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Abstract 
This paper presented a new Floquet analysis used to calculate the radiation 
for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate 
evaluation of mutual coupling can be proven by using a new mutual interac-
tion expression that was based on Fourier analysis. Then, this work indicated 
how Floquet analysis can be used to study a finite array with uniform ampli-
tude and linear phase distribution in both x and y directions. To modelize the 
proposed structures, two formulations were given in a spectral and spatial 
domain, where the Moment (MoM) method combined with a generalized 
equivalent circuit (GEC) method was applied. Radiation pattern of coupled 
periodic antenna was shown by varying many parameters, such as frequen-
cies, distance and Floquet states. The 3-D radiation beam of the coupled an-
tenna array was analyzed and compared in several steering angles sθ  and 
coupling values xd . The simulation of this structure demonstrated that di-
rectivity decreased at higher coupling values. The secondary lobs in the an-
tenna radiation pattern affected the main lobe gain by energy dispersal and 
considerable increasing of side lobe level (SLL) may be achieved. Therefore, 
the sweeping of the radiation beam in several steering directions affected the 
electromagnetic performance of the antenna system: the directivity at the 
steering angle π 3sθ =  was more damaged and had 19.99 dB while the 
second at 0sθ =  had about 35.11 dB. This parametric study of coupled struc-
ture used to concept smart periodic antenna with sweeping radiation beam. 
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1. Introduction 
From the early days of communication systems, antenna arrays have been wide-
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spread. They are used in base stations, mobile phones and radars. They are made 
by elementary antennas combined together to synthesize a radiation pattern 
with a directional beam. There are several conventional methods applied to ana-
lyze these systems in [1] [2] [3]. The coupling between the radiating elements 
increases with the dimension of the antenna arrays, making it one of the most 
important factors in the choice of the analysis method. Similar examples are 
found in [4]. In this context, the robustness of such method is evaluated by its 
resistance in front of the interaction between the radiating elements. In this 
work, we present a new formulation of the MoM-CEG method based on the 
Floquet theorem, (refer to [5] [6] [7] for details). This Floquet approach shows 
that the electromagnetic field distribution in periodic structures changes only by 
multiplication of a complex constant for a translation by one period in the global 
structure. The electromagnetic compilation of antenna arrays with an N pattern 
is then reduced to a calculation on one reference cell with periodic walls in a new 
modal base. Indeed, the term of phase shift contains itself the electromagnetic 
information of other adjacent cells. These artificial walls are implemented to 
group all phases from the periodic structure [8] [9] [10] [11]. Then, the Floquet 
modal analysis brings back all possible space calculations to new model calcula-
tion. Then, the Floquet modal analysis examines all the Floquet states and the 
coupling information of the overall structure. This new method is applied to 
generate a 3-D electronically controlled antenna. The sweeping of the radiation 
beam of smart antennas is nowadays used to improve the performance of mobile 
and wireless communications systems [12] [13]. A number of works have been 
reported taking different periodic structures with spectral formulation to study 
1-D and 2-D periodic antenna array [14] [15] [16] [17]. But this work presents a 
new formulation of the MoM-CEG method based on Floquet theorem to optim-
ize coupled periodic antenna with sweeping radiation beam. 

This paper is organized as follows: First it is necessary to explain how to use 
Floquet modal analysis to decrease the complexity of periodic 1-D and 2-D 
structures, see e.g. [14]-[19]. Next, we present the numerical results and discuss 
the behavior of a 3-D steerable radiation beam and how to concept smart peri-
odic antenna with sweeping beam with optimal performance. 

2. Problem Formulation: Periodic Antenna Array   
2.1. Formulation of 1D Periodic Antenna Array 

In this section the formulation of the problem is illustrated in detail. A Floquet 
theory is proposed to reduce the infinite domain to a single cell with periodic 
walls. An electrical field is then formulated and solved through a MoM-GEC 
[20] [21] approach in a spectral domain [22] [23] [24] [25]. The structure under 
analysis is shown in Figure 1. The excitation is given by an 0E  voltage source 
placed in the middle of a metallic patch. The width and the length of patches are 
w and l. The spatial period along the x direction is xd . The height of dielectric 
substance is h, and its relative permittivity rε  is mounted on aground plane. 

This structure is taken as infinite in ( X± ) and periodic with a period xd .  
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Figure 1. 1-D periodic antenna arrays presentation with Floquet theory. 

 
Floquet theorem can be used with this geometric periodicity, so the study of 
global structure is reduced to one cell with Floquet phases ( )exp xj Ndα . For 
details, see [2] [3] [10] [26] [27]. ( )E x  represents an electric field reacting with 
this periodicity.  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

exp

2 exp 2

exp

x x

x x

x x

E x d j d E x

E x d j d E x

E x Nd j Nd E x

α

α

α

 + = ∗
 + = ∗


+ = ∗

 

 

 

               (1) 

Each Floquet phase corresponds to a Floquet state, and the function mFα  
characterizes all possible states. 
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The electric field of the central cell in spacial domain is mE . We associate the 
electric field Eα

  in spectral domain, which models all waves emitted from oth-
er cells of periodic structure.  

( )1 expm m xE E j dα+ =                      (4) 
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The spectral domain MoM-GEC technique can be applied for this single cell 
with periodic walls to extract the electromagnetic parameter. The pertinent 
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problem of the use an electric field integral equation can be solved by applying 
the GEC method. It can replace the integral equation by a simple equivalent cir-
cuit in the discontinuity surface and applies the laws of tension and current to 
extract the relation between electric and current field by using an admittance 
operator [2] [3] [14] [15]. The discontinuity surface contains metallic and di-
electric parties. The equivalent circuit of the unit cell is shown in Figure 2. The 
virtual electric field is defined on the metallic surface and is null on the dielec-
tric part. We note that eE α  its dual. Similar examples are found in [28] [29] 
[30]. 

From this circuit, we can deduce this system:  

0
1
ˆ

e

e eeq

J J

E E J
Y

α α

α α α
α

 =

 = − + ∗


 

  

                    (6) 

The equivalent admittance operator is:  

ˆ ˆ ˆeq upper downY Y Yα α α= +                        (7) 

ˆupperYα  is the upper admittance operator of the infinite empty wave guide with 
periodic walls, and ˆ downYα  is the down admittance operator of the short cir-
cuited dielectric wave guide of height h with periodic walls.  

ˆupper upper
mn mn mn

mn
Y f y fα α= ∑                     (8) 

ˆ down down
mn mn mn

mn
Y f y fα α= ∑                     (9) 

mnf  are the base propagation mode functions.  
Next, we apply the Galerkin method, where we project the excitation mode 

mnf  and the test function pqg  on the previous equation. We then have the 
following system:  
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The matrix form of the former equation can be developed as following:  

0 00
0

t

t

I VA
XA B

α α    
=     −    

                    (11) 

where A is the excitation vector and B is the coupling matrix. The test courant 
functions in metallic part are pqg .  

The resolution of the previous system consequently helps to calculate the vir-
tual electric field eE α  and the electric far field RadE  of the coupled structure. 

2.2. Formulation 2-D Periodic Antenna Arrays 

We take the example of 2-D planar periodic structures of xd  periodicity along  
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Figure 2. Equivalent circuit in spectral domain with MoM-CEM method of unit cell. 

 
the x-axis and yd  periodicity along the y-axis in Figure 3. Floquet theorem can 
be applied to synthesize periodic structures where all antenna elements are 
coupled with each other [16] [17] [31]. 

The formulation of the MoM-CEM method is applied to this reference cell 
with periodic walls in modal space, and the distribution of magnetic field differs 
only by two phases ( ),α β  compared to other cells. We pose ,i jJ  the source 
field in ( ),i j  base cell in periodic device. In this new modal base, ,Jα β  is the 
set of excitation of the others cells such as: 
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Floquet modal analysis reduces spacial electromagnetic calculus of 2-D peri-
odic structure to a spectral calculus in a new modal base which gathers all possi-
ble phases in periodic walls. In this case, we consider the 2-D dimensional case 
along the x- and y-axis with ( )N N∗  identical cells, where each one is excited 
by a located source. The two phases α  and β  belong respectively to the 

Brillouin domain: ,
x xd d

 −Π Π
 
 

 and ,
y yd d

 −Π Π
 
  

. The discretization of Floquet 

mode provides the following: 2πp Lα =  and 2πq Lβ = , where p and q are 
two integer and L N d= ∗ . From these Floquet phases, we associate two fields 
Eαβ  and Jαβ  which model all waves emitted from others cells of the periodic 
structure. 

The discontinuity surface contains metallic and dielectric parties. The excita-
tion Eαβ  of the central path produces a current field Jαβ . This virtual mag-
netic field eJ αβ  is defined on the metallic surface and is null on the dielectric 
part. We note that eE αβ  is its dual. The electric field mnJ  can be developed as 
following:  

( ) ( )π π

π π
2π exp exp d d

d d
mn d d

J d J j md j ndαβ α β α β
− −

= − −∫ ∫       (13) 
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Figure 3. 2-D periodic antenna arrays presentation with Floquet theory. 

 
which 2πd  is a normalization factor and x yd d d= = . Based on the 
MoM-CEM method and using the laws of tension and current of the equivalent 
circuit, we can extract and identify the relationship between the current density, 
the electric field and admittance operator ˆ eqYαβ .  

From this equivalent circuit, we can deduce the following system: 
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The equivalent admittance operator is:  
ˆ ˆ ˆeq down upperY Y Yαβ αβ αβ= +                      (16) 

ˆupperYαβ  and ˆ downYαβ  are respectively the upper and the down admittance oper-
ator.  
where:  

ˆupper upper
mn mn mn

mn
Y f y fαβ αβ= ∑                   (17) 

ˆ down down
mn mn mn

mn
Y f y fαβ αβ= ∑                   (18) 

mnf  are the base propagation mode functions.  
The previous matrix presentation is projected under base and test functions 
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( ), pqmn gf  and can be developed as the following: 
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So, we can deduce the following system: 
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where A is the excitation vector and B is the coupling matrix. 

3. Results and Observations 
3.1. Studie of Floquet States 

In this section, we present a Floquet modal analysis of periodic antenna array. 
As an example we simulate and design a structure of four linear elements using 
matlab software. We extract all possible Floquet modes ( ),α β ; and we show 
their influence on pattern radiation. Results are presented for the following pa-
rameters: 1rε = , 5.5 mmh = , 108 mmxd = , 54 mmyd = , 27 mml = , 1w =  
and 0.75 mmδ = . 

The behavior of magnetic field for one reference cell is shown in Figure 4. 
Table 1 illustrates the performance parameter (side lobe level, peak gain and di-
rectivity) of radiation pattern for each Floquet mode. Refer to [32] [33] [34] for 
details. The radiation pattern plot in Figure 5 obtained by using Floquet modal 
method demonstrates the aptitude of this technique to superpose all Floquet 
modes ( )2 1 0 1, , ,α α α α− −  and their superposition totE  for different steering an-
gles sθ  [35] [36].  

The electromagnetic parameters of each Floquet mode ( )2 1 0 1, , ,α α α α− −  of 
this periodic structure are compared in Table 1. The simulation of this periodic 
structure demonstrates that each Floquet mode defines the mutual coupling of 
the adjacent cell. The superposition of all Floquet modes represents the evolu-
tion of pattern radiation of the reference cell coupled with all others cells. 

3.2. Frequency and Coupling Effect 

In this section, we present and briefly discuss several results of the radiation pat-
tern on an open structure analyzed in the previous section. The simulated radiation  
 
Table 1. Performance Parameters of the 1-D periodic structure for each Floquet mode. 

Floquet mode SLL (dB) Peak gain (dBi) Directivity (dB) 

1α  −13 −6.1 25.18 

0α  −23 −11.4 23.66 

1α−  −13 −6.1 25.81 

2α−  −11.5 −9.6 25.42 
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Figure 4. 2-D representation of the current density maxJ J  with the basis functions at 

5.4 GhzF = , 1.25 mmh = , 108 mmxd = , 54 mmyd = , 1 mmw = , 1= , 1r = , 

0.75 mmδ = , 54 mmλ = , 10 rad mα −= ⋅ , 10 rad mβ −= ⋅ . 

 

 
(a)                                                   (b) 

 
(c) 

Figure 5. Simulated 2-D normalized radiation pattern of periodic antenna for several steering angles sθ  using: 
5.4 GhzF = , 1.25 mmh = , 108 mmxd = , 54 mmyd = , 1 mmw = , 1= , 1r = , 0.75 mmδ = , 54 mmλ = . (a) 

45 degsθ = − , (b) 0 degsθ = , (c) 45 degsθ = . 
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pattern of the antenna is shown in Figure 6. The electromagnetic near fields of 
the planner antenna were simulated with Floquet analysis combined with 
MoM-CEG method. From these results, the radiation pattern was calculated us-
ing the conventional method of the stationary phase. It can be observed that the 
evolution of the pattern radiation for different values of the frequency from 4 to 
10 GHz is not the same, but they have a similar behavior. By exploiting this fig-
ure, at F = 4 GHz, a low directivity is achieved with high power Pmax (the power 
in decibel between the maximum of main lobe and the maximum of secondary 
lobs) with 40 dB and at 10 GHz, a high directivity is achieved with low power 
Pmax with 10 dB. We deduce then that the diagram becomes increasingly selec-
tive by increasing the frequency, but at the same time, the amplitude of the sec-
ondary lobes increases.  

Figure 7 shows the influence of coupling value on radiation pattern in rela-
tion to wavelength. For xd λ= , the power Pmax is 30 dB, but for 3xd λ= , the 
power Pmax is 10 dB. From these results, we can deduce that the pattern radia-
tion of this structure becomes more directive when the period dx increases 
compared to wavelength λ .  

In this example, on 1-D periodic array four planar antennas is discussed. The 
amplitude of each excitation and the phase difference of neighboring cell are 
identicals. The radiation simulation shown in Figure 6 and Figure 7 reveals that 
the behavior of radiation pattern is acceptable with MoM-GEC method com-
bined to Floquet theory and large separation between elements is needed for 
high directivity. 
 

 
Figure 6. The normalized radiation pattern in value (dB) against several frequencies F 
using: 1.25 mmh = , 54 mmxd = , 54 mmyd = , 1 mmw = , 1= , 1r = , 

0.75 mmδ = , 54 mmλ = , 10 rad mα −= ⋅ , 10 rad mβ −= ⋅ . 
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Figure 7. The normalized radiation pattern value in (dB) against several periods xd  of 
global structure using: 5.4 GhzF = , 1.25 mmh = , 54 mmyd = , 1 mmw = , 1= , 

1r = , 0.75 mmδ = , 54 mmλ = , 10 rad mα −= ⋅ , 10 rad mβ −= ⋅ .  

4. 3-D radiation of Smart Periodic Antenna 
4.1. Coupling Effect 

In this section, we study the influence of the coupling and the steering direction 
on the electromagnetic parameters of our periodic structure. 

Figure 8 shows a 3-D beam radiation of the coupled structure in the steered 
direction 0sθ =  for different coupling states , 2 , 3 , 4x x x xd d d dλ λ λ λ= = = = . 
Electromagnetic performance parameters of this coupled structure in different 
coupling values are shown in Table 2.  

4.2. Steering Directions Effect 

Figure 9 shows a 3-D beam radiation of the coupled structure in the high coupling 
value ( )2xd λ=  for different steering directions:  

0, 6, 4, 3s s s sθ θ θ θ= = Π = Π = Π . 

Electromagnetic performance parameters of this coupled structure in different 
steered directions sθ  are shown in Table 3 for high and low coupling values.  

In the previous section, we evaluated periodic antennas with uniform spatial 
periodicity and equitable amplitude distribution. The study of coupling and an-
gular scanning leads us to design an intelligent antenna with a sweeping beam. 
The purpose of this design is to lead the radiation to the desired direction of 
space without affecting the radiation characteristics. The effect of the secondary 
lobes in the antenna radiation pattern is virtually undesirable because it affects  
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Figure 8. The 3-D radiation beam pattern of proposed antenna array at different coupling states for steered 
angle 0sθ =  using: 10.4 GhzF = , 1.25 mmh = , 54 mmyd = , 1 mmw = , 1= , 1r = , 0.75 mmδ = , 

28 mmλ = ; (a) xd λ= ; (b) 2xd λ= ; (c) 3xd λ= ; (d) 4xd λ= . 

 
Table 2. The Performance Parameters for Different Coupling Values xd  of the 1-D 
periodic structure. 

Periodicity xd  Directivity (dB) 

λ  29.48 

2λ  30.38 

3λ  35.11 

4λ  39.99 

 
Table 3. The performance parameters for different steering directions sθ  in in low and 
high coupling values of 1-D periodic structure. 

Steering angle sθ  
Directivity (dB) low coupling 

( )4xd λ=  
Directivity (dB) high coupling 

( )xd λ=  

0 39.99 29.48 

6Π  28.10 20.41 

4Π  24.66 19.51 

3Π  21.44 19.37 
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Figure 9. The 3-D radiation beam pattern of proposed antenna array at different steering directions sθ  in 
high coupling values using: 5.4 GhzF = , 28 mmλ = , 1.25 mmh = , 2xd λ= , 54 mmyd = , 1 mmw = , 

1= , 1r = , 0.75 mmδ = ; (a) 0sθ = , (b) 6sθ = Π , (c) 4sθ = Π , (d) 3sθ = Π . 

 
the main lobe gain by energy dispersal and also disturbs the second radiant ele-
ment. Therefore, a condition regarding the spacing of sources must be imposed. 

Figure 10 represents respectively the variation of the directivity and the side 
lobe level for several distances d and for several steering directions sθ . For the 
working frequency 10 GHzF = , the spacing d between the sources must exceed 
2 56 mmλ =  to ensure a −18.3 dB of side lobe level. Also, for the same parame-
ters, to obtain a directivity greater than 23.42 dB the steering angle must not ex-
ceed pi/6. By exploiting Figure 10, we can concept a smart periodic antenna 
with minimal coupling and acceptable directivity. finally, we can deduce that 
high directivity values can be achieved with low sweeping angles sθ , also low 
coupling values can be achieved with high spacing values d. 

5. Conclusion 

In this contribution, we have presented a theoretical analysis of 1-D and 2-D pe-
riodic antennas. A novel modal approach combined with MoM-GEC was used. 
The behavior of pattern radiation of the coupled reference cell has been illu-
strated corresponding to different frequency ranges, period value and Floquet  
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Figure 10. Directivity and side lobe level evolution of proposed antenna array at different steering directions sθ : 10.4 GhzF = , 

1.25 mmh = , 54 mmyd = , 1 mmw = , 1= , 1r = , 0.75 mmδ = , 28 mmλ = ; (a) directivity in terms of λ , (b) SLL in terms 

of λ . 
 
modes. To properly control the directivity of periodic antennas and minimize 
coupling between cells, it is necessary to choose the best period xd . This can be 
also useful for the analysis of 3-D beam radiation for different steering directions 
and coupling values. Then, we can concept a smart periodic antenna with mi-
nimal coupling and acceptable directivity for different sweeping angles. For the 
special case when high coupling is presented, we can easily show that directivity 
is reduced to 19.37 dB when π 3sθ = , while the side lobe level is increased to 
−11.12 dB. The essential advantage of this new modal analysis is concepting 
coupled periodic antenna with sweeping radiation beam. The numerical results 
demonstrate the feasibility of the proposed approach in the field of estimation 
side lobe level and directivity of almost periodic antenna. In conclusion, we 
would like to highlight that Floquet model analysis and MoM-GEC method are 
needed to study coupled smart antenna that opens various areas of research. 
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