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ABSTRACT 

An effective near-field - far-field (NF - FF) transformation with spherical scanning for quasi-planar antennas from ir- 
regularly spaced data is developed in this paper. Two efficient approaches for evaluating the regularly spaced spherical 
samples from the nonuniformly distributed ones are proposed and numerically compared. Both the approaches rely on a 
nonredundant sampling representation of the voltage measured by the probe, based on an oblate ellipsoidal modelling of 
the antenna under test. The former employs the singular value decomposition method to reconstruct the NF data at the 
points fixed by the nonredundant sampling representation and can be applied when the irregularly acquired samples lie 
on nonuniform parallels. The latter is based on an iterative technique and can be used also when such a hypothesis does 
not hold, but requires the existence of a biunique correspondence between the uniform and nonuniform samples, associ- 
ating at each uniform sampling point the nearest irregular one. Once the regularly spaced spherical samples have been 
recovered, the NF data needed by a probe compensated NF - FF transformation with spherical scanning are efficiently 
evaluated by using an optimal sampling interpolation algorithm. It is so possible to accurately compensate known posi- 
tioning errors in the NF - FF transformation with spherical scanning for quasi-planar antennas. Some numerical tests 
assessing the accuracy and the robustness of the proposed approaches are reported. 
 
Keywords: Antenna Measurements; Near-Field - Far-Field Transformations; Spherical Scanning; Nonredundant  

Sampling Representations of Electromagnetic Fields; Probe Positioning Errors Compensation 

1. Introduction 

Near-field - far-field (NF - FF) transformation techniques 
[1-5] have been widely investigated in the last four dec- 
ades and used for applications ranging from cellular 
phone antennas to large phased arrays and complex 
multi-beam communication satellite antennas. They al- 
low one to overcome the drawbacks which, for electri- 
cally large radiating systems, make unpractical the 
measurement of the antenna pattern in a conventional FF 
range and represent the better choice when complete pat- 
tern and polarization measurements are required. More- 
over, they provide the necessary information to deter- 
mine the radiating field on the surface of the antenna. 
Such an information can be properly used for the diag- 
nostics of surface errors in a reflector antenna or of faulty 
elements in an array (microwave holographic diagnostics 
[6]). Commonly, the measured NF data are transformed 
into FF patterns by using an expansion of the field of the 
antenna under test (AUT) in terms of modes, namely, a 
complete set of solutions of the vector wave equation in 
the region outside the antenna. Plane, cylindrical, or 
spherical waves are generally used. The type of em-  

ployed modal expansion determines the kind of the NF 
scanning surface, which accordingly will be a plane, a 
cylinder, or a sphere. The orthogonality properties of the 
modes on such surfaces are then exploited to obtain the 
modal expansion coefficients, which allow the recon- 
struction of the AUT far field. Among the NF - FF trans- 
formation techniques, the one employing the spherical 
scanning has attracted remarkable attention since it al- 
lows the reconstruction of the complete radiation pattern 
of the AUT from a single set of NF measurements [7-16]. 
However, the computational effort is much greater than 
that required by planar and cylindrical NF facilities. The 
standard NF - FF transformation with spherical scanning 
[12] has been properly modified in [13] by taking into 
account the properties of spatial bandlimitation of elec- 
tromagnetic (EM) fields [17]. Accordingly, the highest 
spherical wave to be considered has been rigorously 
fixed by the bandlimitation properties and the number of 
data on the parallels has resulted to be decreasing to- 
wards the poles. Moreover, the application of the nonre- 
dundant sampling representations of the EM field [18] 
has allowed a significant reduction of the number of  
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needed NF data when considering antennas having one 
or two predominant dimensions [13]. These results have 
been achieved by assuming the AUT as enclosed in a 
prolate or oblate ellipsoid and by developing an optimal 
sampling interpolation (OSI) formula, which allows the 
reconstruction of the data required by the abovemen- 
tioned NF - FF transformation. The ideal probe assump- 
tion, originally made in [13], has been removed in [14] 
so developing an effective probe compensated spherical 
NF - FF transformation technique for elongated or quasi- 
planar antennas. Finally, an efficient NF - FF transforma- 
tion with spherical scanning, tailored to these kinds of 
antennas and based on different but very flexible AUT 
modellings, has been proposed in [15]. 

It must be stressed that the inaccurate control of the 
positioning systems and their finite resolution do not 
allow one to acquire the NF data at the points fixed by 
the sampling representation. On the other hand, their 
position can be accurately determined by using optical 
devices. Accordingly, the development of an accurate 
and stable reconstruction process from irregularly spaced 
data appears indispensable. In this framework, a proce- 
dure based on the conjugate gradient iteration method 
and using the unequally spaced fast Fourier transform 
(FFT) [19] has been proposed to compensate the posi- 
tioning errors in the plane-rectangular [20] and spherical 
[21] scannings. Unfortunately, such a procedure cannot 
be applied to the scanning techniques exploiting the 
nonredundant sampling representations of EM field, 
wherein the NF data needed by the corresponding classi- 
cal NF - FF transformations are recovered from the ac- 
quired nonredundant ones by means of proper OSI for- 
mulas. Since the formulas for the direct reconstruction 
from nonuniform samples are not user friendly, unstable, 
and valid only for particular sampling points arrange- 
ments, it is more convenient [22] to recover the uniform 
samples from the nonuniform ones and then determine 
the value at any point of the scanning surface via an ac- 
curate and stable OSI formula. In this context, an ap- 
proach based on an iterative technique has been proposed 
to recover the uniformly distributed samples from the 
irregularly spaced ones on planar [22], cylindrical, and 
FF spherical surfaces [23]. However, such an iterative 
technique results to be convergent only if it is possible to 
build a biunique correspondence associating at each uni- 
form sampling point the nearest nonuniform one. With 
reference to a plane-polar and cylindrical geometry, this 
limitation has been overcome in [24] and [25], respect- 
tively, by developing an approach based on the use of the 
singular value decomposition (SVD) method [26]. This 
latter approach allows one to take advantage of data re- 
dundancy for increasing the algorithm stability, but can 
be conveniently applied when the two-dimensional prob- 
lem of the uniform samples recovery can be tackled as 

two independent one-dimensional ones, otherwise the 
dimension of the involved matrix would become very 
large, thus requiring a huge computational effort. Both 
the approaches have been compared and experimentally 
validated in the cylindrical scanning case [27]. At last, 
these approaches have been applied to the positioning 
errors compensation in the spherical NF - FF transforma- 
tion for elongated antennas [28]. 

The aim of this paper is to develop and compare nu- 
merically analogous algorithms to compensate the probe 
positioning errors in the NF - FF transformation with 
spherical scanning for quasi-planar antennas, which will 
be now assumed as enclosed in an oblate ellipsoid (see 
Figure 1) instead of a prolate one. Effective techniques, 
applicable to all kind of antennas, will be so available for 
compensating the positioning errors in such a widely 
employed NF - FF transformation. 

The paper is organized in six sections. Section 2 
briefly describes the classical probe compensated NF - 
FF transformation with spherical scanning as modified in 
[14,15]. Section 3 is devoted to the nonredundant sam- 
pling representation of the probe voltage over a sphere, 
based on an oblate ellipsoidal modelling of the AUT. 
Section 4 describes the techniques for reconstructing the 
nonredundant samples from the irregularly spaced ac- 
quired ones. Section 5 is devoted to discuss the numeri- 
cal results assessing the accuracy and the robustness of 
the proposed approaches. Finally, conclusions are drawn 
in Section 6. 

2. Classical NF-FF Transformation with 
Spherical Scanning 

The key steps of the classical probe compensated NF - 
FF transformation with spherical scanning as modified in 
[14,15] are reported for reader’s convenience. 

Let us consider a probe scanning a sphere of radius d 
in the antenna NF region, and adopt the spherical coor- 
dinate system  , ,r    to denote an observation point 
 

 

Figure 1. Spherical scanning for quasi-planar antennas. 
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both in the NF and in the FF region (Figure 1). The tan- 
gential electric field in the FF region can be expressed 
via the truncated spherical wave expansion [12]: 
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wherein the index of the highest spherical wave to be 
considered is rigorously fixed by the bandlimitation 
properties of the EM field and [13-15] is given by: 

 max Int 1N               (2) 

where a is the radius of the smallest sphere enclosing the 
AUT,  is the wavenumber, 1   is the bandwidth 
enlargement factor, and Int(x) denotes the integer part of 
x. The vector wave functions  
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cos
m
nP   being the normalized associated Legen- 

dre functions as defined in [29]. The spherical wave ex- 
pansion coefficients  and  are determined [14, 
15] from the knowledge of the voltages 1 , 2  meas- 
ured by the probe and rotated probe, respectively. 
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3. Nonredundant Voltage Representation on 
a Sphere 

Let us consider a non directive probe scanning a sphere- 
cal surface of radius d in the NF region of a quasi-planar 
antenna enclosed in an oblate ellipsoid Σ having major 
and minor semi-axes equal to a and b (see Figure 1). 

Since the voltage V measured by such a kind of probe 
has the same effective spatial bandwidth of the field [30], 
the nonredundant sampling representation of EM fields 
[18] can be applied to it. Inasmuch as the sphere can be 
represented by meridians and parallels, in the following 
we deal with the voltage representation on a curve C de- 
scribed by an optimal parameterization  r r  . Ac- 
cording to [18], let us introduce the “reduced voltage” 

     jV V e                 (5) 

where  V   is the voltage measured by the probe or by 
the rotated probe, and     is a proper phase function. 
The bandlimitation error, occurring when  V   is ap- 

proximated by a bandlimited function, becomes negli- 
gible as the spatial bandwidth exceeds a critical value 
W  [18] and can be effectively controlled by considering 
an enlarged bandwidth W . 

When C is a meridian, by choosing 2W   , 
 24 2a E    being the length of the ellipse C  

(intersection between the meridian plane through the 
observation point P and Σ), we get the following expres- 
sions [13] for the parameterization and phase function: 
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where  E    denotes the elliptic integral of second 
kind and  1 2 2u r r f   and  1 2 2v r r a   are the 
elliptic coordinates, 1 2,  being the distances from P to 
the foci of the ellipse C

r
 . Moreover, f a   is its 

eccentricity and 2f its focal distance. The expression of 
the parameter   in (6) is valid when the angle   be- 
longs to the range [0, π 2 ]. For   ranging from  π 2  
to , it results π π    , where    is the parame-
teri- zation value corresponding to the point specified by 
the angle π  . It is worthy to note that the curves γ = 
const and   = const are ellipses and hyperbolas confo-
cal to C  [18]. 

When the curve C is a parallel, the phase function   
is constant and it is convenient to choose the angle   as 
parameter. The corresponding bandwidth [13,18] is 

  sinW a                 (8) 

wherein  is the polar angle of the asymp- 
tote to the hyperbola through P. 

1sin u 
 

According to these results, the voltage at P on the me- 
ridian fixed by   can be evaluated via the OSI expan- 
sion 
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where  0 Intn     is the index of the sample near- 
est (on the left) to P, 2q is the number of retained inter- 
mediate samples  ,nV   , 

 ; 2π 2 1n n   N                 (10) 
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1   is an oversampling factor required to control 
the truncation error [18], and 

    , , ,n N n NG N N D n              (12) 

Moreover, 

Copyright © 2012 SciRes.                                                                               JEMAA 



Spherical Near-Field - Far-Field Transformation for Quasi-Planar Antennas from Irregularly Spaced Data 150 

   
 

sin 2 1 2

2 1 sin 2N

N
D

N






   
 

              (13) 

 
   

 

2 2

2

2cos 2 cos 2 1

2 cos 2 1

N

N

N

T

T

 




  
  

    (14) 

are the Dirichlet and Tschebyscheff sampling functions, 
respectively,  NT   being the Tschebyscheff polyno- 
mial of degree  and N N N   q   . 

The intermediate samples on the meridian through P 
can be determined by means of a similar OSI expansion 
along  . The two-dimensional OSI expansion for re- 
constructing the data at any point P on the sphere can be 
obtained [13] by properly matching the one-dimensional 
ones along the meridians and the parallels. Thus, we get: 
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where in 0 Int nm    , 2p is the retained samples 
number along  , 
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and the other symbols have the same meanings as in (9). 
The variation of *  with   is required to ensure a 
bandlimitation error constant with respect to  . 

By using expansion (15), it is possible to evaluate the 
NF data needed by the classical NF - FF transformation 
with spherical scanning [12] as modified in [14,15]. 

4. From Nonuniform to Uniform Samples 

Two different techniques to retrieve the uniformly dis- 
tributed samples from the acquired irregularly spaced 
ones will be presented in this section and numerically 
compared in the subsequent one. 

4.1. The SVD-Based Approach 

The SVD-based approach can been applied when the 
starting two-dimensional problem of the uniform samples 
reconstruction can be reduced to find the solution of two 
independent one-dimensional problems. Accordingly, let 
us now suppose that, apart from the sample at the north 
pole, the irregularly distributed samples lie on nonuni- 
formly spaced parallels. This assumption can really rep- 
resent the spatial distribution of the measured data when 

the acquisition is carried out by moving along parallels, 
as required to exploit the possibility of reducing the 
number of NF data on noncentral parallels, offered by the 
described nonredundant representation. 

Let us first consider the recovery of the uniformly 
spaced samples on each nonuniform parallel. Given a 
sequence of 2k k

J M 1   known nonuniform sam- 
pling points  , jk   on the nonuniform parallel at 
 k   (where 2 1kM   is the number of the corre- 

sponding uniform sampling points ,m k km     
2 π (2 1)km M   ), the known reduced voltage  , jkV    
at each nonuniform sampling point can be expressed in 
terms of the unknown uniform samples via the OSI ex- 
pansion along  , thus getting the linear system: 
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This last can be rewritten in the matrix form A x b , 
where b  is the sequence  , jk

V    of the known 
nonuniform samples, x is that of the unknown uniform 
ones  ,, m kk

V   , and A  is a k  matrix, 
whose elements are given by the weight functions in the 
considered OSI expansion: 

 2J M   1k 

 ,, , ,jm j m k k ka G M M             (20) 

and, for any fixed row j, are equal to zero when the index  

m is out of the range    0 01,j jm p m  p     . The  

best approximated solution in the least squares sense of 
the system A x b  is obtained by means of SVD. 

Once the uniform samples on the nonuniform parallels 
have been so retrieved, the OSI expansion along   is 
used to determine the intermediate samples  ,kV    at 
the intersection points between the nonuniform parallels 
and the meridian passing through P. Obviously, these 
samples are again irregularly spaced and, accordingly, 
the voltage at P can be evaluated by first reconstructing 
the uniformly spaced intermediate samples via SVD and 
then interpolating them by using the OSI formula (9). It 
must be stressed that it is convenient to determine the 
same number of samples on each of the uniform parallels 
to minimize the computational effort. This number is that 
corresponding to the equator. In such a way, although the 
so retrieved NF data are slightly redundant in  , the 
number of SVD relevant to the meridians is minimized. 
Once the uniform samples have been reconstructed, the 
NF data needed by the classical spherical NF - FF trans- 
formation [12] as modified in [14,15] can be determined 
via the OSI expansion (15), properly modified to take 
into account the redundancy in  . 

Note that, to avoid a strong ill-conditioning of the re- 
lated linear system [24], both the displacements between 
the uniform and nonuniform samples on the nonuniform 
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parallels and those between the uniform and nonuniform 
parallels must be such that to each uniform sampling 
position must correspond at least a nonuniform one 
whose distance is less than one half the uniform sampling 
spacing ( k  or  ). 

4.2. The Iterative Approach 

When the hypothesis that the irregularly distributed sam- 
ples lie on nonuniformly spaced parallels does not hold, 
the SVD technique could be still used, but the dimension 
of the involved matrix would become very large, thus 
requiring a massive computational effort. In fact, in such 
a hypothesis, the starting two-dimensional problem can 
no longer be tackled as two independent one-dimensional 
ones and it is more convenient to resort to the iterative 
technique [22,23]. Accordingly, let us assume in the fol- 
lowing that, as required for the convergence of the itera- 
tive technique, the nonuniformly distributed samples are 
such that it is possible to build a biunique correspond- 
dence, which associates at each uniform sampling point 
the “nearest” nonuniform one. In such a case, by express- 
ing the reduced voltage at each nonuniform sampling 
point  ,, j kk    as a function of the unknown values at 
the nearest uniform ones  via the two-dimen- 
sional OSI expansion (15), we get: 
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This last can be again rewritten as A x b , where A  
is a  sparse banded matrix, whose elements are 
given by the weight functions in the considered OSI ex- 
pansion (Q being the overall number of the nonuni- 
form/uniform samples), 

Q Q

b  is the sequence  ,, jk kV    
of the known irregularly distributed samples, and x is that 
of the unknown uniform ones .  ,,n m nV  

By subdividing A  into its diagonal part 
D

A  and 
nondiagonal one  , multiplying both members of the 
matrix relation A x b  by 1

DA  and rearranging the 
terms, we get: 

1 1

D D
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The following iterative scheme is so obtained: 
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where  vx  is the sequence of the uniform samples es- 
timated at the th  step. Necessary conditions for the 
convergence of the above scheme are that the modulus of 
each element on the principal diagonal of A  be not 
zero and greater than those of the other elements on the 
same row and column [22,23]. These conditions are cer- 

tainly verified in the assumed hypothesis of one-to-one 
correspondence between each uniform sampling point 
and the nearest nonuniform one. 

By making (23) in explicit form, we finally get: 
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   (24) 

The OSI expansion (15) is then used to interpolate the 
so recovered uniform NF samples for reconstructing the 
NF data needed to carry out the NF - FF transformation. 

5. Numerical Tests 

The numerical tests are relevant to a uniform planar cir- 
cular array (see Figure 1) having diameter 2 32a  , 
where   is the wavelength. Its elements are elementary 
Huygens sources polarized along the y axis and radially 
and azimuthally spaced by 0.45 . Such an AUT has 
been modelled by an oblate ellipsoid with major and mi- 
nor semi-axes equal to 16  and 2.5 , respectively. 
The scanning sphere has radius 30d   and an open- 
ended circular waveguide, having radius 0.338 , is 
chosen as probe. 

The first set of simulations (from Figures 2-9) refers 
to the case of irregularly spaced samples lying on non-
uniformly distributed parallels, so that the reconstruc-
tion of the uniform samples can be reduced to the solu-
tion of two independent one-dimensional problems. The 
nonuniform samples (whose positions are assumed 
 

 

Figure 2. Amplitude of the probe voltage V2 on the meridian 
at φ = 90˚. Solid line: exact. Crosses: reconstructed from 
nonuniform samples via the SVD-based algorithm. 
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Figure 3. Phase of the probe voltage V2 on the meridian at φ 
= 90˚. Solid line: exact. Crosses: reconstructed from non-
uniform samples via the SVD-based algorithm. 
 

 

Figure 4. Normalized maximum (blue lines) and mean- 
square (red lines) errors in the reconstruction of the uni-
form samples of V2 via the SVD-based algorithm. 
 

 

Figure 5. Amplitude of the voltage V2 on the meridian at φ 
= 90˚. Solid line: exact. Crosses: reconstructed from error 
affected nonuniform samples via the SVD-based algorithm. 
 
known) have been generated by imposing that the dis- 
tance between the position of each of these parallels and 
the associated uniform one is a random variable uni- 
formly distributed in  2, 2  

 

Figure 6. Phase of the probe voltage V2 on the meridian at φ 
= 90˚. Solid line: exact. Crosses: reconstructed from non-
uniform samples via the SVD-based algorithm. 
 

 

Figure 7. Amplitude of the voltage V2 on the meridian at φ 
= 90˚. Solid line: exact. Crosses: reconstructed from error 
affected nonuniform samples (increased by 20%) via the 
SVD-based algorithm. 
 

 

Figure 8. Amplitude of the probe voltage V2 on the merid-
ian at φ = 90˚. Solid line: exact. Crosses: reconstructed from 
nonuniform samples via the iterative algorithm. 
 
placements between the irregularly spaced sampling 
points and the corresponding regularly spaced ones on 
the nonuniform parallels are random variables uniformly 
distributed in  2, 2k k   . The reconstructed am-   . Similarly, the dis-  
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Figure 9. E-plane pattern. Solid line: exact. Crosses: recon-
structed from nonuniform samples via the SVD-based algo-
rithm. 
 
plitude and phase of the rotated probe voltage  (the 
most significant one) on the meridian at 

2V
   90˚ are 

shown in Figures 2 and 3. As can be seen, the exact and 
reconstructed curves are indistinguishable in spite of the 
considered large values of the probe positioning errors, 
very pessimistic in an actual scanning procedure. The 
performances of the SVD algorithm for compensating the 
positioning errors have been assessed in a more quantita- 
tive way by evaluating the maximum and mean-square 
errors in the reconstruction of the uniform samples. They 
are normalized to the voltage maximum value on the 
sphere and have been obtained by comparing the recon- 
structed and the exact uniform samples. As can be seen 
from Figure 4, they decrease up to very low values on 
increasing the number of retained samples and/or the 
oversampling factor. Even smaller errors are to be ex- 
pected when the irregularly spaced samples are nearer to 
the uniform ones [28]. The robustness of algorithm with 
respect to errors affecting the data has been assessed (see 
Figures 5 and 6) by corrupting the exact samples with 
random errors. These errors simulate a background noise 
(bounded to  in amplitude and with arbitrary phase) 
and uncertainties on the data of r  in amplitude and 

a
a

  in phase. As already stated, the algorithm stability 
can be improved (see Figure 7) by taking advantage of 
the redundancy to filter the errors affecting the data. The 
same irregularly spaced NF data set used in Figure 2 has 
been employed to recover the voltage  on the merid-
ian at 

2V
90   via the iterative algorithm. As can be 

seen, the reconstruction (see Figure 8) obtained after 5 
iterations coincides with the one achieved by means of 
the SVD approach. The SVD-based procedure for com-
pensating the positioning errors has been finally applied 
to efficiently recover the NF data needed to carry out the 
NF - FF transformation. The reconstructed FF pattern in 
the principal plane E is compared with the exact one in 
Figure 9. As can be seen, the exact and recovered pat-
terns are indistinguishable, thus confirming the effec-

tiveness of the approach. Identical results are obtained 
when the NF data needed to perform the NF - FF trans-
formation are recovered from the same nonuniform NF 
data set via the iterative technique. 

The second set of simulations (from Figures 10-14) 
refers to the case of irregularly spaced samples that do 
not lie on parallels. In such a situation, it is more con-
venient, from the computational viewpoint, to apply the 
iterative approach, that requires the existence of a 
one-to-one correspondence between the uniform and 
nonuniform samples, associating at each uniform sam- 
pling point the nearest irregular one. Accordingly, the 
irregularly distributed samples have been generated in 
such a way that the displacements in   and   be- 
tween each nonuniform sampling point and the corre- 
sponding uniform one are random variables uniformly 
distributed in  3, 3    and  3, 3n n   . 
The reconstructions of the amplitude and phase of the 
probe voltage 2  obtained after 5 iterations are shown 
in Figures 10 and 11. The normalized maximum and 
mean-square errors in the reconstruction of the uniform  

V

 

 

Figure 10. Amplitude of the probe voltage V2 on the merid-
ian at φ = 90˚. Solid line: exact. Crosses: reconstructed from 
nonuniform samples via the iterative algorithm. 
 

 

Figure 11. Phase of the probe voltage V2 on the meridian at 
φ = 90˚. Solid line: exact. Crosses: reconstructed from non-
uniform samples via the iterative algorithm. 
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Figure 12. Normalized maximum (blue lines) and mean- 
square (red lines) errors in the reconstruction of the uni-
form samples of V2 via the iterative algorithm. 
 

 

Figure 13. Amplitude of the voltage V2 on the meridian at φ 
= 90˚. Solid line: exact. Crosses: reconstructed from error 
affected nonuniform samples via the iterative algorithm. 
 

 

Figure 14. E-plane pattern. Solid line: exact. Crosses: re-
constructed from nonuniform samples via the iterative al-
gorithm. 
 
samples are reported in Figure 12 in order to assess more 
quantitatively the effectiveness of the iterative approach 
and to give an insight on the number of iterations and 

retained samples needed to assure the desired accuracy. 
Its capability to work well also in presence of errors af- 
fecting the data is shown in Figure 13. At last, the over- 
all effectiveness is confirmed by the very good far-field 
reconstruction displayed in Figure 14. 

For sake of completeness, we stress that the reported 
results have been obtained by using 15,986 NF samples, 
which are remarkably lower than those (32,514) required 
by the classical NF - FF transformation with spherical 
scanning [12]. 

6. Conclusion 

The compensation of known positioning errors in the NF - 
FF transformation with spherical scanning for quasi- 
planar antennas has been tackled in this paper. To this 
end, two different techniques to evaluate the uniformly 
distributed spherical samples from the nonuniform ones 
have been developed and numerically compared. The 
former uses the SVD method and can be conveniently 
employed when the nonuniform sampling points lie on 
parallels. The latter employs an iterative algorithm and 
can be applied also when the nonuniform sampling 
points do not lie on parallels, but requires the existence 
of a biunique correspondence that associates at each uni- 
form sampling point the nearest irregular one. The re- 
ported numerical results assess the accuracy and robust- 
ness of both approaches in spite of the considered large 
values of the probe positioning errors, very pessimistic in 
an actual scanning procedure. 
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