
J. Electromagnetic Analysis & Applications, 2010, 2, 640-648 
doi:10.4236/jemaa.2010.211084 Published Online November 2010 (http://www.scirp.org/journal/jemaa) 

Copyright © 2010 SciRes.                                                                              JEMAA 

A Simple Analytic Approximation for the 
Refracted Field at Gaussian Beam Incidence  
upon a Boundary of Absorbing Medium 

Vladimir M. Serdyuk, Joseph A. Titovitsky 
 
Research Science Institute of Applied Physical Problems, Belarusian State University, Minsk, Belarus. 
Email: serdyukvm@bsu.by 
 
Received September 18th, 2010; revised October 25th, 2010; accepted October 28th, 2010. 
 
ABSTRACT 

An approximate analytic model is presented to describe spatial structure of refracted electromagnetic field arising at 
oblique incidence of a Gaussian beam on a plane boundary of an absorbing homogeneous medium. The analytic solu-
tion is obtained by asymptotic approximation of a Fourier field integral under the condition of great beam width in 
comparison with a wavelength (the geometrical-optics approximation). This model can be used also for approximate 
simulation of refracted field in the cases of beam incidence near the critical angle on transparent or absorbing (ampli-
fying) refracting medium, if one artificially introduces the additional absorption (amplification), whose value is propor-
tional to the ratio of the wavelength and the effective beam width. It is shown that the analytic model reflects the gen-
eral features of refracted field at total internal reflection. 
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1. Introduction 

A Gaussian beam is a simple model of coherent laser 
field that simulates well its basic properties, such as spa-
tial narrowness of transverse structure and diffraction 
divergence under propagation in homogeneous and in-
homogeneous media [1-6]. That is why a lot amount of 
papers have been devoted to consideration of this model, 
studying transformation of beam field under various con-
ditions of reflection and refraction on dielectric inter-
faces (see, for example, [7-21]). It was appeared that the 
physical picture of these phenomena for a Gaussian 
beam is other than that for a plane wave. A reflected 
beam undergoes longitudinal, transverse and angular 
displacement on the boundary, and the value of such 
displacement can be sufficiently great, if an incident 
Gaussian beam is narrow and its angle of incidence is 
close to the critical value [7-20]. Under these conditions, 
interesting polarization and amplitude effects also take 
place [20,21]. 

However, in the literature, investigation of reflected 
beams is presented only, but refracted field is not con-
sidered (usually, authors do not write actually equations 
for that). Meanwhile, exactly refracted field determines 

class of effects connected with the phenomenon of frus-
trated total internal reflection such as excitation of 
waveguide modes [22] and of surface polaritons [23], 
which found wide applications in science and technology. 
Strictly speaking, the usual analytic representation of a 
Gaussian beam [4-6] in general is unfit for absorbing 
media, and determination of solution for beam refraction 
field in such media at arbitrary angle of incidence re-
mains an urgent problem for theory and practice. So, 
there is a wide class of problems concerned with re-
fracted field, which have only solutions based on the 
plane-wave approximation. But this approximation can-
not describe effects of spatial inhomogeneity of light 
beams, which play an important part in some physical 
and chemical phenomena [24-26]. As it is known for us, 
only in the paper [27] the field arising under refraction of 
a Gaussian beam near the critical angle of incidence has 
been studied more or less in details, but the obtained so-
lution is a too crude approximation. In the given work, 
we shall consider a new form of solution for refracted 
field excited under incidence of a Gaussian beam on the 
plane boundary of an absorbing medium. Our goal is to 
find the simplest analytic form of such a solution which 
at the same time should take into account spatial inho-
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mogeneity of incident beam and could be suitable for the 
field simulation in a large number of applications. That is 
why we shall ignore polarization effects, considering the 
scalar approximation for the fields, and shall use the 
most simple geometrical-optics representation for an 
incident Gaussian beam. Such an approach is true because 
in the cases under our study, refracted field propagates 
not far from the boundary. We shall not also consider the 
phenomenon of reflected beam displacement and another 
delicate effect, which display at total internal reflection 
and have been studied in many works [7-21], because all 
these effects are out of the geometrical-optics approxi-
mation and their values are of the order of the wave-
length. They are essential only for very narrow beams, 
whose effective width is grater then the wavelength not 
more by several folds. 

To ground and clarify our approach, we shall start 
from the trivial case of the Gaussian beam reflection and 
refraction on the boundary of two transparent media, when 
the angle of incidence is much below the critical value. 
The geometrical-optics solution for this simple case will 
be used for generalization to the case of absorbing re-
fracting medium. And then, we shall consider possibility 
of further generalization of the refracted field solution to 
the Gaussian beam incidence at the critical angle and 
above that, as for absorbing as for transparent refracting 
media. 

2. Reflection and Refraction of a Gaussian 
Beam at an Interface between      
Transparent Media 

A beam with the Gaussian profile, or more general, with 
the Hermite-Gaussian one, is a solution of Maxwell’s 
equations, obtained under the paraxial approximation, 
when the phase speed along the direction of its propaga-
tion is more greater than the speed of amplitude and 
phase change in another directions [1-6,11,12]. The most 
simple representation of a Gaussian beam is realized for 
the case of its propagation in homogeneous medium 
within relatively small distance L from the waist plane, 
when 

 22
02 / 1L kw   and        (1) 0 1kw 

where w0 is the effective beam half-width in the 
cross-section, k = /c = 2/ is the wave number (the 
field temporal dependence is assumed as exp(–it)),  is 
the wavelength. In this case, the scalar beam field func-
tion is [4–6,12] 
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where i = 1 is the imaginary unite, w = w0/cos is the 
beam half-width in the tangential y-direction,  is the 
incident angle with respect to the interface normal x 
(Figure 1), 0 and 0 are the parameters of beam propa-
gation along the x- and y-axes (0

2 + 0
2 = ,  is the di-

electric permittivity of a medium, such that in a trans-
parent medium 0 = ncos and 0 = nsin, where n = 1/2 
is the refractive index). The function (2) specifies the 
field, whose amplitude and phase change in relatively 
orthogonal spatial directions. It means that the beam (2) 
maintains its transverse structure in the propagation 
process, like it appears in geometrical optics [11,13]. 
That is why the approach based on the conditions (1) can 
be naturally defined as geometric-optics approximation. 
By the way of illustration, let us consider numerical 
evaluation of the field of application for this approach. If 
the beam has the width 2w0 = 2 mm with the wavelength 
 = 0.5 m, these conditions correspond to beam propa-
gation within the distance up to 1 m. For many modern 
applications, dealing with small volume of optical de-
vices, such an approach is perfectly acceptable. 

Let the Gaussian beam (2) incidents from the negative 
x and y at the angle  on a plane boundary between two 
homogeneous isotropic media with the dielectric permit-
tivities  and t (Figure 1). Assuming that the first me-
dium, from that a beam incidents, is transparent, i.e.  = n2, 
where n is the refractive index. At first, we regard that 
the second medium is also transparent: Imt = 0. On the 
boundary x = 0, the incident beam field (2) has the form  

   2 2
00, exp /u y y w ik y          (3) 

To obtain solutions for reflected and refracted fields, 
we shall use the ordinary technique of incident field ex-
pansion in a Fourier integral, and shall consider every  
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Figure 1. Geometry of the Gaussian beam reflection and 
refraction at a dielectric interface. 
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Fourier component as an independent plane wave. 
Every such a wave generates one reflected plane wave 
in the first medium and one refracted plane wave in the 
second medium, whose parameters are determined by 
the well known laws of reflection and refraction for 
plane waves [13]. The Fourier spectrum of the incident 
field (3) is 

   21/2 2
0 exp U p p              (4) 

where 

/ 2p kw                   (5) 

Then, one can write at once the integral expressions 
for the fields of reflected and refracted beams 
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are the amplitude reflection and refraction coefficients 
for every plane-wave component [13],  = 1 for the case 
of TE polarization of an incident beam, when it is polar-
ized linearly across the plane of incidence xy, and  = t / 
for the case of TM polarization, when the electric vector 
of an incident beam is parallel to this plane, 

2       
2

t t   
       (9) 

The last relationships ensure validity of Maxwell’s 
equations for the fields (6) and (7). In the integral ex-
pressions (6) and (7), the exponents with the values (9) 
describe propagation of the reflected and refracted fields 
away from the interface. To provide non-increase of 
these fields in magnitude under such propagation, one 
should choose the brunch of roots having the nonnega-
tive imaginary parts. 

The geometrical-optics approximation (1) assumes a 
very great value of the parameter (5). Then, the spectral 
function (4) appreciably falls off from zero only in a very 
narrow interval of the frequency variable , changing 
near the effective beam propagation parameter 0. That 
provides opportunity to replace Equation (9) for  and t 
with their approximate linear expansions in the point  
= 0: 
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where 0 = (n2–0
2)1/2 is the effective propagation pa-

rameter in the x-axis for the incident beam, 

2
t0 t 0                 (12) 

0 0/q        t 0 t/q 0        (13) 

The presence of the great real parameter p in inte-
grands of (6) and (7) allows us for calculation these inte-
grals by the asymptotic steepest descent method 
[5,28,29]. If we shall restrict to a leading asymptotic 
term, this method yields a simple approximation for in-
tegrals in general form, which one can write as 
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where f() and S() are the relatively slow and fast 
changing functions of argument of integration, s is the 
pass or saddle point, in which the first derivative of the 
fast changing function vanishes: . To apply 
this method to the integrals (6) and (7), one can set 
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for the second integral. The saddle points are respec-
tively as follows: 
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Due to a great value of the parameter p (5), one may 
neglect the small difference between the values s and 0 
for the slowly changing function f() (but not for the 
fast-varying index of an exponent S()). Then, the ap-
proximate expressions for the integrals (6) and (7) are 
reduced to the form 

       2 2
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These obvious representations for the fields of re-
flected and refracted beams are in conformity with geo-
metrical optics. The amplitude reflection and refraction 
coefficients for the beams coincide with the reflection 
and refraction coefficients for plane waves having the 
parameters 0, 0 and t0, 0, which characterize effec-
tive propagation of the reflected and refracted beams as a 
whole. These parameters determine also the direction of 
Gaussian amplitude change in a cross-section, which is 
determined by the condition y  qx  0 or y  qtx  0 and 
maintains itself under displacement in the beam axis. The 
half-width of the reflected beam (17) is equal to that of 
the incident one, and the effective half-width of the re-
fractive beam (18) in the cross-section is 

1/2
t 20 t 0 tcos / cosw w w      

where t is the angle of refraction. Every such a value is 
determined as a distance between two points P1 = (x1,y1) 
and P2 = (x2,y2), for which y1 – x1qt = 0, y2 – x2qt = w and 
t0x1 + 0y1 = t0x2 + 0y2. 

The field of application of the obtained solutions (17) 
and (18) is determined by two conditions. The first one 
requires for the values q and qt (13) to be real, as well for 
the effective parameters of normal propagation 0 and 
t0, because the effective parameter of tangential propa-
gation 0 is real. The second condition should provide 
opportunity to use the approximate representations (10), 
(11) for parameters of normal propagation of Fourier 
field components. Such linear representations require 
small magnitudes of the first neglected terms in the cor-
responding square roots expansions in powers of (0) 
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Proceeding from the form of the multiplier (4) of the 
integral functions (6) and (7), one can regard that the 
value of |0| does not exceed 2/p. Then, the last ine-
qualities take the form 

  12
0 10n kw    1/2 12

t0 t10 kw      (19) 

If the angle of beam incidence is not too close to the 
grazing one, i.e.  is smaller than 90 even by one angu-
lar minute, the first condition (19) for reflected field can 
be regarded as true. However, the second condition (19) 
for refracted field does not always hold true. When the 
dielectric permittivity t of the second medium in mag-
nitude is smaller than the permittivity  of the first one, 
from which a beam incidents, the value 0

2 = (ncos)2 
can be equal to the value t, and the parameter t0 (12) 
vanishes. Here, we deal with the phenomenon of total 
internal reflection, at that the second condition (19) is not 

true and representation of refracted field in the form (18) 
becomes invalid. 

What is more, at t <  the value 0
2 can exceed t, so 

that the values t0 (12) and qt (13) at all will be pure 
imaginary, what will cause unlimited rise of the beam 
(18) in amplitude under increase of the x-coordinate. The 
similar problem arises at any values of an incident angle 
(of the parameter 0) for the case of an absorbing me-
dium, when its dielectric permittivity is complex. 

3. The Refracted Field in Absorbing     
Medium 

Let the second medium, into which a beam is refracted, 
is absorbing with the complex dielectric permittivity t 
(t = (nt + it)

2). Then the condition (19) for the refracted 
field will be presented in the form 

   
2 12 2

tR 0 tI t10 kw              (20) 

where we have used the compact designations tR = Ret 
and tI = Imt for the real and imaginary parts of the value 
t. This condition can be satisfied either by sufficiently 
great value of absorption (the imaginary part of the per-
mittivity tI) or by appreciably great difference between 
0

2 and tR. Assuming validity of the given condition, we 
suppose as before that the approximate representation (11) 
can be used for parameters of normal propagation of 
every plane-wave Fourier component in (7). 

Now, the effective parameter t0 (12) of normal beam 
propagation will be complex, producing complexity of 
the parameter qt (13) with the negative imaginary part. 
Its presence exactly can cause false increase of refracted 
beam amplitude at rise of the x-coordinate. To prevent 
this effect, let us separate contributions of the real and 
imaginary parts of the parameter qt in the integral (7), 
taking into account small value of the imaginary part of 
t in (12). Namely, providing calculation of this integral 
by the steepest descent method (the approximation (14)), 
we shall keep for the fast-changing function S() only 
the component proportional to the real part qtR = Reqt, 
but the exponent with the imaginary part qtI = Imqt will 
be related to the slowly-changing function f(), i.e. in-
stead of (15), let us take  

       1/2
t0 0 tI 0 exp f p T ik x y kq x              
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0 tRS p ik y q x 0           

Then, the saddle point (16) of the integral (7) will be de-
termined only by the real part of the value qt, and as a result, 
one obtains the following asymptotic approximation 

    t 0 t0,  exp u x y T ik x y   0    
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2   2 2
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It distinguishes from the solution (18) in a transparent 
medium by the presence of a new imaginary component 
in the exponent, which describes a nonlinear coordinate 
dependence of the beam phase in a distance from the 
interface. Since Equation (21) takes possible complexity 
of the beam parameters t0 and qt into account， it can be 
used over a wide range of the incident angle change as 
below as above the critical angle C  arcsin(tR

1/2/n). 
The field structure determined by this equation is de-
pended on the value of an incident angle, and this de-
pendence is caused by the dependencies of the beam pa-
rameters t0 and qt on this angle. They are shown in Fig- 
ure 2 for the case of 

; 61.n      ; 41t .n  3104  kw

at various values of the index of absorption t in the medium 
 

 

Figure 2. The effective parameters  t0 and qt of a refracted 
beam as functions of the deviation of the incident angle 
from the critical value for the Gaussian beam incidence on 
the interface between transparent (n = 1.6) and absorbing 
(nt = 1.4) media at kw = 4  103. The index of absorption 
for refracting medium is t = 103(1); 5  103(2); 102(3). 
Solid lines correspond to the real parts of beam parameters, 
and dashed curves show their imaginary parts. 

( =  – C denotes the deviation of the incident angle 
 from the critical value C). The case under considera-
tion corresponds to the value of C = 613 and to the 
beam half-width along the interface w = 1 mm at the 
wavelength of 0.5 m. 

When the incident angle  approaches to C at small 
values of the index of absorption, the magnitudes of the 
real and imaginary parts of the parameter qt appreciably 
increase (Figure 2). It corresponds to turn of the beam 
axis to the interface direction and to rise of the phase 
coordinate nonlinear dependence. But if the incident an-
gle exceeds the critical value, the real part of the pa-
rameter qt becomes a decreasing function of , at the 
same time the imaginary part of the parameter t0 still 
remains increasing one. As a result, the beam axis ap-
proaches to the normal (the x-axis) with strong amplitude 
decay away from the interface. Note that under increase 
of absorption, the pointed effects are smoothed over and 
cover more wide range of the incident angle change. 
Such a picture is followed from the ordinary plane-wave 
model of light beam. However, the imaginary part of qt 
remains a finite value that determines rather appreciable 
nonlinear dependence of beam phase on the coordinates. 
This effect of an inhomogeneous spatial phase distribu-
tion near the boundary is not taken into consideration by 
the ordinary plane-wave representation. 

Strictly speaking, one should not regard the presented 
discussions as correct for the case of small absorption 
owing to violation of the condition (20) at small devia-
tions from the critical angle. However, they reflect es-
sential features of real spatial structure of refracted field 
in this range, which is verified by Figure 3 and Figure 4. 
Here, the exact solutions for the field amplitude and 
phase is presented, which have been obtained by the 
method of numerical computation of the Fourier integral 
(7) for the refracted field in absorbing medium (the phase 
shift along the interface, proportional to the tangential 
propagation constant 0, is not taken into account on 
these figures and everywhere below). For comparison, 
the spatial field picture determined by the approximate 
solution (21) is also presented on Figure 3 and Figure 4. 
For chosen parameters of the problem, the condition (20) 
is valid for | |  135. We have used more small de-
viations from the critical angle to show the character of 
disagreement between the exact and approximate solu-
tions. As it is clear from Figure 3 and Figure 4, this 
disagreement is not too great. It displays mainly for the 
phase, and is conspicuous only in the spatial domains of 
comparatively small value of the beam amplitude. 

Figures 2-4 show that in absorbing medium, there is 
no abrupt transition between field propagation and ex-
ponential amplitude decay for incidence below and 
above the critical angle, as predicted by the model of an 
isolated plane wave. Amplitude decay presents in both 
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Figure 3. Spatial distribution of amplitude (A) and phase () of 
refracted field at incidence of the TE-polarized Gaussian beam 
on the interface between transparent (n = 1.6) and absorbing 
(nt = 1.4; t = 104) media at kw = 4  103: the exact solution 
(left) and the approximate one (right). The scale of x is in-
creased by 150 times in comparison with the scale of y. The 
angle of beam incidence is smaller than the critical one on 10. 
 

 

Figure 4. Same as for Figure 3, but here the incident angle 
is greater than the critical one by 10. 
 
cases, continuously rising under increase of the incident 
angle. At that, one observes nonlinear character of the 
face dependence on spatial coordinates, which displays 
most largely at the critical angle of incidence. 

4. The Refracted Field at Total Internal  
Reflection of a Gaussiam Beam 

In a transparent medium, the abrupt transition between 

field propagation and exponential decay also does not 
take place for the refracted beam when the incident angle 
passes the critical value [27]. Really, in the spectrum of 
the beam (7), there are plane waves with various direc-
tions of propagation, which collect around average direc-
tion of propagation of a beam as a whole. Therefore, 
when the incident angle of a beam is very close to the 
critical value, for one part of its plane-wave spectrum the 
incident angle is smaller than that, but for another part of 
the spectrum it is greater. Summation over all contribu-
tions of those and others in the resulting field of the re-
fracted beam (7) should produce averaged picture of con-
tinuous transition from beam propagation to amplitude 
decay, as it takes place in an absorbing medium. From 
this it follows that the analytic solution (21) obtained for 
the case of an absorbing medium, can be used for ap-
proximate analytic description of a refracted field at total 
internal reflection in a transparent medium. For that, let 
us assume the presence of additional absorption, condi-
tioned by spatial narrowness of an incident beam, which 
arises in a refracting medium at closing to the critical 
angle. We will also assume that the value of this absorp-
tion rapidly decreases under increase of the difference 
between an incident angle and the critical one. Further-
more, let the value |t

2|2 (12), calculated with this addi-
tional absorption, is an increasing function of the argu-
ment (0  nt)

2, whose minimum is reached at the critical 
angle of incidence, when the tangential propagation pa-
rameter 0  nt. These requirements will be satisfied, if 
the additional absorption in a medium is determined by 
the following expression 

 

3
t

t 22
0 t

n
i

n




 
 

 
           (22) 

where  determines the maximal magnitude of t at 0  
nt. To ensure satisfaction of the condition (20), that pro-
vides linearity of the decomposition (11) and validity of 
the approximate analytic expression (21), one should 
regard   20/kw. However, numerical computations 
have shown that the optimal approximation to the exact 
solution is achieved in the case of 

1/ kw           (23) 

So, an approximate simulation of the refracted field in a 
transparent medium can be carried out by using the ana-
lytic expression (21) with (12), (13), where the dielectric 
permittivity t should be replaced with the sum tt. 
Figure 5 shows that the imaginary addend t (22), (23) 
smoothes out sudden steps of the dependencies of beam 
parameters on incident angle at passing through the criti-
cal value. At incidence considerably below this angle, 
the imaginary addend (22) becomes infinitesimal and the  
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Figure 5. The effective parameters  t0 and qt of a refracted 
beam as functions of the deviation of the incident angle from 
the critical value for the Gaussian beam incidence on the 
interface between two media (n = 1.6, nt = 1.4) at kw = 
4103. The index of absorption for the refracting medium 
is t = 0(1); 104(2). Solid lines correspond to the real parts of 
beam parameters, dashed curves show their imaginary parts. 
Thin lines display the parameters computed according to 
(12), (13), thick curves show results of their computing with 
allowance for the imaginary addend (22), (23). 
 
approximate solution (21) turns into the ordinary relation 
(18). However, when the incident angle magnitude ap-
preciably exceeds the critical one, t0 becomes a pure 
imaginary value, and this solution takes the form 

     t 0 t0,  exp | |u x y T k x i y   0  

 12 2 2
0 t0/ 2 /y w i xy w     

  (24) 

The first term in the exponent of this equation describes 
amplitude decay of the field away from the interface, the 
second and the third ones determine tangential phase 
shift and the profile of the amplitude distribution along 
the boundary. One way or another, these effects can be 
connected with the plane wave simulation of refraction 
above the critical angle. But the last imaginary summand 
in the exponent (24), which is proportional to xy, has not 
analogue in the plane-wave model, because it is due to 

spatial inhomogeneity of an incident beam. The nonlinear 
coordinate dependence of the phase described by this 
summand, will display only at a distance from the inter-
face, but at moving away from that, the beam amplitude 
decays rapidly, so that the pointed above effect is hardly 
noticeable. Nevertheless, it should be taken into account 
under consideration of phase properties of light beam 
field at total internal reflection.  

Figures 6-8 present graphically the computation re-
sults for spatial structure of the refracted field in a trans-
parent medium for the Gaussian beam incidence near the 
critical value. It is seen that the approximate solution (21) 
with the imaginary addend (22), (23) to dielectric per-
mittivity, differs here from the exact solution. In com-
parison with the latter, it yields too high value of ampli-
tude decay and more strong dependence of the field 
phase on coordinates. 

In the case of an absorbing medium, the solution (21) 
can also be used at incidence close to the critical angle, 
if the imaginary addend (22), (23) is taken into consid-
eration in addition to the complex dielectric permittiv-
ity of a medium. It is obvious that discrepancy between 
approximate and exact solutions will be not so appre-
ciable as for transparent medium, because the medium 
already has some absorption. And in the medium with 
strong absorption, the influence of this addend is in-
finitesimal at all, so that the approximate solution will  

 

 

Figure 6. Spatial distribution of amplitude (A) and phase () 
of refracted field at incidence of the TE-polarized Gaussian 
beam on the interface between two transparent media (n = 
1.6 and nt = 1.4) at kw = 4103: the exact solution (left) and 
the approximate one (right). The scale of x is increased by 
150 times in comparison with the scale of y. The angle of 
beam incidence is smaller than the critical one on 5. 
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Figure 7. Same as for Figure 6, but here the incident angle 
equals to the critical one. 
 

 

Figure 8. Same as for Figure 6, but here the incident angle 
is greater than the critical one by 5. 
 
be coincide practically with the exact one at any angle 
of incidence. Note that in the case of an amplifying 
medium having the negative imaginary part of permit-
tivity, one should take the addend (22) having the 
negative sign. 
 

5. Conclusions 

Our analysis shows that the geometrical-optics approxi-
mation of diffraction theory provides opportunity to ob-
tain an analytic expression for the field arising under 

refraction of the Gaussian beam at a dielectric interface. 
It is applicable to many kinds of homogeneous refracting 
media (transparent, absorbing and amplifying) and to any 
incident angle, excluding, of cause, the case of grazing 
incidence. The given approximate solution is determined by 
simple Equation (21) with the parameters (12), (13) and 
with the imaginary addend (22), (23) to the dielectric 
permittivity of a refracting medium. We do not assign 
any physical sense to this artificial addend and consider 
its introducing only as formal mathematical procedure 
ensuring an analytic approximation for the integral ex-
pression (7) by simple way. The magnitude of such an 
addend is maximal at the critical angle of incidence, 
hence the greatest deviations of the approximate solution 
from the exact integral expression are observed exact 
here. To demonstrate character of these deviations, we 
have advisedly choosen for illustration those cases, 
where the given deviations are maximal. At incidence 
considerably below or above the critical angle, our solu-
tion is in good agreement with exact one, and for a 
transparent refracting medium it turns into ordinary ex-
pression (18) for inclined propagation of a Gaussian 
beam, when the incident angle is appreciably smaller 
than the critical one. Overall, one can admit that the ob-
tained approximate solution reflects correctly the main 
properties of the refracted field spatial structure upon 
total internal reflection: 

1) Continuous character of the transition between beam 
propagation at incidence much below the critical angle, 
and exponential amplitude decay much above it; 

2) Orientation of the beam axis at inclination to the 
normal and the presence of amplitude decay at incident 
angles as below as above the critical value; 

3) Nonlinear phase dependence on coordinates at mov-
ing away from the interface. 

At any case, such a solution describes the refracted 
field under total internal reflection appreciably better 
than the model proposed in the paper [27] and the ordi-
nary plane-wave approximation. 
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