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Abstract 
In this work, some non-homogeneous Poisson models are considered to study the 
behaviour of ozone in the city of Puebla, Mexico. Several functions are used as the 
rate function for the non-homogeneous Poisson process. In addition to their depen-
dence on time, these rate functions also depend on some parameters that need to be 
estimated. In order to estimate them, a Bayesian approach will be taken. The expres-
sions for the distributions of the parameters involved in the models are very com-
plex. Therefore, Markov chain Monte Carlo algorithms are used to estimate them. 
The methodology is applied to the ozone data from the city of Puebla, Mexico. 
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1. Introduction 

It is a well known fact that air pollution may cause serious health problems to a sus-
ceptible population present in an environment affected by it. For instance, in [1] [2] [3] 
we have the study of the relation between exposure to ozone pollution and mortality in 
cities in the United States; [4] use regression models to study the effects of air pollution 
on lung development of children and adolescents. Finally, [5] use time series analysis to 
study the relation between ozone air pollution and mortality in Mexico City. 

Given the oxidant nature of ozone, high levels of this pollutant may cause damage to 
the upper respiratory system. Therefore, a person already with some health problems 
may have its condition worsened. Thus, it is important to monitor the level of ozone 

How to cite this paper: Cruz-Juárez, J.A., 
Reyes-Cervantes, H. and Rodrigues, E.R. 
(2016) Analysis of Ozone Behaviour in the 
City of Puebla-Mexico Using Non-Homo- 
geneous Poisson Models with Multiple 
Change-Points. Journal of Environmental 
Protection, 7, 1886-1903. 
http://dx.doi.org/10.4236/jep.2016.712149 
 
Received: September 23, 2016 
Accepted: November 22, 2016 
Published: November 25, 2016 
 
Copyright © 2016 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

   
Open Access

http://www.scirp.org/journal/jep
http://dx.doi.org/10.4236/jep.2016.712149
http://www.scirp.org
http://dx.doi.org/10.4236/jep.2016.712149
http://creativecommons.org/licenses/by/4.0/


J. A. Cruz-Juárez et al. 
 

1887 

and with that avoid population exposure to that pollutant. Hence, environmental au-
thorities in several countries have implemented ozone standards and have used moni-
toring stations to keep track of ozone levels and see when the set standard is not ob-
eyed. Using a continuous monitoring system, measures may be implemented in order 
to decrease ozone concentration and/or to alert the population of high levels. 

During the past 30 years environmental authorities in Mexico and many of its cities 
have also implemented measures to monitor ozone concentration as well as alert the 
population of high levels of this and other pollutants. One of those measures is the con-
struction of monitoring networks. Among the cities with some type of monitoring 
network is Puebla. Puebla is the capital of the state with the same name and has more 
than 5 million inhabitants with a car fleet of more than one million units. Puebla’s 
monitoring network was set in the year 2000 and has four stations, namely, Tecnológi-
co (UTP), Ninfas (Nin), Serdán (Ser), and Agua Santa (AS). In addition to ozone other 
pollutants are also measured. 

The interest here is in analysing the behaviour of the ozone data from the monitoring 
network of the city of Puebla in terms of estimating the probability of having an ozone 
environmental threshold exceeded a certain number of times in a time interval of in-
terest. The study is performed using non-homogeneous Poisson models allowing the 
presence of change-points. Different rate functions are taken into account. They may 
depend on some parameters that need to be estimated. Estimation of the parameters 
involved is performed under the Bayesian point of view via Markov chain Monte Carlo 
algorithms. 

This type of question has been posed and studied before, for instance, [6] as well as 
[7] where non-homogeneous Poisson processes without change-points are used to 
study the ozone behaviour in Mexico City. The latter work presents a Metropolis- 
Hastings algorithm to generate a sample of the parameters involved in the rate function 
of the non-homogeneous Poisson model. In [8] and [9] we have the use of non- 
homogeneous Poisson models allowing the presence of change-points also to study the 
ozone behaviour in Mexico City. Finally, [10] and [11] consider several rate functions 
for the non-homogeneous Poisson process. The former work compares their perfor-
mances and in the latter, a Gibbs sampling algorithm programmed in R is given. The 
Gibbs algorithm is used to generate a sample of the parameters involved in the rate 
function of the Poisson process. Codes of some of the programmes used may be found 
in [7], [8], [11] and [12]. However, none of the works address the problem taking into 
account cities other than Mexico City, Mexico. Here, we consider ozone measurements 
obtained from the monitoring network of the city of Puebla, Mexico. Even though, the 
methodology used will also be non-homogeneous Poisson models allowing the pres-
ence of multiple change-points as in [9] and [10], the data and the context are different 
from previous works. In addition to understanding the behaviour of ozone in Puebla, 
another aim is to compare the results obtained in the case of that city with the ones ob-
tained in the case of Mexico City. 

This paper is organised as follows. In Section 2, the several versions of the model 
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considered here are described. Section 3 gives the Bayesian formulation of the models. 
In Section 4, an application to the case of ozone data from the city of Puebla, Mexico, is 
given. Finally, in Section 5, some comments are made. 

2. The Non-Homogeneous Poisson Models 

In order to use non-homogeneous Poisson models, let tN  indicate the random variable 
recording the number of times that the environmental threshold of interest has been 
exceeded in the time interval [ )0, t , 0t ≥ . We assume that { }: 0tN t= ≥  is a non- 
homogeneous Poisson process with rate and mean functions ( ) 0tλ >  and  
( ) ( )

0
d

t
m t s sλ= ∫ , respectively, 0t ≥ , i.e., for 0,1, 2,k =  , , 0s t ≥ ,  

( ) ( ) ( ) ( ) ( )( )exp .
!

k

t s t

m t s m t
P N N k m t s m t

k+

+ −  − = = − + −          (1) 

Let [ ]0,T  indicate the entire observational period and 1 2, , , Kd d d  be the days in 
[ ]0,T  in which the environmental threshold of interest is exceeded. Hence, 0K ≥  
will denote the number of times that the threshold is exceeded in the time interval 
[ ]0,T . The set { }1 2, , , Kd d d=   will indicate the set of observed data. 

Several forms of rate functions are considered. We take some of the ones used in 
[10]. They are the Weibull (W), Musa-Okumoto (MO) [13], Goel-Okumoto (GO) [14], 
generalised Goel-Okumodo (GGO) and Webull-geometric (WG) [15]. They are given 
as follows,  
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where , , 0α β γ >  and ( )0,1p∈ . The corresponding mean functions are ([8] [9] [10]), 
( ) ( ) ( )Wm t t αβ= , ( ) ( ) ( )log 1MOm t tβ α= + , ( ) ( ) 1 eGO tm t βα − = −  ,  
( ) ( ) 1 eGGO tm t

γβα − = −  
, and ( ) ( ) ( ) ( ) ( ) )log 1 e 1 eWG t tm t p p

α αβ β− −   = − − −       
. 

When the presence of change-points is allowed, we have the following. Assume that 
there are 0I ≥  of such points and let 1 2, , , Iτ τ τ  denote them. Therefore, the rate 
function of the non-homogeneous Poisson process has the following form ([9] [10])  
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with ( )iλ ⋅  one of the rate function given in (2). The corresponding mean function is 
([9] [16])  
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where we take 1I Tτ + = , with ( )im ⋅  the mean function between the change-points 

1iτ −  and iτ , 1, 2, ,i I=  , with 0 0τ = , ( )1m ⋅  the mean function before the first 
change-points and ( )1Im + ⋅  the mean function after the last change-point. 

The vectors of parameters to be estimated are ( ),W MO GO α β= = =θ θ θ ,  
( ), ,GGO α β γ=θ , and ( ), ,WG pα β=θ , when no change-points are allowed. If  

( )1 2, , , Iτ τ τ= τ  is the vector of possible change-points, then when they are allowed 
the vector of parameters to be estimated is ( )1 2 1, , , ,I+= φ θ θ θ τ , where jθ  is the 
vector of parameters of the corresponding rate function when 1j jtτ τ− ≤ < ,  

2,3, ,j I=  , with 1θ  and 1I+θ  the vectors of parameters in the case where 

10 t τ≤ <  and I t Tτ ≤ ≤ , respectively. 

3. The Bayesian Setting 

Estimation of the parameters will be performed using Bayesian inference ([17]). When 
we use Bayesian inference to estimate the parameters of a model, we assume that they 
are random quantities with some distribution assigned to them. Two distributions of 
interest are present, namely, the prior and posterior distributions. The former 
incorporates the researcher’s belief about the parameters behaviour before information 
about the data is incorporated. The latter takes into account that information, which is 
provided by the likelihood function of the model. Therefore, using the Bayesian 
approach, in addition to giving a point estimation of the parameters, a measure of 
uncertainty is also given when we consider the standard deviation and credible intervals 
for the estimates. Therefore, using the Bayesian point of view, we may describe the 
parameters in terms of their distributions and hence the information provided is more 
complete than just using a point estimation. Additionally, due to the complexity of the 
expressions for the likelihood functions of the models, the use of more classical 
methods may pose a problem. 

Therefore, following in that direction, we use the existing relationship between prior 
and posterior distributions and the likelihood function of the model. The posterior 
distribution of a vector of parameters θ  of a model describing a dataset   is indi- 
cated by ( )|P θ  . The posterior distribution is such that, ( ) ( ) ( )| |P L Pθ θ θ∝  , 
where ( )|L θ  and ( )P θ  are the likelihood function of the model and the prior 
distribution of θ , respectively. 

Since we are considering a non-homogeneous Poisson model, the general likelihood 
function when no change-points are present is given by ([18] [19])  

( ) ( ) ( )

1
| e ,

K
m T

i
i
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=

 ∝   
∏ θ                     (3) 

where ( )λ ⋅  and ( )m ⋅  are the rate and mean functions, respectively, which will de- 
pend on the parameter θ . In the case of presence of change-points we have that the 
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likelihood function is ([9] [16])  
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where 
j

Nτ  is the number of exceedances before the change-point jτ , 1, 2,3, ,j I=  . 
The particular forms of the likelihood function, i.e., when we substitute the expression 

for the rate and mean functions in (3) and (4), are given in [9], [10], [11]. The forms of 
the prior distributions of the parameters as well as their hyperparameters are given 
when the models are applied to the data. Parameters are estimated using a Gibbs 
sampling algorithm ([20] [21]) internally implemented in the software OpenBugs 
(www.openbugs.net/w, [22]). The codes are a straightforward modification of the pro- 
grammes presented in [12] and [23]. 

Since many versions of the non-homogeneous Poisson model are considered, we 
need some criteria to select the model that best explains the behaviour of the data. 
Therefore, in addition to the graphical criterion, we also consider the deviance infor- 
mation criterion (DIC). The deviance is defined by ( ) ( )Dev 2 log |L cθ θ= − +   , 
where θ  is the vector of parameters of the model,   is the observed data, ( )|L θ  
is the likelihood function of the model, and c is a constant that is not needed when 
comparing the models. The DIC ([24]) is given by ( )ˆDIC Dev 2 Dnθ= + , where  

( )ˆDev θ  is the deviance evaluated at the posterior mean θ̂ , and  
( ) ( )ˆE Dev DevDn θ θ= −    is the effective number of parameters of the model. Smaller 

values of DIC indicate better models. 
Remark. Note that when we use the DIC we are contrasting the different models. The 

deviance takes into account the information provided by the likelihood function as well 
as the difference between the expected value of the deviance and its value when 
evaluated at the posterior mean of the vector of parameters. Therefore, we test one 
model against the other based on the information provided by the likelihood function 
of the model and taking into account how much the expected deviance differs from the 
one obtained using the estimated parameters. 

4. An Application to Ozone Data from Puebla Monitoring Stations 

In this section we apply the models described in previous sections to the ozone data 
obtained from the monitoring network of the city of Puebla, Mexico. The measure- 
ments correspond to the daily maximum ozone levels obtained from 01 January 2001 to 
31 December 2009, giving a total of 3287T =  observed days. Measurements are made 
minute by minute and the averaged hourly results are reported in each of the four 
stations of the monitoring network. The daily maximum in a given station is the 
maximum of the 24 hourly averaged measurements. The daily maximum measurement 
for the city is the maximum among the daily maxima of all stations. 

After obtaining the daily maximum measurements for stations UTP, Nin, Ser, and 
AS, there were 10%, 36%, 35%, and 21%, respectively, of data missing. Therefore, it was 
necessary to estimate the missing values. The methodology used was the following. If 

http://www.openbugs.net/w
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on the ith day of the jth year the measurement was missing, then if on that same day on 
the ( )1 thj −  and ( )1 thj +  years the data were available, we substitute the missing 
value by an average of the measurements present on that day on the ( )1 thj −  and 
( )1 thj +  years. If those values were also missing, then we would go back and move 
forth another year and do the same procedure. This method is not the best, but due to 
the nature of the data (similar behaviour for similar period in different years) the 
results were not that bad. 

Figure 1 shows the plots of the daily maximum ozone measurements for the city of 
Puebla during the observational period considered here where we have already imputed 
the missing data. 

After completing the datasets and obtaining the daily maximum ozone measure- 
ments for the city, we have that during the observational period the mean measurements 
(in parts per million-ppm) was 0.065 with a standard deviation of 0.026. The environ- 
mental threshold considered here was 0.11 ppm (which was the Mexican environmental 
threshold during the time frame in which the measurements were taken [25]). That 
threshold was exceeded 156K =  times during the observational period. 

We start by considering the case where no change-points are allowed and move to 
assume their presence as necessary. In all cases we assume prior independence of the 
parameters. Also, in all cases the estimation of the parameters was performed with a 
sample of size 10,000 using a sample gap of 10 collected after a burn-in period of 20,000. 
 

 
Figure 1. Daily maximum ozone measurements (observed and estimated) for the 
period of 01 January 2000 to 31 December 2009. 
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Throughout this work we use U(a, b) to indicate the uniform distribution on the 
interval (a, b), and we use Gamma(c, d) to indicate the gamma distribution with mean 
c/d and variance c/d2. 

We will report the estimated parameters only for the selected model. The inclusion of 
change-points will be performed in the cases where the graphical fit requires so. 

4.1. Models with No Change-Points 

When no change-points are considered, the likelihood function is given by (3). The prior 
distribution of the parameters in the case of no change-points are given in Table 1.  

Remark. We would like to point out that, in a preliminary run of the algorithm, we 
have considered uniform prior distributions for all parameters, By doing that, we let the 
weight of information about their behaviour be dictated by the likelihood function of 
the model. After this preliminary run and after analysing the shape of the posterior 
distributions of the parameters, more informative prior distributions were assigned to 
them. The shapes suggested that either uniform or gamma distributions could be taken 
as prior distributions. We have also taken into account the fact that the parameters are 
all greater than zero. The hyperparameters used in the preliminary run were such that 
we had distributions with large variance. In the case of the final run, the hyperparameters 
were obtained based on the results of the preliminary run. 

The values of DIC were 1249, 1288, and 1250 in the cases of W, MO, and WG rate 
functions, respectively. When considering the cases of the GO and GGO models, the 
value of the DIC was 1248. Therefore, the models with smallest DIC are models GO 
and GGO followed closely by the W and WG. The only model with a more distinctive 
value of DIC is the MO. Note that the DIC values for models W, GO, GGO, and WG 
differ by less than 10. Hence, from [26], there is no conclusive evidence that they are 
significantly different. The only model that might be considered significantly different 
is the MO. 

In Figure 2 we have the plots of the observed and estimated means using all rate 
functions considered here. 

It is possible to see that even though the models using WG, W, GO, and GGO rate 
functions are the ones approaching better the observed mean, there is the need to 
include at least one change-point in the models. Hence, we start by assuming first the 
presence of just one change-point. By the information provided by the DIC, we have  
 
Table 1. Prior distributions of the parameters of the models W, MO, GO, MO, GGO, and WG, 
when no change-points are present. The symbol “--” is used to indicate that a parameter is not 
part of a particular model. 

 W MO GO GGO WG 

α U(0, 1.5) Gamma(66.01, 0.507) U(150, 250) U(100, 500) U(0.3, 0.9) 

β Gamma(3.86, 0.76) Gamma(68.77, 2.55) U(0, 0.003) U(1E-05, 0.001) Gamma(3, 1.1) 

γ -- -- -- U(0.5, 1) -- 

p -- -- -- -- U(0, 1) 
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that the MO model is the only one that is significantly different from the others. 
Additionally, we may say that there is no significant difference among the remaining 
models. Therefore, due to its simplicity, we choose to continue with the Weibull rate 
function. Thus, we assume the presence of a change-point only in the W and MO 
models. 

4.2. Models with One Change-Point 

The vector of parameters in the present case is ( )1 2 1, ,τ=φ θ θ . Their prior distributions 
are given in Table 2. 

The values of DIC for the W and MO models are 1226 and 1249, respectively. Hence, 
the chosen model would be the one assuming a Weibull rate function. Figure 3 gives 
the plots of the estimated and observed accumulated means when one change-point is  
 

 
Figure 2. Observed (thinner continuous line) and estimated accumulated means when the 
models W (dashed line), MO (thicker dashed line), GO (thicker continuous line), GGO (dotted 
line), and WG (thinner dashed line) are considered and no change-points are allowed. 
 
Table 2. Prior distributions of the parameters of the models W and MO when one change-point 
is present. The symbol “--” is used to indicate that a parameter is not part of a particular model. 

 W MO 

 iα  iβ  iτ  iα  iβ  iτ  

1i =  U(0, 3) U(10, 70) U(150, 300) U(0, 50,000) U(10, 10,000) U(50, 150) 

2i =  U(0, 2) Gamma(6.56, 0.18) -- U(0, 2000) U(50, 200) -- 
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allowed and rate functions W and MO are used. 
Looking at Figure 3 we may see that the model using the Weibull rate function 

provides better fit to the observed mean. However, we may also see that perhaps with 
the addition of more change-points the fit may improve for both the W and MO models. 

4.3. Models with Two Change-Points 

If we consider the presence of two change-points, then the vector of parameters to be 
estimated is ( )1 2 3, , ,=φ θ θ θ τ  with ( ),i i iα β=θ , 1, 2,3i = , and ( )1 2,τ τ=τ . Their 
prior distributions are given in Table 3. 

The values of DIC for the W and MO models are 1220 and 1259, respectively. There- 
fore, based on the DIC values the chosen model would be the one assuming a Weibull 
rate function. Figure 4 gives the plots of the estimated and observed accumulated means  
 

 
Figure 3. Observed (thinner continuous line) and estimated accumulated means when models W 
(dashed line) and MO (thicker continuous line) are considered and one change-points is allowed. 
 
Table 3. Prior distributions of the parameters of the models W and MO when two change-points 
are present. The symbol “--” is used to indicate that a parameter is not part of a particular model. 

 W MO 

 iα  iβ  iτ  iα  iβ  iτ  

1i =  U(0, 2) U(0, 35) U(50, 90) U(500, 900) U(100, 200) U(50, 80) 

2i =  U(1, 2.5) U(10, 50) U(200, 300) U(150, 200) U(30, 80) U(150, 300) 

3i =  U(0.6, 1) U(0, 15) -- U(200, 250) U(50, 100) -- 
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where two change-points are present and models W and MO are considered. 
Looking at Figure 4 we may see that even though the W model provides a good fit, 

perhaps an additional change-point should be included. Also notice that even though 
towards the end and beginning of the observational period, the MO model provides a 
good fit, in the middle that is not good at all. Therefore, we have decided to continue 
with both models and include an additional change-point. 

4.4. Models with Three Change-Points 

In the models with three change-points, the vector of parameters to be estimated is 
( )1 2 3 4, , , ,=φ θ θ θ θ τ  with ( ),i i iα β=θ , 1, 2,3, 4i = , and ( )1 2 3, ,τ τ τ=τ . Table 4 gives  

 

 
Figure 4. Observed (thinner continuous line) and estimated accumulated means when models W 
(dashed line) and MO (thicker continuous line) are considered and two change-points are 
allowed. 
 
Table 4. Prior distributions of the parameters of the models W and MO when three change- 
points are present. The symbol “--” is used to indicate that a parameter is not part of a particular 
model. 

 W MO 

 iα  iβ  iτ  iα  iβ  iτ  

1i =  U(0, 2) U(0, 35) U(50, 90) U(0, 50,000) U(10, 1500) U(70, 130) 

2i =  U(1, 2.5) U(10, 50) U(200, 300) U(0, 2000) U(50, 200) U(200, 300) 

3i =  U(0.2, 0.6) U(0, 0.1) U(800, 1100) Gamma(1.88, 0.016) U(10, 55) U(800, 880) 

4i =  U(0.9, 1.2) U(10, 25) -- U(0, 500) Gamma(724, 8) -- 
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the prior distributions of all parameters in the W and MO models. 
The values of DIC for the W and MO models are 1225 and 1235, respectively. 

Therefore, we see that the chosen model would be the one assuming a Weibull rate 
function. However, the difference between the DIC obtained when using the W rate 
function differ from the one using the MO by a value of 10. Hence, ([26]) there is not a 
conclusive evidence that the W rate function with three change-points is better than the 
MO model with three change-points to explain the behavior of the data. Figure 5 gives 
the plots of the estimated and observed accumulated means in the case of three 
change-points and models W and MO. 

Note that even though the MO model presents a good fit in the beginning of the 
observational period, we have that at the end of this period the W model fits better. We 
also have that the model assuming a Weibull rate function gives the best overall fit. 
However, it is clear that the inclusion of more change-points could be necessary. 

4.5. Models with Four Change-Points 

When four change-points are allowed, the vector of parameters to be estimated is  
( )1 2 3 4 5, , , , ,=φ θ θ θ θ θ τ  with ( ),i i iα β=θ , 1, 2,3, 4,5i = , and ( )1 2 3 4, , ,τ τ τ τ=τ . The 

prior distributions are given in Table 5. 
The values of DIC for the W and MO models are 1199 and 1200, respectively. Hence, 

we may see that of the models with four change-points the one with smallest DIC is the  
 

 
Figure 5. Observed (thinner continuous line) and estimated accumulated means 
when models W (dashed line) and MO (thicker continuous line) are considered and 
three change-points are allowed. 
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one assuming a Weibull rate function. However, we may also see that the model using 
the Musa-Okumoto rate function is not significantly different from the one using the 
Weibull rate function ([26]). Hence, both models could be considered to explain the 
behaviour of the data. Figure 6 gives the plots of the estimated and observed accumu- 
lated means when four change-points are allowed and the W and MO rate functions are 
considered. 

Looking at Figure 6 we may see that with the inclusion of a fourth change-point the 
model MO adjusts better to the observed mean than when using the W model. Never- 
theless, we may see that perhaps a fifth change-point should be included in the models. 
 
Table 5. Prior distributions of the parameters of the models W and MO when four change-points 
are present. The symbol “--” is used to indicate that a parameter is not part of a particular model. 

 W MO 

 iα  iβ  iτ  iα  iβ  iτ  

1i =  U(0, 3) U(0, 50) U(50, 90) U(0, 55,000) U(100, 5000) U(70, 130) 

2i =  U(1, 2.5) U(10, 50) U(200, 300) U(0, 2000) U(50, 350) U(200, 300) 

3i =  U(0.2, 0.6) U(0, 0.1) U(900, 1000) U(0, 2000) U(10, 200) U(800, 860) 

4i =  U(0.5, 1) U(10, 50) U(1900, 2000) U(400, 2500) Gamma(724, 8) U(1500, 2100) 

5i =  U(0.5, 1.5) U(5, 30) -- Gamma(1.506, 0.001) U(0, 300) -- 

 

 
Figure 6. Observed (thinner continuous line) and estimated accumulated mean when 
models W (dashed line) and MO (thicker continuous line) are considered and four 
change-points are allowed. 
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4.6. Models with Five Change-Points 

If we consider five change-points, then the vector of parameters to be estimated is  
( )1 2 3 4 5 6, , , , , ,=φ θ θ θ θ θ θ τ  with ( ),i i iα β=θ , 1, 2,3, 4,5,6i = , and  
( )1 2 3 4 5, , , ,τ τ τ τ τ=τ . The prior distributions are given in Table 6. 

The values of DIC for the W and MO models are 1139 and 1148, respectively. Based 
on these values we may see that the smallest value corresponds to the W model. 
However, since the DIC for the MO model differs by less than 10, there is not a 
significant evidence that the W models is better than the MO. Figure 7 gives the plots  
 
Table 6. Prior distributions of the parameters of the models W and MO when five change-points 
are present. The symbol “--” is used to indicate that a parameter is not part of a particular model. 

 W MO 

 iα  iβ  iτ  iα  iβ  iτ  

4i =  U(0, 4) U(20, 80) U(60, 70) U(0, 60,000) U(100, 5000) U(70, 130) 

4i =  U(1, 3) U(20, 60) U(210, 250) U(0, 20,000) U(50, 450) U(200, 300) 

4i =  U(0.4, 0.6) U(0, 0.5) U(980, 1000) U(0, 2000) U(10, 200) U(800, 860) 

4i =  U(0.5, 1) U(0, 100) U(1900, 1920) U(1000, 3000) Gamma(724, 8) U(1500, 2100) 

5i =  U(0.8, 1.2) U(10, 100) U(2690, 2750) Gamma(1.506, 0.001) U(0, 300) U(2600, 2800) 

6i =  Gamma(93.5, 161.1) U(0, 200) -- U(90, 100) U(0, 30) -- 

 

 
Figure 7. Observed (thinner continuous line) and estimated accumulated means 
when models W (dashed line) and MO (thicker continuous line) are considered and 
five change-points are allowed. 
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of the estimated and observed accumulated means in the case of presence of five 
change-points and models W and MO. 

Looking at Figure 7 we may see that the model assuming the Weibull rate function 
provides a good fit to the observed mean. However, the best overall fit is given by the 
MO model. 

5. Discussion and Some Comments 

In this work we have, initially, considered several rate functions for the non-homo- 
geneous Poisson process counting the number of times that the ozone environmental 
threshold 0.11 ppm was exceeded in a time interval of interest. Some rate functions 
considered previously in the literature ([9] [10] [11] [12]) to study the problem using 
ozone data from Mexico City are used to analyse the data from the monitoring network 
of the city of Puebla. 

Models without the presence of change-points and allowing their presence are taken 
into account. The model that best explains the behaviour of the data is selected using a 
graphical criterion and the DIC. When using the DIC, the smallest value corresponds to 
the model using the Weibull rate function and allowing the presence of five change- 
points. However, when we look at the DIC in the case of the model using the Musa- 
Okumoto rate function with the presence of five change-points, we may notice that the 
value differ of that of the W model by less than 10. Therefore, there is not enough 
evidence to conclude that both models are significantly different ([26]). We may also 
see that the models with four change-points may also be considered not significantly 
different when we use the DIC to select the best model. In fact, that property is present 
from the case where three change-points are considered on. 

Remark. Note that a preliminary analysis of the accumulated observed mean (i.e., the 
mean obtained directly from the data) shows the possible existence of change-points. In 
order to either confirm or discard their presence, several versions of the model were 
considered. The different results were compared using the DIC and the graphical fit. 
Hence, we have tested the different hypotheses about the model that would better 
explain the behaviour of the data. Also, note that the change-points were estimated as 
well as the parameters of the rate functions. We have assigned a prior distribution to 
them and using a sample drew from the respective posterior distribution we have 
estimated those change-points as well their credible intervals. Note that plots of the 
estimated means were drawn using the estimated parameters which were product of a 
sample from their posterior distributions. We would like to call attention to the fact 
that in addition to the plots of the accumulated observed and estimated means, a 
measure of the discrepancy between observed and estimated means were also used, 
namely the DIC. 

If we use the graphical criterion to select the model that best explain the behaviour of 
the data, then when looking at Figures 2-7, we may see that the fit of the estimated 
accumulated mean to the observed one, improves as we let the number of change- 
points to increase. We may also see that the best graphical fit is provided by the model 
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assuming the Musa-Okumoto rate function and allowing the presence of five change- 
points. 

Therefore, taking into account the two model selection criteria considered here, there 
is an indication that the model that should be chosen to explain the behaviour of the 
ozone data from the city of Puebla is the one assuming the Musa-Okumoto rate 
function allowing the presence of five change-points. This result differs from the ones 
obtained in the case of Mexico City, where the Weibull model is the one that provides 
the best fit in almost all cases ([6] [9] [10] [12]). In spite of having the MO model as the 
one graphically fitting better the data, because of the values of the DIC, we have decided 
to present the estimated parameters for both the Weibull and Musa-Okumoto rate 
functions when we allow the presence of five change-points. Table 7 gives the 
estimated quantities of interest for the W and MO models. 

We would also call attention to the fact that when we consider the Weibull rate 
function it presents a decreasing behaviour between the second and fourth change- 
points, and after the fifth (values of α  smaller than one). However, for the times 
before the second change-point, and between the fourth and fifth, the Weibull rate 
function presents an increasing behaviour. Therefore, for most of the observational 
period, the rate functions between change-points are decreasing functions. 
 
Table 7. Bayesian estimates of the parameters of the non-homogeneous Poisson model for the 
Weibull and Musa-Okumoto rate functions when five change-points are allowed. 

 Mean SD 95% Credible Interval 

 W MO W MO W MO 

1α  2.889 39,280 1.12 13,930 (0.932, 4.859) (9571, 59,100) 

2α  1.956 1410 0.324 639.7 (1.29, 2.458) (206.3, 2690) 

3α  0.492 1458 0.032 401.2 (0.41, 0.54) (528, 1978) 

4α  0.795 2423 0.086 413.5 (0.625, 0.955) (1462, 2977) 

5α  1.116 1391 0.092 790.5 (0.918, 1.25) (163.2, 3071) 

6α  0.555 95 0.052 2.96 (0.456, 0.66) (90.24, 99.75) 

1β  43.86 2412 12.84 1151 (19.5, 73.24) (466.7, 4689) 

2β  40.16 304.2 12.43 103.2 (14.38, 58.72) (85.51, 444.9) 

3β  0.119 304.2 0.053 103.2 (0.015, 0.197) (53.24, 175.9) 

4β  31.31 89.95 11.58 3.302 (11.16, 49.24) (83.56, 96.48) 

5β  25.04 288.6 9.634 60.1 (7.146, 39.33) (180.6, 392.5) 

6β  19.5 10.25 6.731 6.515 (6.429, 29.56) (1.38, 25.64) 

1τ  65 104 11.34 14.47 (50.44, 88.5) (77.03, 126.1) 

2τ  243 249 11.16 12.92 (218.6, 265.7) (229.4, 278.4) 

3τ  967 842 27.08 19.26 (903.6, 999.4) (802.7, 859.8) 

4τ  1911 1897 7.036 28.13 (1901, 1933) (1819, 1942) 

5τ  2716 2719 12.92 14.97 (2704, 2751) (2704, 2760) 
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Since the Musa-Okumoto model with five-change-points is the one whose graphical 
fit is the best and since by the DIC there is not a significant difference between the W 
and MO models with five change-points, from now on we consider only the latter. 

Figure 8 shows the plots of the estimated Musa-Okumoto rate function in the time 
subintervals between change-points and also before and after the first and last change- 
points, respectively. It is possible to see that the plots are also of decreasing functions 
(as noted before in some time subintervals between change-points when the Weibull 
rate function is used) in each subinterval. However, it is possible to see that during the 
time subinterval between the fourth and fifth change-points the values of the rate 
function are larger than the values in the other subintervals with the exception of the 
time subinterval before the first and second change-points. The time subinterval between 
the fourth and fifth change-points corresponds to a period between the beginning of 
the year 2005 and the end of the year 2007. In spite of having a decreasing behaviour in 
the time interval between the fourth and fifth change-points it is possible to see that 
exceedances occur at a much higher rate than at neighbouring time subintervals. 

In the same manner as in previous works ([6] [9] [10] [12]), we may use the estimated 
mean function which in the present case is the Musa-Okumoto, to calculate the 
probability (1) for different values of k and different time intervals. 
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