, as recently presented. Note that in [4] that the introduction to the ab-
stract states, i.e. go to [4] and do not forget what is in [36] [42] [44] about quan-
tum teleportation linkage between two black holes as to a worm hole bridge, 
Now, consider 

Quote, from abstract of [4] 
We study various aspects of wormholes that are made traversable by an inte-

raction between the two of boundaries. We concentrate on the case of near-
lyAdS2 gravity and discuss a very simple mechanical picture for the gravitational 
dynamics. 

End of quote 
Our supposition goes beyond this, i.e. an analysis as to the physics of trans-

versable worm holes is built upon gravitational physics as it affects the energy 
value, as given in Equation (9). i.e. we assume a set of given conditions which 
allow for if the temperature, temperatureT  is positive or negative. To do this though 
we will answer a complete mathematical mis understanding of quintic mathe-
matics by the referee. 

7. Answering a Misunderstanding by the Referee as to the 
Mathematical Solution of a Quintic Polynomial, Which Is 
Used to Ascertain if Ttemperature Is Positive or Negative 

First of all, we ask the readers to review Equation (9), and this will be to deter-
mine if temperatureT  or positive and this comes from use of [2], i.e. we will look at 
the following Equations ((11), (12)) and then if Equation (12) holds, Equation 
(13) below which mandates having 1 0A >  in Equation (6) which then leads to 
what the reviewer incorrectly found a trivial solution for, i.e. the reviewer, and 
also readers are expected to look at Galois theory to come up with a generalized, 
as opposed to looking at Galois theory for general solvability. 
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Note that for reasons which will be discussed in terms of its attendant physics 
in the later part of the manuscript, that for extremely small ( )5t∆  that in that 
situation where we have a simple quadratic, that instead of having 1 0A >  we 
have, instead 

graviton count
1 1 32

0
4π 4π

3

d
temp

n
A

T Jc
d

−= − <
   

⋅ ⋅   
   �

 when we have ( )5t∆  about zero   (11) 

This is reflected in a simple general physics solution to 

( ) ( )2
2graviton count

1 33 22

16π
0

4π 4π4π
33

d
temp

n
t

T JcJc
d

−

⋅
− ∆ + ≡
    

⋅⋅ ⋅    
   

�

��

         (12) 

If we have non-vanishing ( )5t∆  the situation changes, and we have then 

( ) ( ) ( )2
5 2graviton count

1 33 22

16π
0

4π 4π4π
33

d
temp

n
t t

T JcJc
d

−

⋅
∆ − ∆ + ≡

    
⋅⋅ ⋅    
   

�

��      

 (13) 

We will, in spite of the protests of the reviewer, avoid the specialized solution, 
use a general solution, and then state 

graviton count
1 1 32

0
4π 4π

3

d
temp

n
A

T Jc
d

−= − >
   

⋅ ⋅   
   �

 when we have ( )5t∆  still contributing (14) 

If Equation (12) no longer holds due to the fact we no longer have a quadratic 
equation due to ( )5t∆  not vanishing, we will have to go to what the reviewer 
found so distasteful, i.e. Equation (14), and then the odd situation of what is 
given below. It is expected that the reviewer and also readers will take the time to 
go to this reference, which is in [2] and also [11] and then take the time to read 
some Galois theory. FTR we will then go back to Equation (6) when setting up 
the usage of Equation (15) below. 

Let a and b be nonzero rational numbers. We show that there are an infinite 
number of essentially different, irreducible, solvable, quintic trinomials 5X ax b+ + . 
On the other hand, we show that there are only five essentially different, irre-
ducible, solvable, quintic trinomials 5 2x ax b+ + , namely, by [2] [11] 

5 2

5 2

5 2

5 2

5 2

5 3,

5 15,

25 300,

100 1000,

and 250 625.

x x
X x
X x
X X

X X

+ +

+ −

+ +

+ +

+ +

                    (15) 

Here, X t= ∆ , and we change the dimensional scaling of 1A  and 2A , so as 
to be consistent with Equation (15), and in addition, the d in Equation (6) can 
range in size from d = 2, 4, 6 so as to keep our construction consistent with 
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String theory. 
If d = 1, 3, 5, 7 we have then that we could have then, with tempT  either great-

er than or less than zero, with the odd situation that at d = 1, a situation where 
the sign, and the value of tempT  could even be zero itself, i.e. as an artifact of Ka-
luza Klein theory, but then all connection then to Equation (15) would be lost 
and the following, at d = 1 1A  would always be negative. i.e. 

If d = 1, then the following would always be true, (Kaluza Klein theory) and 
then we would be having 

graviton count
1 1 32

0
4π 4π

3

d
temp

n
A

T Jc
d

−= − <
   

⋅ ⋅   
   �

               (16) 

The only way to avoid having all connections with Kaluza Klein theory re-
moved is to say that in the case of d = 1 that we would have to have X t= ∆  in-
finitesimally small, hence we state the following. 

Theorem A 
If d = 1 in order to come up with solvable conditions for Equation (6) 

X t= ∆  will be assumed to be negligible, i.e. we then look at a quadratic version 
in the solution of X t= ∆  of Equation (6), and that then only when d = 1. i.e. d 
= 1 will presumably be having use of Equation (12), hence having a situation 
which involves no requirement on tempT  being less than zero. In fact, tempT  
could be any value we wished including the positively weird situation that tempT  
could go to zero itself. So long as d = 1 that is allowed. Once d does not equal 1, 
we have then very tempT  dependent behavior. 

If 1d ≠  we have then very tempT  dependent behavior. And then we have to 
go to the weirdness which the referee found so objectionable. 

Now we will take the position of directly quoting the referee in [10] [11] [12] 
[13] [14] in full and to really answer him. 

Quote 
Let me now come to the main problem of the paper. All the arguments of the pa-

per rely on the fact that a given quintic polynomial of the form 5 2
1 2 0X A X A+ + =  

is only solvable for certain choices of coefficients. In fact, the author says he 
shows there are only five essentially different, irreducible, solvable, quintic tri-
nomials which are solvable. First of all, I don’t understand what “essentially dif-
ferent” means. Does it mean polynomials which are not multiples of each other? 
I find it in any case very hard to believe that there are no other polynomials of 
that type which are solvable. For instance, the following equation:  

5 2 2 0X X+ − = , Equation (1) is trivially solved by X = 1, it is not a multiple of 
any of the other polynomials (assuming that’s what is meant by essentially dif-
ferent) and is irreducible. And similarly, one can construct infinitely many other 
examples. So, the author should clarify this point,  

End of quote 
In the case of d = 1, i.e. Kaluza Klein there is no problem, i.e. see Theorem 1 
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above. and it becomes a trivial general solution which is reflected in Equation 
(16) at d = 1 1A  would always be negative. And the quintic would in d = 1 re-
duce to solving Equation (12), i.e. d = 1 as being solvable would require ( )5t∆  
not contributing, presumably due to being negligible in the full sense of the 
word and the only for Equation (12), and d = 1 we would then have (Kaluza 
Klein) a situation where the sign of tempT , and its magnitude do not play any 
role in the determination of t∆ . 

In the case of 1d ≠ , we will then have to consider when ( )5t∆  intrudes, 
hence the following discussion below. 

i.e. the supposition given above is that there is a specific set of conditions for 
which the author specifically refutes this by the following statement. i.e. that this 
is verbatim. i.e. we are not using the specialized solution to the general solution 
for Equation (17). In particular we have that for a generalized quintic, even in 
trinomial form that one is not going to come up with a particular solution which 
fits the requirements of a general solution. i.e. what was done in [14] was to ar-
bitrarily demand that Equation (17) have A1 = −1 and A2 = 1, and then from 
there have a trivial solution made out which would simply satisfy the needed 
delta t value, which the referee set as equal to 1. We say without reservation that 
if we wish to have generalized inputs into A1 and A2 of the quintic equation that 
the following must be adhered to, and that without reservation we make, in the 
spirit of a generalized polynomial solution the following statement as to the val-
ues of the quintic equation. i.e. 

( ) ( ) ( )

( )

2
5 2graviton count

1 33 22

graviton count
1 1 32

2

2 32

16π
0

4π 4π4π
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1
4π 4π
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d
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T JcJc
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A
Jc

−

−

⋅
∆ − ∆ + ≡

    
⋅⋅ ⋅    
   

⇒ = − ≠
   

⋅ ⋅   
  

⋅
= ≠ −

 
⋅ 
 

�

��

�

�

�

      (17) 

There are no conceivable conditions for which one would have such a situa-
tion. We are referring to general solvability. Of quintics, by what is known as by 
radicals. See more on this as follows. 

In order to make this a bit more to the point, the author will go to Galois 
theory, temporarily, since the referee did not read the following i.e. [6] [7] [8] 
The next section of this paper will cite some of the foundational issues brought 
up in [8] which shows specifically the problem. First will be how the uncer-
tainty principle is related to 5-dimensional physics, since this is one of the 
reasons why we actually bothered to have a quintic equation formed upon the 
minimum uncertainty given in the reference [5] which we will justify in our 
document. 
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8. How to Relate and Embed the Uncertainty Principle from 
Five-Dimensional Physics 

From [45] we have the following discussion which we find is very pertinent to d 
= 1 Kaluza Klein physics and its relationship to the i.e. consider first Let us now, 
briefly allude to the [46] [47] reference, namely: 

Start with the idea of an embedding of four-dimensional space-time in a 
5-dimensional time interval. [45] [46] and realize it inter connections with [46] 
[47] [48] [49] where L = length of canonical metric in 5-Dimensional theory 

( )

22 2
2 2 2
5-dim 4-dim2 2

4
2

d d d

3
scale of scale of Potential well

L LS s l
l l

x l h mc

L
L universe

 
= −  

 
= =

Λ =

=

           (18) 

And then we present, the five momenta as given by 
2

2

4

4

2 d
d

2 d
dl

L xP g
xl

L lP
sl

β
αβ

α =

= −

                      (19) 

Then, if 

( )

2

2

4

4

2
5-dim

0

2 d
d

2 d
d

d d d 0 iff d 0

e & d d

l

A
A l

s L

L xP g
xl

L lP
sl

P x P x P l S

l l l s l L

β
αβ

α

α
α

±

=

= −

= + = =

⇔ = = ±

∫ ∫

            (20) 

One eventually, as given by [48] obtains the Heisenberg type of relations that 
2dd d n lp x h

c l
α

α

   = ⋅ ⋅  
   

                   (21) 

Depending upon how we evaluate 
2dn l

c l
   ⋅  

   
, we can then say that if  

n L l= , and if we have L as the length of the additional dimension, that we have 
from deterministic reasoning in 5 dimensions achieved Equation (20) which in 

four dimensions, depending upon how 
2dn l

c l
   ⋅  

   
 is evaluated is in common 

with x p∆ ∆ ≥ �  [50]. 

To proceed with this further in [51] we have that E t∆ ∆ ≥ � , and that the fol-
lowing holds, in cosmological physics, in a general sense, i.e. in cosmology we 
can depend upon the following assumptions, namely, as derived by the author in 
[52]. We use the approximation as presented in [52] which we reproduce below 
as also in [53] [54]. 
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( )

( )
2

ij
ij

ij

ijij

g ll
g

p T t A

δ

δ

∆ = ⋅

∆ = ∆ ⋅ ⋅∆
                    

 (22) 

If we use the following, from the Roberson-Walker metric [52] 

( )

( )
( )

2

2

2 2

2 2 2

1

1

sin d
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rr

g

a t
g

k r
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g a t
θθ

φφ θ φ

=

−
=

− ⋅
= − ⋅

= − ⋅ ⋅
                  

 (23) 

Following Unruh [53] [54], write then, an uncertainty of metric tensor as, 
with the following inputs 

( )2 110 35~ 10 , ~ 10 metersPa t r l− −≡                (24) 

Then, if ~ttT ρ∆ ∆  [52] [53] [54] 
( )

( )

4

4

2 2tt tt

tt tt

V t A r
rg T t A

g T
V

δ

δ δ

δ

= ⋅∆ ⋅

⋅∆ ⋅ ⋅∆ ⋅ ≥

⇔ ⋅∆ ≥

�

�

                   

 (25) 

This Equation (24) is such that we can extract, up to a point the HUP prin-
ciple for uncertainty in time and energy, with one very large caveat added, 
namely if we use the fluid approximation of space-time [52] 

( ), , ,iiT diag p p pρ= − − −                    (26) 

Then by [52] 

( )3
~ ~tt

ET
V

ρ ∆
∆ ∆                        (27) 

Then, by [52] 
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g O

δ
δ
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∆ ≥ ≠
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 (28) 

In this case, looking at a rewrite of the Equation (21) to read, approximately as 
2dd d n lp x h

c l
α

α

α

   ⋅ ⋅  
   

∼

                  
 (29) 

With the 
2

0
0

0

d0 d d
2tt

n lp x h t E
c l g

α

α δ
δ

=

   = ⇒ ⋅ ⋅ ⇒ ∆ ≥ ≠  
   

� �
∼       (30) 

Unless ( )~ 1ttg Oδ . 
Having processed in how 5 dimensional geometry may allow for the HUP ac-

cording to the above argument let us now see how, if we do not have ( )5t∆  not 
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contributing, i.e. a quintic, in line with a simple reduction in complexity solution 
to the Equation (16) problem, i.e. a quick and dirty solution [4] [49] [51] [55]. 

9. Applying the Gauss-Lucas Theorem to Equation (17) 

Gauss-Lucas theorem gives a geometrical relation between the roots of a poly-
nomial P and the roots of its derivative P'. i.e., If P is a (nonconstant) polynomial 
with complex coefficients, all zeros of P' belong to the convex hull of the set of 
zeros of P. [49] 
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            (31) 

Superficially, this imposes the same sort of restrictions upon t∆  for d = 1, 3, 
5, but then 
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          (32) 

Hence, we have to do further root analysis. 

10. Brief Summary of Reference [8] and the Problem of a 
Solution by Radicals 

Readers are recommended to go to page 4 of [8] where the question of if a quin-
tic polynomial is exactly solvable. Well it is not. 

The answer to why this is known as the Abel Ruffini theorem [49] i.e. to look 
at the following. 

The theorem does not assert that some higher-degree polynomial equations 
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have no solution. In fact, the opposite is true: every non-constant polynomial 
equation in one unknown, with real or complex coefficients, has at least one 
complex number as a solution (and thus, by polynomial division, as many com-
plex roots as its degree, counting repeated roots); this is the fundamental theo-
rem of algebra. These solutions can be computed to any desired degree of accu-
racy using numerical methods such as the Newton-Raphson method or the La-
guerre method, and in this way they are no different from solutions to poly-
nomial equations of the second, third, or fourth degrees. It also does not assert 
that no higher-degree polynomial equations can be solved in radicals: the equa-
tion xn − 1 = 0 can be solved in radicals for every positive integer n, for example. 
The theorem only shows that there is no general solution in radicals that applies 
to all equations of a given degree greater than 4. 

Also, see [55] [56], i.e. what the referee does not understand [14] is 
Quote 

no general solution in radicals for degree five generalized quintic equations 
means the following cannot be done. 

A general solution in radicals. An algebraic solution or solution in radicals is a 
closed form expression, and more specifically a closed-form algebraic expression, 
that is the solution of an algebraic equation in terms of the coefficients, relying 
only on addition, subtraction, multiplication, division, raising to integer powers, 
and the extraction of roots (square roots, cube roots, etc.). 

As stated, we can also go to [57] i.e. page 54 where the definition of solvability 
by Radicals is done abstractly. See section 9, solvability of polynomials by radi-
cals. Also [58] [59]. 

The result of reference [11] which is mis understood here, is in determining if 
a radical solution of the given quintic exists. i.e. in terms of Galois splitting field. 
The results of Equation (32) ignored by the referee, is in obtaining a solution in 
terms of radicals is only achievable with regards to the five linear combinations 
of the sort given for coefficients given in Equation (33). Now if we restrict the 
solution to the specialized quintic referred to in Equation (12). 

11. Next Objection by the Referee. From [14], Is the Absence 
of Being Able to Apply a Minimum Uncertainty Principle, 
as a Proof of Lack of Quantum Gravity 

Quote from [14] 
It is unclear to me how the author reaches certain conclusions about a possi-

ble quantum nature of gravity. For instance, the whole line of real solving in Equa-
tion (12) is unclear. Why if T temperature > 0 then gravity must be semi-classical? 
Is it because then one cannot have a minimum uncertainty principle? If so, then 
it is unclear to me why the absence of a minimum uncertainty principle is in it-
self an indication that gravity cannot be quantum. Certainly, it hints in that di-
rection, but it is not a solid indication. 

End of quote 
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We will go to two cases, only since these are referred to in terms of first, very 
small t∆  in the case of a definitely real value to the time interval, in which we 
will be looking at in terms of 1,3,5,7,d = �  

Case one, Tiny time step, temperature T can either be less than or greater 
than zero, and no imaginary time. 

Again, as indicated by Equation (1) we have that for a very small-time step, 
for a non-imaginary time, that no matter what the sign of Temperature, T, that 

( ) ( )

1 32

2
2

32
graviton count

4π 4π
316π

; 1,3,5,
4π
3

d
tempT Jc

d
t d

nJc

−     ⋅ ⋅   ⋅    ∆ = ⋅ = 
   ⋅      

��
�

�

    (33) 

In this case, the referee’s question is pertinent. i.e. it is related to the minimum 
uncertainty principle. We do not, in the case of very small-time step, have a situ-
ation for which temperature T is required to be either positive or negative, hence 
we reduce this situation to being of the form E t∆ ∆ � �  

i.e. ( )2 graviton count
1

1 ; 1,3,5,
4π 4π d

temp

n
E d

T
d

−

 
 
 

∆ = ⋅ = 
  
    

�

          

 (34) 

The sign tempT  plays no role in the determination of an energy value, other 
than that this conceivably be the minimum state of a graviton condensate. 

Now let us consider what if d = 1, i.e. Kaluza Klein, i.e. then we have 

( )2 graviton count graviton count
11

1 ; 1,3,5,
4π 4π4π dd

temp

n n
E d

T
d

=−

 
 
 

∆ = ⋅ = → 
  
    

�    (35) 

We are then leading to, if we have a distance, we call gravitiona . 

( ) 2 graviton count
graviton 4π

n
a c ⋅ ≈ �

                
 (36) 

If in this situation we have graviton graviton graviton1a λ ω≈ ∝  

( )

( )

2 graviton count
graviton 1

graviton graviton graviton

2 graviton count
graviton graviton

1 ; 1,3,5,
4π 4π

1

if 1

4π

graviton d
temp

n
a c d

T
d

a

d
n

a c

ω

λ ω

ω

−

 
 
  ⋅ ∝ ≈ ⋅ =     
    

≈ ∝

=

 ⋅ ∝ ≈ 

� �

� �

   (37) 

We claim that in the case of d = 1 in the situation for which ( )5 0t +∆ → , that 
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indeed the ground state, as referred to in Equation (37) is a strong indicator of 
quantum gravity. i.e., The zero-point energy is dependent upon a graviton count, 

graviton countn . 
We see that in the case of minimum uncertainty in quantum mechanics, 

Quantum mechanically, the uncertainty principle forces the electron to have 
non-zero momentum and non-zero expectation value of position. If a is an av-
erage distance electron-proton distance, the uncertainty principle informs us 
that the minimum electron momentum is on the order of ħ/a. i.e. if we have the 
same situation with a presumed graviton, and give it a mass of gravitonm  infinite-
simally small but not zero, and say we have a distance we call gravitiona . So, the 
minimum graviton momentum is 

( ) gravitongravitonmomentump a≈ �                 (38) 

Assume that gravitons are then endowed with mass, and then the mass vanishes 

( ) ( ) ( )
( )

222 2 2
graviton graviton graviton graviton

22
graviton graviton gravitonif 0

p c E m c a c

E a c m

 = − ≈ ⋅ 

 ⇒ ≈ ⋅ → 

�

�
        (39) 

leads to a minimum energy equation looking like 

( ) 2 graviton count
graviton 1

1 ; 1,3,5,
4π 4π d

temp

n
a c d

T
d

−

 
 
  ⋅ ≈ ⋅ =     
    

�           (40) 

The HUP is central to the discussion of if a minimum uncertainty exists. In 
any stationary state 0p =  or at least is a constant so any system in which 
there is a stationary state that has a gaussian wave function will have minimum 
position/momentum uncertainty. One case where this occurs is the ground state 
of the harmonic oscillator. In the case of a graviton we have that  

( )graviton
graviton

h h
p p

λ λ
 

≡ = ≡  
 

 from the de Broglie hypothesis, we will answer in  

the last part of the question the final issues of if the quantum condition is due to 
a minimum uncertainty principle being satisfied. 

Doing so means that we can, if d = 1, as in the case of Kaluza Klein theory, 
and 5-dimensional cosmology [5] still stick with temperature 0T < . Other values of d 
will lead to different situations. i.e., for d = 0, d = 2, d = 4, and d = 6 there is a 
chance for temperature 0T <  leading to an exactly solvable value for Equation (7) 
for the X t= ∆  X = delta t substitution. 

12. Three Theorems, So as to Have a Case by Case Rendition 
of the Physics of Our Quintic Polynomial 
( ) ( )t A t A5 2

1 2 0∆ + ⋅ ∆ + =  

Theorem 1 
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For d = 0, d = 2, d = 4, and d = 6, Equation (2) and Equation (3) are solvable, 
in terms of X t= ∆ , hence, then for the 1A  and 2A  terms, contributing to a 
value of X t= ∆  we do not have an exactly solvable Quintic polynomial. Hence, 
then, temperature 0T <  is not going to contribute to 1A  being changed from a 
negative value, as given in Equation (2) to a positive value so it would be com-
mensurate with Equation (3). Hence, so that temperature 0T <  changes 1 0A > . 

Hence, a necessary condition for exact solvability of the restricted quantic 
commensurate for Equation (2) and Equation (3) and 1 0A >  is that the di-
mensions, d, as far as AdS/CFT correspondence have even values. 

Theorem 2 
For d = 0, d = 2, d = 4, and d = 6, Equation (2), Equation (3) and Equation (4) 

are solvable, hence we have that for these values of d, that we have an exact solu-
tion for X t= ∆ , hence then we do have a minimum uncertainty principle 
quantum gravity. We will then say that we DON’T have semi classical treatment 
of gravity. 

Theorem 3 
If we have d = 1, d = 3, d = 5, d = 7 set in AdS/CFT in dimensions, so that 

temperature 0T <  changing 1 0A >  is NO LONGDER POSSIBLE. We have then no 
solvability of Equation (2), Equation (3) and Equation (4), hence, then ODD 
values of d, as given above, lead to SEMI Classical gravity. 

Corollary is that then, ODD values of d, lead to SEMI classical treatment of 
gravity, and we can say then that the Kaluza Klein [5] 5-dimensional treatment 
is at best SEMI classical. 

13. Analyzing When We Have a Very Small X t= ∆  

changing 

( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + =  

to  

( )2 2

1

0
At
A

∆ + =
                       

(41) 

Theorem 4 
X t= ∆  very small, so that the first quintic polynomial term being ignorable, 

leads then to writing: 

( )

( )

5

1

2 2

graviton count

if 0

4π

6π

d
temp

t

T
d

t
n

+

−

∆ ≈

 
 
 ∆ ≡ + ⋅ ⋅�

                 (42) 

We claim that this is rather than a case of semi classical, versus quantum a 
case of real and imaginary time, with a preference toward have d = 1, d = 3, d = 5, 
d = 7 set in AdS/CFT in dimensions, so that temperature 0T <  is not necessary, and 
then we have the following d = 1, d = 3, d = 5, d = 7 to work with, so that we get 
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Theorem 5 
Very small values of the sort with ( )5 0t +∆ ≈  lead to, if d = 1, d = 3, d = 5, d = 

7 then temperature 0T <  is not necessary for real values of t∆ , and then we have 
values of E t∆ ∆ ≡ � , so that E∆  is real valued. Also, then, E∆  is equivalent 
to H, with H a Hamiltonian system, i.e. a 1-1 and onto linkage then to the Ha-
miltonian being the same as the total energy of our system. This is in line with 
Abraham and Mardsen [6], Arnold [7], and Goldstein [8], as well as Spiegel [9] 
of a condition where the Hamiltonian is equal to the total energy of a system. 

14. Conclusion, Relevance to the Problem of the Closed 
Throat of a Wormhole. And Small to Large Delta T Values 

According to applying the criterial of [2] we have that if we look at a worm hole 
Theorem 6 

( )wormhole temperature

wormhole

temperature

wormhole

8 2 1 π 8

0 Open wormhole throat
0 Semi Classical

No quantum gravity if 0

E q j T

E
T

E

= − = − + ⋅ ⋅

< ⇒

⇔ > ⇒

⇔ <

�

            (43) 

Keep in mind that this is making a connection with a Gravitino, of a very light 
mass, so as to be congruent with [2], we would have, say a gravitino of about.25 
electron volts, i.e. see [10] whereas we make the connection to [11] as brought 
up by the author as a link between gravitons and gravitinos, and Mach’s theorem. 
Should this be fleshed out in further generality, we will have the conundrum of 
addressing for very small delta t, Equation (43) in conjunction with Equation (44) 
below compared to Equation (42)) being usefully compared with connections to 
Equation (42) 

( ) ( ) ( ) ( )5 5 2 2 2
1 2

1

if 0 , 0 0
At t A t A t
A

+∆ ≈ ∆ + ⋅ ∆ + = ⇒ ∆ + =        (44) 

This would d = 1, d = 3, d = 5, d = 7 then temperature 0T <  is not necessary for 
real values of t∆ , and then we have values of E t∆ ∆ ≡ � , so that E∆  is real 
valued. And equal to the Hamiltonian. 

Also, if Equation (43) does not hold. 
Whereas for greater time step delta t, we have the consider the cases given in 

Theorems 1, 2, and 3 above. 
Where if d = 1, d = 3, d = 5, d = 7 then temperature 0T < , and then the following 

summing up 
Theorem 7 

if Equation (44) does not hold, i.e. for non-negligible delta t 
if d = 1, d = 3, d = 5, d = 7 then temperature 0T < , and then 

1) ( )wormhole temperature8 2 1 π 8 0E q j T= − = − + ⋅ ⋅ >� , HENCE the worm hole 
throat is closed. 

2) We also do not have classical gravity if (i) is true. i.e. we can have quantum 
gravity. 

https://doi.org/10.4236/jhepgc.2019.51014


A. W. Beckwith 
 

 

DOI: 10.4236/jhepgc.2019.51014 258 Journal of High Energy Physics, Gravitation and Cosmology 
 

3) Open throat worm hole means we assume semi classical gravity. 
Else 
Theorem 8 

if Equation (43) does hold, i.e. for negligible delta t 
if d = 1, d = 3, d = 5, d = 7 then temperature 0T <  IS NOT NECESSARY, for real 
values of t∆ , and then we have values of E t∆ ∆ ≡ � , so that E∆  is real valued. 
And equal to the Hamiltonian. Note then if temperature 0T <  IS NOT NECESSARY 
for quantum gravity and then  

( )wormhole temperature8 2 1 π 8 0E q j T= − = − + ⋅ ⋅ <�  and we have an open worm hole 
throat 

i.e. for very small t∆  it is easy to come up with real values of t∆ , and 
non-imaginary E∆  and it’s easy to obtain  

( )wormhole temperature8 2 1 π 8 0E q j T= − = − + ⋅ ⋅ <�  for an OPEN worm hole throat. 
Theorem 9 
If t∆  not so negligible, in order to obtain  

( )wormhole temperature8 2 1 π 8 0E q j T= − = − + ⋅ ⋅ <�  for an OPEN worm hole throat. 
We would then have to go to semi classical gravity. Due to the difficulty of ob-
taining temperature 0T > . 

With regards to this problem, it is useful to make reference to [2], as its review 
of the fact that a general solution to Quintic 5th order polynomials does not exist. 
What we are doing is accessing instead results from Galois theory, as to Quintics, 
[6] [7]. 

In a nutshell, we will be formally deriving ( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + =  in our 

next section and from there ascertaining if the polynomial so derived, is ex-
plainable in terms of [5], in terms of exactly solvable solutions for t∆ . For the 
sake of referencing the development of this article, we have as our motivating 
hypothesis, that if ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + =  is a polynomial in a form given in 
[5] that indeed, since n will be in terms of a graviton count from a black hole 
that then we have a NECESSARY condition for quantum gravity, at least in the 
framework of aligning ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + =  in terms of the polynomials 
given in [5] which are allegedly exactly solvable. If ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + =  
does not meet the conditions given in [5], then we say that the criteria for exact 
solvability of an expression for t∆ have not been met, and that indeed, then we 
have at best a semi classical treatment of gravity for reason which we will discuss 
at the end of our manuscript. 

Finally, the reference [9] by C. A. Pickett and J. D. Zunda gives an area calcu-
lation which neatly fits into [10] and [11], whereas there is in [10] a precise cal-
culation of entropy which also has an area to volume identification for black holes 
and entropy calculations. We close after all of this in stating that the energy, will 
be part of E∆ , as in the usual Heisenberg Uncertainty relationships, E t∆ ∆ ≥ � , 
whereas we take the minimum condition of uncertainty by writing E t∆ ∆ ≡ �  
[12], and [13] confirms that indeed we have that use of minimum uncertainty in 
terms of data analysis has a long history if done correctly. Keep in mind that we 
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do an abbreviation of 
2E mc t m c t∆ ≡ = ∆ ⇒ = ∆� �                  (45) 

This will allow us to obtain, in entropy a polynomial which we identify as 
( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + = . The exact solution of this analysis, in terms of [2] will 
then form the basis of our analysis of if we have classical gravity, or quantum gravity, 
in terms of necessary conditions. If Equation (45) and ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + =  is 
not exactly solvable, in terms of [5] we will the assert that this means gravity, in the 
case of the derived expression for Kerr-Newman black holes, is semi classical. 

15. Derivation of the Polynomial ( ) ( )t A t A5 2
1 2 0∆ + ⋅ ∆ + =  

We begin by looking at [20] [21] for which we have that in terms of an AdS/CFT 
representation of entropy that we have, especially if we use [9] for Area, and S 
proportional to n for graviton count related to Entropy, as by [27], then 

( )

( )

2

3 3
22

area

22 2
2 2

2 2

11 2
2

entropy

4π 4π16π 16π
3 3

dd 1 d d d

1

4π16π
4 3

i j

dd

N

E mc t m c t

J Jc tA m c t
m

L r rS t x x
rr r

r

L r JcS E
G r E

+

+

−−

+

∆ ≡ = ∆ ⇒ = ∆

⋅∆   = + ⋅ = ⋅ ∆ + ⋅   
   

 
 
     = ⋅ − − + +           −       

  
= ⋅ ⋅ ⋅ ∆ + ⋅   ∆  

� �

�
�

13

graviton count

4π d
tempT

d

n

−     ⋅     
∝

   (46) 

We then have the following representation for a polynomial in t∆ , namely if 
we have conflating of the material in Equation (45) as far as a quantic treatment 
of delta t, as by [5] we have that 

( ) ( )

3 111 2
2

graviton count

4π4π16π
4 3

ddd
temp

N

TL r Jct n
G r t d

−−−

+

       ⋅ ⋅ ⋅ ∆ + ⋅ ⋅ ∝       ∆     
�

�
 (47) 

We will then, describe how to obtain from Equation (47), the Quintic  
( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + = . 

16. Obtaining ( ) ( )t A t A5 2
1 2 0∆ + ⋅ ∆ + =  from Equation (47) 

In order to obtain this, we make the following substitutions below, and we will 
state specifically that in order to have a negative temperature in order to obtain 
the conditions as given in [5] [59] for a Quintic polynomial which is solvable in 
the sense of what that article [5] [59] is saying. We will later on describe this in 
detail. But below we put in the substation needed so we can obtain the poly-
nomial in delta t, which we will then subsequently modify. This also uses [20] 
and [21] 
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( ) ( )

( ) ( )

( ) ( )

3 111 2
2

graviton count

32
2 graviton count

1

32
2 5 grav

4π4π16π
4 3

4π16π
3 4π

4π16π
3

ddd
temp

N

d
temp

TL r Jct n
G r t d

nJct
t T

d

nJct

−−−

+

−

       ⋅ ⋅ ⋅ ∆ + ⋅ ⋅ ∝       ∆     
   ⇒ ⋅ ∆ + ⋅ ∝   ∆      

 
  
 ⇒ ⋅ + ∆ ⋅ ⋅ −    

�
�

�
�

�
�

( )

( ) ( ) ( )

2iton count
1

2
5 2graviton count

1 33 22

0
4π

16π
0

4π 4π4π
33

d
temp

d
temp

t
T
d

n
t t

T JcJc
d

−

−

∆ ≡
 
 
 

⋅
⇒ ∆ − ∆ + ≡

    
⋅⋅ ⋅    
   

�

��

  (48) 

i.e. in order to obtain, in a sense a Quintic equation which can be solved, [2] [5] 
[59],  

( ) ( ) ( )

( )

2
5 2graviton count

1 33 22

graviton count
1 1 32

2

2 32

16π
0

4π 4π4π
33

4π 4π
3

16π

4π
3

should be negative

d
temp

d
temp

temp

n
t t

T JcJc
d

n
A

T Jc
d

A
Jc

T

−

−

⋅
∆ − ∆ + ≡

    
⋅⋅ ⋅    
   

⇒ = −
   

⋅ ⋅   
  

⋅
=

 
⋅ 
 

⇒

�

��

�

�

�

     

 (49) 

17. Can We Have Negative Temperature? 

This requires using [20] [21] and it is not clear that this is actually obtainable, in 
the experimental set up as given in our [20] [21] input into a black hole. 

What else do we need? 
According to the abstract of [2] and which is used in [5] 
Quote 
Let a and b be nonzero rational numbers. We show that there are an infinite 

number of essentially different, irreducible, solvable, quintic trinomials  
5X ax b+ + . On the other hand, we show that there are only five essentially dif-

ferent, irreducible, solvable, quintic trinomials 5 2 0x ax b+ + = , namely,  
5 2

5 2

5 2

5 2

5 2

5 3,

5 15,

25 300,

100 1000,

and 250 625.

x x
X x
X x
X X

X X

+ +

+ −

+ +

+ +

+ +

                    (50) 
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End of quote 
Aside from having a negative temperature, as for the reason given in Equation 

(48) we have that if [20] [21] is satisfied and still commensurate with reference 
[20] [21] that we also need to have a polynomial in delta t, which is commensu-
rate with Equation (49) (6) which is also influenced by Equation (50) which is 
taken from the abstract in [2], [5] and is linkable to Equation (47). 

18. Conclusion. i.e. A Necessary Condition for Quantization 
of Induced Kerr Newman Black Hole 

We first of all need to have a “negative” temperature. i.e. is this doable? This has 
to be rigorously explored experimentally and determined. 

Secondly our Equation (48) terms have to be consistently comparable to Equ-
ation (49). This requires rescaling of Equation (48) but this is doable pending 
dimensional analysis, and perhaps Planckian physics units. 

Both these conditions would be a NECESSARY condition for satisfying in 
terms of reference [5] 

( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + =  which we state would be due our construction a 

necessary condition for a complete quantum gravity analysis of gravitons being 
emitted from a Kerr-Newman black hole. 

We state that these two points have to be determined and investigated, and 
also that an optimal value of d, for dimensions for a problem, involving Kerr 
Newman black holes would have to be ascertained in future research. 

Finally, we refer the reader to references [59] [60] [61] [62] for additional 
ideas which may be used in future projects. 

Note also that Valev wrote [66] 

graviton
graviton

h
m c

λ
⋅

∼
                     

 (51) 

and Valev indicates in his article that this gives a light year, or more length GW 
of unimaginably low frequency. Obviously, in terms of experimental conditions, 
this breaks down, i.e. in the limit of say a simulated worm hole in a laboratory, 
so it would be useful to find ways to experimentally test and vet Equation (49) in 
our review of basics. 

Arguing further, the derivation done above, as for a HUP is likely doable and 
obtainable from higher dimensions. The referee asked that if a minimum uncer-
tainty relation exists which is what I am asserting via [2] which is influenced by 
[5] that there are then several cases. 

In the situation of Kaluza Klein, d = 1 that we should assert the following. 
Going to the text, there are two equations which bear examination. i.e. see this 

in the text. Recall Equation (36) and Equation (37) of this text. We will summar-
ize again what came in Equation (36) and Equation (37) as follows. 

We are then leading to, if we have a distance, we call gravitiona . And Equation 
(36) and Equation (37) that if in this situation we have  

graviton graviton graviton1a λ ω≈ ∝  We go to Equation (37) with the result that in the 
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case of d = 1 in the situation for which ( )5 0t +∆ → , that indeed the ground state, 
as referred to in Equation (37) is a strong indicator of quantum gravity. i.e., The 
zero-point energy is dependent upon a graviton count, graviton countn . 

End of my argument here. 
i.e. my argument is that in the case of Equation (37) due to the last line, that 

one is having a graviton count, as linked to lowest level uncertainty, for energy 
and that this, in itself is supporting a quantum interpretation of gravity based 
upon minimum time step. 

Keep in mind, too, what is in the answer to my answer to the reviewers first 
question. i.e. S (entropy) ~ n (graviton count) is put in directly into the deriva-
tion of Equation (6). There is no way to guarantee. S (entropy) ~ n (graviton 
count) being positive as to two black holes at the two ends of a worm hole. i.e. 
that is one of the wormhole configurations. Unless one has NEGATIVE temper-
ature. i.e. see the discussion of the text on this, and that ties in directly with the  

sign of 1A , as given in graviton count
1 1 32

0 1
4π 4π

3

d
temp

n
A d

T Jc
d

−= − < ≠
   

⋅ ⋅   
   �

. 

The 1,3,5,d = �  cases have a different behavior than what is in  
2,4,6,d = �  when we are looking at Equation (6) it really hits home. And the 

sign of A1 influences the solvability of finding t∆  which in turn affects the like-
lihood of Equation (37) above, and also, we have that we want a minimum 
energy to depend upon graviton count, with that process being inherently 
quantum nature of gravity. 

The d = 1 case, as with having ( )2 graviton count
1

1 ; 1,3,5,
4π 4π d

temp

n
E d

T
d

−

 
 
 

∆ = ⋅ = 
  
    

� . i.e. 

if d = 1, our minimum uncertainty, which is solvable then will be giving us func-
tional linkage to gravity and gravitons. 

End of quote 
The tack of reference [9] [30] [37] is that in order to have a positive black hole 

entropy, that we have to entertain negative temperature, which is given in Equa-
tion (9) and which is elaborated on in page 5 of reference [9] [30] [37]. i.e., by 
the following adage, i.e. in order to have positive black hole entropy, the temper-
ature has to be negative, i.e. Equation (8) could give negative black hole entropy, 
and in order to obtain positive entropy for a black hole, as given by Equation (7) 
we have to have Equation (9) with negative temperature. To those whom still do 
not believe this summary? Go to reference [9] [30] [37] and look it up. Now how 
does this connect worm holes? i.e., a typical model of worm holes has in its for-
mulation a worm hole bridge between two black holes. The complete Schwarz-
schild geometry consists of a black hole, a white hole, and two Universes con-
nected at their horizons by a wormhole [39]. We have already discussed that 
negative temperature may exist in astrophysics, i.e. our next section is to link 
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that to worm holes [40].  

19. Negative Temperatures, and the Total Energy  
of Worm Holes 

As we will argue accessing Juan Maldacena, et al. [39], the total energy of a 
worm hole reads as follows, h namely given in Equation (10) which has 

wormhole

temperature

8
2 1
1 2π

E q
q j

T

= −

= +
=

�

�
.            (10) reduplicated. 

End of quote 
So far this is not stringy, or linked to AdS/CFT correspondence, but then ob-

serve the following 
From the text. i.e. 

20. How to Reconcile String Theory Which Is a Quantum  
Gravity Regime, with Results Which Seem to Be  
Inconsistent with Quantum Gravity 

The reviewer, in [14] sent the following question which deserves an answer, i.e. 
Quote 
Another issue is that in all of this the author is working within a “stringy” 

framework, for instance the values of d are chosen such as to be compatible with 
string theory, AdS/CFT concepts are used throughout the work, and so on. 
However, string theory is a theory of quantum gravity. How can you make as-
sumptions consistent with quantum gravity and then derive conditions which 
are inconsistent with quantum gravity at the same time? This is very inconsistent 

End of quote 
The author refers the readers to [19], specifically go to page 639 as to the 

coupling constants used in super Yang Mills theory. i.e. in the section labeled 
“the Coupling constants”, [23] write that 

Quote, from [19], page 639 
“The dimensional effective coupling of super Yang Mills theory in d + 1 di-

mension is scale dependent. At an energy scale E, it is determined by dimen-
sional analysis to be given by Equation (4) we write as 

( )2 2 3d
eff YMg E g NE −∼          (4) reduplicated 

This coupling is small, so that perturbation theory applies for large E (the UV) 
for d < 3, and for small E (the IR). The special case of d = 3 corresponds to 

4=�  super Yang Mills theory in four dimensions, which is known to be a UV 
finite, conformally invariant theory. In that case, ( )2

effg E  is independent of the 
scale E and corresponds to the t’Hooft coupling constant which we use the re-
sults of Equation (5) we write as 

2
YMg Nλ ∼              (5) reduplicated 

This is the constant which is held constant in the large-N expansion of the 
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gauge theory discussed below. 
End of quote from page 639 of [19] 
i.e. in our work, the question of d dependence will be crucial in the application 

of the tempT  to the question of if we have adherence to quantum gravity, via if we 
need a negative temperature, will show up as follows, namely 

If we have from [2] the following decomposition of the quintic polynomial, 
and for this see Equation (6) duplicated below, we will be able to go look at the 
dynamics of what may be occurring for d = 3, i.e. what if we have independence 
of a coupling constant from energy, we have from d = 3 in the situation where 
we have no dependence of the coefficient 1A  upon the sign of the tempT . If say we  

have a typical dependence of system energy, say applied temperature
statistical 2

Bk T
E =  we  

are saying, if we believe that this removes the necessity of having a negative, or 
positive temperature, that then the possibility of, say a black hole having nega-
tive entropy (for positive temperature) as given by [15] is not important. But this 
would mean an effective statistically based negative energy, which would be for 
say energy flowing into a black hole. However, in our derivation of the quintic 
polynomial, in [2] we are dependent upon an entropy count based upon infinite 
statistics counting algorithm based upon entropy being based upon an admitted 
particle count, i.e. S ~ particle count n, as given in [29]. The upshot is, that if we 
have d = 3 that we have a string theory-based removal of the sign of energy, and 
temperature in coupling which means that the coupling constant as given in 
Equation (4) and Equation (5) is also consistent with [30] and is also covered in 
[5] as we derived it. i.e. that the result we have, which uses [28] and [29], for d = 
3 is fully consistent with the Equation (4) and Equation (5) removal of the cen-
trality of how we evaluate energy, in terms of the sign of energy, if we in doing  

this regard our input energy, as say along the lines of applied temperature
statistical 2

Bk T
E = . 

In this sense, our results in terms of removal of the importance of the sign of the 
temperature, and by extension statistical energy, given in Equation (6) may 
make a partial linkage between Equation (6), and Equation (5) if we can write 

applied temperature
statistical 2

Bk T
E E= = , as an input into Equation (5), with the applied 

temperature applied temperature tempT T= . 

21. Brief Summary of Reference [8] and the Problem of a 
Solution by Radicals 

Readers are recommended to go to page 4 of [8] where the question of if a quin-
tic polynomial is exactly solvable. Well it is not in general solvable. That is the 
point of reference [2], and the trinomial quintic. And Equation (15). 

The answer to why this is known as the Abel Ruffini theorem [49] i.e. to look 
at the following. 

The theorem does not assert that some higher-degree polynomial equations 
have no solution. In fact, the opposite is true: every non-constant polynomial 

https://doi.org/10.4236/jhepgc.2019.51014


A. W. Beckwith 
 

 

DOI: 10.4236/jhepgc.2019.51014 265 Journal of High Energy Physics, Gravitation and Cosmology 
 

equation in one unknown, with real or complex coefficients, has at least one 
complex number as a solution (and thus, by polynomial division, as many com-
plex roots as its degree, counting repeated roots); this is the fundamental theo-
rem of algebra. These solutions can be computed to any desired degree of accu-
racy using numerical methods such as the Newton-Raphson method or the La-
guerre method, and in this way they are no different from solutions to poly-
nomial equations of the second, third, or fourth degrees. It also does not assert 
that no higher-degree polynomial equations can be solved in radicals: the equa-
tion xn − 1 = 0 can be solved in radicals for every positive integer n, for example. 
The theorem only shows that there is no general solution in radicals that applies 
to all equations of a given degree greater than 4. 

Also, see [8], i.e. what the referee does not understand is 
quote 
no general solution in radicals for degree five generalized quintic equations 
means the following cannot be done. 

A general solution in radicals an algebraic solution or solution in radicals is a 
closed form expression, and more specifically a closed-form algebraic expression, 
that is the solution of an algebraic equation in terms of the coefficients, relying 
only on addition, subtraction, multiplication, division, raising to integer powers, 
and the extraction of roots (square roots, cube roots, etc.). 

As stated, we can also go to [57] i.e. page 54 where the definition of solvability 
by Radicals is done abstractly. See section 9, solvability of polynomials by radi-
cals. Also [58]. 

The result of reference [11] which is mis understood here, is in determining if 
a radical solution of the given quintic exists. i.e.. In terms of Galois splitting field. 
The results of Equation (5) ignored by the referee, is in obtaining a solution in 
terms of radicals is only achievable with regards to the five linear combinations 
of the sort given for coefficients given in Equation (15). Now if we restrict the 
solution to the specialized quintic referred to in Equation (15). 

End of quote 
It is important to review the issues brought up in [59]-[67] before going to the 

next point. i.e. what needs to be said is that we are looking at 
a) A minimum condition for quantization. 
b) Looking at what happens to algebraic theory as to precise delineation as to 

roots. 
c) Basic conditions as to black hole and worm hole physics. 
In order to parse this we should review the physics of why we are even going 

to review the application of [2]. 
This closed form solution is a direct result of the failure of the quadratic equa-

tion approximation and the application of Gauss-Lucas theorem to have any 
commonality. 

We furthermore make the following observation, i.e. 
Quote 
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There are tons of references to Galois theory in this paper. i.e. the readers 
should READ them. And the following is, in lieu of Equation (32). 

We say without reservation that if we wish to have generalized inputs into A1 
and A2 of the quintic equation that the following must be adhered to, and that 
without reservation we make, in the spirit of a generalized polynomial solution 
the following statement as to the values of the quintic equation. i.e., as given be-
low we have a reduplication of Equation (17) to consider 

( ) ( ) ( )

( )

2
5 2graviton count

1 33 22

graviton count
1 1 32

2

2 32

16π
0

4π 4π4π
33

1
4π 4π

3

16π
2

4π
3

d
temp

d
temp

n
t t

T JcJc
d

n
A

T Jc
d

A
Jc

−

−

⋅
∆ − ∆ + ≡

    
⋅⋅ ⋅    
   

⇒ = − ≠
   

⋅ ⋅   
  

⋅
= ≠ −

 
⋅ 
 

�

��

�

�

�   

 (17) reduplicated 

There are no conceivable conditions for which one would have such a situa-
tion for a GENERAL solution. We are referring to general solvability. Of quin-
tics, by what is known as by radicals. See more on this as follows 

End of quote 
The referee, and readers are enjoined to review this paper, and look at these 

details. Secondly, and I cannot stress this more than once, READ the following 
paper, i.e. [2] Spearman, B. and Williams, K. (1998) On Solvable Quintics  

5X ax b+ +  and 5 2X ax b+ + . Rocky Mountain Journal of Mathematics, 28. 
Note that it is very important. Why was the Kerr Newman black hole chosen 

as a statement about quantum gravity? What is special about it? How can this be 
justified? 

Here, I urge people to read the following 
Quote, from [67] 
The Kerr-Newman metric describes a very special rotating, charged mass and 

is the most general of the asymptotically flat stationary 'black hole' solutions to 
the Einstein-Maxwell equations of general relativity. We review the derivation of 
this metric from the Reissner-Nordstrom solution by means of a complex trans-
formation algorithm and provide a brief overview of its basic geometric proper-
ties. We also include some discussion of interpretive issues, related metrics, and 
higher-dimensional analogues 

End of quote 
It is the specific adage as to this black hole being the most GENERAL solution. 

i.e. this generality is why it was picked, as the most general, easily analyzed case. 
We urge readers whom may not be satisfied by this to if they have to look at 

more extensions of this black hole business to look at [68] which is an encyclo-
pedia of black holes in higher dimensions. It re enforces many of the same 
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themes brought up here. 
Keep in mind that the next final section has essential details as to solvability of 

what is called the restricted trinomial quintic, which is the main focus of the 
second array of complaints by the reviewer. This is highly specialized and is al-
gebraic field theory, and Galois theory. For your edification. 

It is useful to include in the following. 

22. Final Set of Comments as to the Suitability of Using  
Galois Theory, i.e. [2], to Solve the Quintic, Due to  
Additional Questions Raised 

See page 398, of [69] i.e. this came from subsequent questions in several addi-
tional rounds of inquiry by the referee, in [14]. Hence, to give a reality as to the 
restricted nature of the coefficients of Equation (15) we first of all referred to the 
following theorem, as to what not to use in our problem. This primarily because 
the reviewer was so dead set against complex to imaginary time values. i.e. con-
sider the following basic theorem: 

Theorem, the Fundamental theorem of algebra 
The field of complex numbers is algebraically closed, that is, every polynomial 

in [ ]x�  has a root in �  i.e. in our case, as requested by the referee, we will 
be avoiding in analyzing a given polynomial ( ) ( )5 2

1 2 0t A t A∆ + ⋅ ∆ + =  having 
any 1A  and 2A  with complex coefficients; so as to avoid t∆  be forced to be 
a root in � . 

Now, assume we are working with a real valued quintic equation. i.e. 
In addition, we have Descartes’ rule of sign [69] is used to determine the 

number of real zeros of a polynomial function, i.e. see this example. For the 
number of positive real roots, look at the polynomial, written in descending or-
der, and count how many times the sign changes from term to term. This value 
represents the maximum number of positive roots in the polynomial. For exam-
ple, in the polynomial ( ) 4 3 22 9 21 88 48f x x x x x= − − + + , you see two changes 
in sign (don’t forget to include the plus sign of the first term!)—from the first 
term (+2x4) to the second (−9x3) and from the third term (−21x2) to the fourth 
term (88x). That means this equation can have up to two positive solutions. 

Descartes’s rule of signs says the number of positive roots is equal to changes 
in sign of f(x) or is less than that by an even number (so you keep subtracting 2 
until you get either 1 or 0, i.e. Negative real roots. For the number of negative 
real roots, find f(−x) and count again. Because negative numbers raised to even 
powers are positive and negative numbers raised to odd powers are negative, this 
change affects only terms with odd powers. This step is the same as changing 
each term with an odd degree to its opposite sign and counting the sign changes 
again, which gives you the maximum number of negative roots. The example 
equation becomes ( ) 4 3 22 9 21 88 48f x x x x x− = + − − + , which changes signs 
twice. There can be, at most, two negative roots. However, similar to the rule for 
positive roots, the number of negative roots is equal to the changes in sign for 
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f(−x) or must be less than that by an even number. Therefore, this example can 
have either 2 or 0 negative roots. 

This has been generalized in [71] in the following manner, i.e. In the 1970s 
Askold Georgevich Khovanskiǐ developed the theory of fewnomials that genera-
lises Descartes' rule. The rule of signs can be thought of as stating that the num-
ber of real roots of a polynomial is dependent on the polynomial's complexity, 
and that this complexity is proportional to the number of monomials it has, not 
its degree. Khovanskiǐ showed that this holds true not just for polynomials but 
for algebraic combinations of many transcendental functions, the so-called Pfaf-
fian functions [72]. 

Here, a monomial is defined as [73], and in addition, note that If a polynomial 
doesn’t factor, it’s called prime because its only factors are 1 and itself. Having 
said that, let us now go to some other issues. 

Note 
Equation (15) is a carbon copy of part of the abstract result from [2] 
Observe 
Here is the question. See Equation (15) 
The referee in [14] questioned as to the following, i.e. these are desired com-

bination of the given polynomial ( ) ( )5 2
1 2 0t A t A∆ + ⋅ ∆ + = . This in itself is fair. 

But the allegation that Equation (14) from the text below was constructed out of 
thin air is, actually from [2]. We use also, here that X t= ∆  and that then we 
will review the math descriptions given in [2] 

From [2] and also Equation (15) of this manuscript. We observe that Equation 
(15) is synchronized with the appendix entry of reference [2]. 

Let a and b be nonzero rational numbers. We show that there are an infinite 
number of essentially different, irreducible, solvable, quintic trinomials 

5X ax b+ + . On the other hand, we show that there are only five essentially dif-
ferent, irreducible, solvable, quintic trinomials 5 2x ax b+ + , namely, by [2], 
which is Equation (15) of the text. 

The Descartes rule of signs would indicate that such combinations would al-
low for real valued X t= ∆ . Why is this important? First, the referee has stated 
a preference for finding roots of X t= ∆  being real valued. i.e. don’t believe it? 
Go to pages 28 and 29 of this manuscript where this preference is explicitly 
stated. Secondly, if say a worm hole is in its throat permitting negative time, say 
in conjunction that the time variable would become positive in the mouth of the 
worm hole. i.e., what we have been doing is to look at the conditions of the time 
dynamics in the throat of a worm hole. We shall go to the terms in reference [2] 
and begin to describe them, mathematically speaking. i.e. one of the first items is 
that the coefficients 1A  and 2A  are at least real valued. In fact, we have that 
from Equation (6) of the text, that the breakdown of the equation is, given. In 
this case, go to Equation (6) of the text. 

If we have that d = 2, 4, 6, the sign of temperature does not play a role, and we 
will have then that we will have no commensurate connection with Equation (15) 
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of the text. It also would indicate a positive time component, as to X t= ∆  
whereas we do wish to have the following convention: 

a) For the throat, we would prefer to have negative time, which would transi-
tion to positive time, at the mouth of the worm hole. This so long as d = 2, 4, 6. 

b) If d = 1, 3, 5, 7, then we could have, by use of the Descartes sign convention 
negative time roots for time in the worm hole throat. 

Using [69] [70] [71] [72] [73] we would have then a situation for which we 
would first of all avoid having imaginary time, if we use the conventions of Equ-
ation (15) and also keep in mind the first part of Equation (6) from the text we 
avoid imaginary, or complex time, which is what the referee would not stand for, 
and in addition, negative roots for X t= ∆  as well as being real valued which is 
what we would prefer to have. 

Note, that a possible problem, about using [2] is that the field as specified in 
Equation (15) would require that 1A  and 2A  have rational coefficients. The 
restriction this would mean is that we would then say have to have, for the ap-
plication of Equation (15) the following, namely use this part of Equation (6) 

( )

graviton count
1 1 32

2

2 32

Term with π canceled out.
4π 4π

3

16π
Term with π canceled out.

4π
3

d
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n
A

T Jc
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⋅
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                                       {Part of Equation (6) from text} 

In the case of 2A  this happens immediately. As for 1A , it likely would mean 
defining graviton countn  or some other input variables in such a way as to lead to a 
canceling out of the π  term. i.e. my preference would be to have tempT  and J 
defined in such a way as to effectively cancel out the π  term from 1A . Note if 

graviton countn effectively vanished, we would then have a very easy to solve equation 
for X t= ∆  i.e. no problem in terms of a defined X t= ∆ . However, in doing 
so we would have another problem in that the linkage to quantum gravity, i.e. a 
linkage to gravitons and quantum mechanics would be effectively demolished. 

Next, in this is a question of the different terms in reference [2]. We will review 
them. First of all is the idea of irreducible polynomials. Let F be a finite field. As for 
general fields, a non-constant polynomial f in F[x] is said to be irreducible over F if 
it is not the product of two polynomials of positive degree. A polynomial of posi-
tive degree that is not irreducible over F is called reducible over F. [74]-[79]. 

Now a polynomial of positive degree is such that the degree of a polynomial 
and the sign of its leading coefficient dictates its limiting behavior, and in our 
case, we have positive degrees with the term ( )5t∆ . 

Going back to [2] we have that the following shows up, i.e. 
If the equation f(x) = 0 is solvable by radicals, the quintic polynomial f(X) is 

said to be solvable. If f(X) is solvable, its Galois group is solvable and is thus 
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contained in the Frobenius group Fzo of order 20, and hence is isomorphic to 

20F . Here, polynomial f(x) = 0 is solvable by radicals, means that definitions as 
to solvability in [80] is satisfied in that we have operations given in the examples 
delineated by [81]. 

To re capitulate, what we choose in [2] was largely chosen due to the physical 
issues brought up in pages 48 to 51, as is conveniently brought up in Equation 
(15) which was not arbitrarily chosen. 

Also, due to another issue once again, Equation (16) of the text, as to what to 
avoid reads as 1 1A = , 2 2A = − , and my objection is clearly rendered in Equa-
tion (17) which does not have 1 1A =  and 2 2A = − . As to avoiding, 1 1A =  
and 2 2A = −  with these two values chosen not by me, and the equation below 
representing what we wish to avoid. i.e., Particular solutions in the case where 
we want general solutions. Note the following as to what to avoid. i.e. see Equa-
tion (17) In short, reference [2] was chosen as to its intersection with the Des-
cartes result as of, once again. 

If we have that d = 2, 4, 6, the sign of temperature does not play a role, and we 
will have then that we will have no commensurate connection with Equation (15) 
of the text. It also would indicate a positive time component, as to X t= ∆  
whereas we do wish to have the following convention. 

c) For the throat, we would prefer to have negative time, which would transi-
tion to positive time, at the mouth of the worm hole. This so long as d = 2, 4, 6. 

d) If d = 1, 3, 5, 7, then we could have, by use of the Descartes sign convention 
negative time roots for time in the worm hole throat. 

Using [69] [70] [71] [72] [73] we would have then a situation for which we 
would first of all avoid having imaginary time, if we use the conventions of Equ-
ation (15) and also keep in mind the first part of Equation (6) from the text we 
avoid imaginary, or complex time, which is what the referee would not stand for, 
and in addition, negative roots for X t= ∆  as well as being real valued which is 
what we would prefer to have. 

Both physics and mathematics is well served, and we used [2] also in addition 
to the above, due to Equation (1) which we render again as the three cases, with 
the derivative of the polynomial having very different solution behavior for 
X t= ∆ , than what we would obtain for the quadratic approximation. Plus again, 

wishing to have by Descartes convention of signs the possibility of guaranteed 
access to non-imaginary, real valued roots, which could have, by Descartes con-
vention of signs cases where not only could we have real valued X t= ∆  but 
also negative time for X t= ∆  in the throat of the wormhole. 

See Equation (1) reproduced below as to giving us this starting point. 
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       (1) reduplicated again 
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Note in addition that there are other wormhole issues, vitally important which 
will be brought up, extending these issues once review is commenced. 

Keep in mind that we have one extension which will be stated here. 
As a parting remark, this business of choice of sign, for temperature and the 

behavior of a worm hole, and the question of if we have quantization behavior 
has similarities to some of the research work goals done by John Klauder [82] 
which we put in as the final reference as to our inquiry, especially if the worm 
hole construction is prevalent in the early phases of the expansion of the un-
iverse, as given in this document. In all we will seek connections with Dr. 
Klauder’s work in future extensions of our inquiry. 

Finally, and not to be minimized, we view that not only is Dr. Klauder’s work 
important that we also have what is known as the Jones Polynomials to compare 
our polynomial idea with. i.e. see [83], page 332. 

Since we have referenced temperature, it would be expedient to go to page 332 
where there is linkage to polynomials, and the idea of a partition function, and 
in page 328. Undoubtedly there will be connections made to what is known as 
the Alexander-Conway polynomial of the Hopf link, as given in Figure 45 of 
page 328 of [83]. 

We close in stating also that there are more polynomial issues brought up in 
[84] which are linked to higher order curvature terms, which will be playing a 
role in our inquiries. 

23. Final Remarks to Bring Up for Reference as to the Next 
Publication as a Sequel to This Document 

One of the issues which has been raised in conversations, has been about the 
dimensionality of d. i.e., see reference [85], it could be fractal or an irrational 
number. i.e. a fractal d may, with some caveats so that one would have Equation 
(33) be consistent with the Galois theory of reference [2] so we could use directly 
the Rocky Mountain journal of mathematics as to having 1A  and 2A  with ra-
tional coefficients, which would make our results consistent with the choice of 
Equation (15) and reference [2]. To do that we wish to have that the following 
equation, as given below avoid having irrational number character. As presented 
below. 

graviton count
1 1 324π 4π

3
has no irrational character, but is a fraction

d
temp

n
A

T Jc
d

−= −
   

⋅ ⋅   
   �

            

 (52) 

At the minimum, it would be also helpful to investigate if we could look at al-
so, the role of additional dimensions, in terms of gravitational waves, as brought 
up in [86], as well as research done by Dr. Li, Dr. Wen Hao, and others in terms 
of [87], as to how the character of gravitons which are in space time, as say in 
scalar-tensor gravitational theories influences polarizations. 

A suggested update as to this research would be to investigate both the issues 
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of references [86], and [87] in terms of the worm hole physics, as given in this 
document, as well as the extensions of worm hole physics brought up in [84]. 

Finally, [88], namely what Maggiore brought up in page 663 as to Thermal 
Tunneling theory, as to a first order phase transition material which may have very 
very strong similarities as to the generation of GW as seen in our model, should be 
be further developed and compared with our model, i.e. the Maggiore Tunneling 
and the bounce section of this manuscript, as of [88] may have GW characteristics 
tics similar to what we are bringing up in our problem. i.e. there is in page 668 of 
[88] a tunneling rate, as given by the physics of Equation (33) below, which is for 
GW and gravitons emerging from the worm hole. 

( )exp
proportinality const
Value of Euclidian action

e

e

A S
A
S

Γ = −

=
=                 

 (53) 

Is such a construction even remotely feasible for the tunneling rate of gravi-
tons say from a closed worm hole throat, to our present universe, and what is the 
counter part to the Euclidian action in our model? 

As of now, it is assuming a closed throat which appears to be consistent with 
our paper, but then say what is the value of the Euclidian action? A final issue to 
add, if this Equation (53) is relevant, to graviton production and say if we re-
stricted ourselves to d = 1, i.e. the Kaluza Klein case, could we also look at an in-
termixture of gravitons with the electromagnetic field, which is given in [89], 
where from pages 295 to 299, the Kaluza Klein theory of electromagnetism is 
brought up, a purported linkage between the fine structure constant, and a no-
minal topological charge, i.e. if d = 1, look at say a linkage between a topological 
charge, nQ�  and a fine structure constant value. And possibly gravity itself as 
from the worm hole throat, via linkage between gravitons, eventually, and the 
1/r2 gravitational potential. See this from [83] and its equations from 295 to 299 
of [84] which gives an introduction to Kaluza Klein, and charges 

( )
2
Planck

2

4
fine structure const

scalar field
&

2
n

l
r

nQ
r

α
φ

φ

κ
φ

=
⋅

=

= ⋅�

�

                 (54) 

The idea would be to make linkage between the production of Gravitons, and 
a gravitational potential energy system, i.e. in this case through the 1/r2 potential 
energy system. i.e. along the lines of a first order approximation of gravitational 
potential energy, as to a modification of the the 1/r2 potential energy system, and 
a linkage with that to gravitons, and then from there, using that, assuming some 
variant of Equation (53) to then link graviton production behavior to the filling 
in of detail as to creating charge, nQ� , i.e. in this case creating a unification, via 
the cosmological constant with the idea of gravitational characteristics, and elec-
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tromagnetics, in the d = 1 case. Keep in mind that as given in [90] there are ex-
tensions of the electromagnetic field, beyond Maxwell’s equation, as given by 
Terence Barrett, and that what we are asking about is in the same spirit. i.e. this 
is a long term project of linkage of electromagnetic field, with gravitation, in the 
case of the wormhole throat, and is a step beyond our present endeavor we 
should try for. i.e. for d = 1 linkage of gravitons, with a 1/r2 potential and gravity 
and an open question of if this 1/r2 potential could be linked to the state of grav-
ity emerging from a worm hole, and charge Q of electromagnetic fields. 
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