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ABSTRACT 

The iterative layer theory approach is applied to the analysis of double sided and single sided induction heating systems 
for continuous heating of thin metal strips. The excitation is transverse to the direction of strip motion and can be three 
phase or single phase. Nonmagnetic as well as ferromagnetic strips are employed. The important system parameters, 
namely, strip resistance, reactance, induced power and electromagnetic force are introduced. Accuracy of the method is 
verified with measurement of practical induction heating system together with comparison to numerical and analytical 
methods. 
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1. Introduction 

THREE phase induction heating systems such as transv- 
erse flux induction heating (TFIH) systems and traveling 
wave induction heating (TWIH) systems have been ex-
tensively studied in recent years. While numerical tech-
niques are more popular and particularly useful for in-
vestigating the induced current and power distributions 
taking into account longitudinal and transverse edge ef-
fects, analytical methods are more convenient for the 
integral parameters determination and analysis. 

3-D finite element method (FEM) has been employ- 
ed in the analysis of TFIH systems [1-8] while 2-D and 
3-D FEM have been employed in the analysis of TWIH 
systems [9-13]. Few papers relating to analytical meth- 
ods for the analysis of single phase and traveling wave 
but cylindrical induction heating systems have been pu- 
blished [14-17]. 

Only a few researchers pay attention to this area in 
the world. 

The TWIH is not fully appreciated with respect to 
their main advantages and possible industrial applica-
tions [18]. 

A. Ali, V. Bukanin from St. Petersburg Electrotechn- 
ical University in Russia and F. Dughiero, M. Frozen, 
S. Lupi, P. Siega, V. Nemkov from University of Padua 
in Italy have obtained significant achievements in this 
area. In the very recent years, Takamitsu Sekine, Hideo 
Tomita, Shuji Obata and Yokio Saito from Tokyo Den- 

ki University in Japan have designed an excellent trav-
eling wave induction heating system and carried out 
experiment [19]. 

An analytical method based on the decomposition of 
the main magnetic flux imposed by means of an excita- 
tion coil into partial magnetic fluxes along different 
regions that comprise the assembly. The basic circuit 
parameters that feature the electric performance in ind- 
uction heating devices having an excitation axial wind- 
ing as found in induction motors for generating rotary 
magnetic fields are mathematically modeled [20]. 

Modern analytical approaches using transmission line 
terminology [21-23] are confined to lossless or low cond- 
uctivity (dielectric) media where displacement currents 
are prominent at microwave frequencies in the order of 
hundreds of gigahertz, which is not the case as in this 
approach where induced power is the major objective of 
induction heating, moreover these methods are primarily 
applied to isotropic media while the layer theory is app- 
lied to both isotropic and anisotropic media, also it is not 
mentioned in these references whether these approaches 
may be used in the case of three phase (traveling wave) 
excitation. 

The layer theory approach has been mainly used for 
the analysis of linear, tubular linear and helical motion 
induction motors as given in [24-26]. 

TWIH systems widely common in literature are of the 
double sided induction heating (DSIH) system type as it 
employs upper and lower excitation inductors with res- 
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pect to the long and thin continuously moving strip. Sin-
gle sided induction heating (SSIH) systems are TWIH 
systems that employ one inductor for exciting the metal 
strip while single phase induction heating systems are 
commonly known as longitudinal flux induction heating 
(LFIH) systems. 

The primary object of this paper is to propose a gene- 
ral mathematical model for the induction heating system 
using the actual topology for single phase and three ph- 
ase excitations with any number of poles for SSIH and 
DSIH systems. As a second object, the paper employs the 
multi-layer approach with the appropriate current sheet to 
calculate the flux density components, induced power in 
the strip, terminal impedance and the magnetic force 
acting on the strip in the direction of field travel in the 
case of TWIH systems. 

2. Mathematical Model 

2.1 Three – Phase Excitation 

A general multi-region problem is analyzed. Figure 1 
shows a cross-section of the N-region model used in the 
theory. The model is taken to be a set of planar regions. 
The current sheet lies between regions r and r + 1. 
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Figure 1. General model with current sheet at boundary 
rz = g  

The current sheet varies sinusoidally in the y-direction 
and with time. It is of infinite extent in the x-direction 
and infinitesimally thin in the z-direction. 

Regions 1-N are layers of materials where the general 
region n has a conductivity σn and anisotropic relative 
permeability µn. The anisotropy is an approximation 
made in order to deal with slotted regions. The regions 
are traveling at velocity (1 )ns f  relative to a station-

ary reference frame where λ is the wavelength of applied 
field, f is the frequency and sn is the slip in region n de-
fined as 

n
n

f
s

f
  

where fn is frequency of the field experienced by region n.  

In this frame the traveling field has a velocity f . 

It is assumed that displacement current is negligible 
and magnetic saturation is neglected. Maxwell’s equa- 
tions for any region in the model are 

H J                 (1) 

B
E

t


  


             (2) 

0B                   (3) 

0E                   (4) 

J E                   (5) 

B H                   (6) 

The boundary conditions may be summarized as fol- 
lows 

1) The normal component of the magnetic flux density 
Bz is continuous across a boundary. 

2) All field components vanish at z   . 
3) The tangential component of magnetic field stre- 

ngth Hy is continuous across a boundary, but allowance 
must be made for the current sheet in the manner ex-
plained in Section 3. 

2.1.1 Excitation Current Density 
It is assumed that the winding produces perfect sinusoi-
dal traveling wave. The line current density may be rep-
resented as 

 Re exp[ ( )]J J j t ky            (7) 

where ,J    and k are the line current density, angular 
frequency and wave length factor respectively. The line 
current density is given by 

6 2 effN I
J

p
   

where I, p, τ and Neff are the r.m.s. value of the phase 
current, number of poles, pole pitch and effective number 
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of series turns per phase respectively. The wave length 
factor is defined as 

k



                   (8) 

2.1.2 Field Equation of a General Region 
As a first step in the analysis the field components of a 
general region are derived, assuming that all fields vary 
as exp[ j(ωt – ky)], and omitting this factor for simplicity 
reasons from all the field expressions that follow. Taking 
only the x- component from both sides of (2) yields 

0xB   

From (3) we have 

z
y

B
jkB

z





 

which leads to 
2

2

yz
BB

jk
zz





              (9) 

Taking the z- component from both sides of (2) yields 

x zE B
k


                  (10) 

Taking only the x-component from both sides of (1) 
yields 

yz
x

BB
E

y z



 

 
           (11) 

Therefore, using (9) and (10) into (11) yields 
2

2
2

z
Z

B
α B

z





               (12) 

where 
2 2

0 rα k jωμ μ σ   

The solution is given by 

cosh( ) sinh( )zB A αz C αz          (13) 

where A and C are arbitrary constants to be determined 
from the boundary conditions. 

From (3) we get 

 
0

sinh( ) cosh( )y
r

α
H A αz C αz

jkμ μ
       (14) 

2.1.3 Field Calculations at the Region Boundaries 
Figure 2 shows a general region n of thickness Sn the 
normal component of magnetic flux density on the lower 
boundary is Bn-1 and the tangential component of mag-
netic field strength is Hn-1. The corresponding values on 
the upper boundary are nB  and nH . From (13) and (14) 

, cosh( ) sinh( )z n n n n nB A α z C α z           (15) 
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Figure 2. General region n 
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Equivalent expressions for Bz,n-1 and Hz,n-1 can be 
found by replacing zn by zn-1. Now for the regions where 

1n   or N 
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  (17) 

or 

 , , 1

, , 1

z n z n

n
y n y n

B B
T

H H




   
   

      
           (18) 

where 

0

n
n

n

α
β

jμ μ k
                  (19) 

Hence given the values of Bz and Hy at the lower 
boundary of a region, the values of Bz and Hy at the upper 
boundary are immediately obtainable from this simple 
transfer matrix relation. At the boundaries where no ex-
citation current sheet exists, Bz and Hy are continuous; 
thus for example, if two regions are considered with no 
current sheet at the common boundary, knowing Bz and 
Hy at the lower boundary of the first region, Bz and Hy at 
the upper boundary of the second region can be calcu-
lated by successive use of the underlying two transfer 
matrices. Considering the current sheet to be at rz g , 

then 

, ,y n y nH H  ,     n r            (20) 

and 

, ,y n y nH H J   ,     n r         (21) 

where 
,y n

H  is the tangential magnetic field strength in 

close lower proximity to the boundary and ,z n
H   is the 

tangential magnetic field strength in close upper prox-
imity to the boundary. 

Given the current sheet excitation at rz g  the over-

all structure divides into an upper part, which is modeled 
according to 
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and an inner part which supports the following relation 

   ,
1

,

z r
r r

y r

B
T T

H 

 
  

 
…   ,1
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,1

z

y

B
T

H

 
  
 

       (23) 

If the top region is now considered, then as z  , 
tanh( ) 1αz   and all field quantities tend to zero, hence 

on the boundary 1Ng   the field quantities are related by 

1 1N N NH β B                (24) 

Therefore at any z within region N the field quantities 
become 

  1 1expz N N NB B α g z    

1 1exp{ ( )}y N N N NH β B α g z     

Considering the bottom region where n = 1, the field 
quantities are related by 

1 1 1H β B                     (25) 

and at any z within region 1 

  1 1 1expzB B α z g   

1 1 1 1exp{ ( )}yH β B α z g   

2.1.4 Surface Impedance Calculations 
The surface impedance looking outwards at a boundary 
of nz g  is defined as 

, ,
1

, ,

x n z n
n

y n y n

E B
Z

H k H


   

 
          (26) 

and the surface impedance looking inwards is defined as 

, ,

, ,

x n z n
n

y n y n

E B
Z

H k H


               (27) 

Using the method obtained in [17] with the values of 
Bz,N-1, Hy,N-1, Bz,1, Hy,1 and [Tn] as derived in the previous 
section then 

1

1

r r
in

r r

Z Z
Z

Z Z








                 (28) 

where Zin is the input surface impedance at the current 
sheet and Zr+1 and Zr are the surface impedances looking 
outwards and inwards at the current sheet.  Substituting 
for Zr and Zr+1 using (26) and (27) respectively, and re-
arranging the terms yields 

,

, ,

x r
in

y r y r

E
Z

H H
 


               (29) 

Substituting (21) into (29) yields 

,x r
in

E
Z

J
 


                 (30) 

Thus the input surface impedance at the current sheet 
has been determined. This means that all field compo-
nents can be found by making use of this and (27), (22), 
(23). 

2.1.5 Terminal Impedance, Power and Tangential 
Force 

The terminal impedance per phase per metre of axial 
length can be derived [17] in terms of Zin as 

224 eff
t in

N
Z Z

λp
      Ω/m          (31) 

Having found Ex, Bz and Hy at all boundaries, it is then 
a simple matter to calculate the power entering a region 
through the concept of Poynting vector. The time average 
power density passing through a surface is given by 

 *1
Re

2
P E H     W/m2 

Hence the time average power density flowing up-
wards from the current sheet at rz g  is given by 

 *
, , ,

1
Re

2in r x r y rP E H   

and the time average power density flowing downwards 
from the current sheet at rz g  is given by 

 *
, , ,

1
Re

2in r x r y rP E H   

The net power density in a region is the difference 
between the power in and power out 

 * *
, , , ,Re

2in z r y r z r y r

ω
P B H B H

k
        (32) 

It follows that the tangential force density Fy acting on 
the strip is the net power density induced divided by 
traveling wave velocity λf  

in
y

P
F

λf
     N/m2              (33) 

2.1.5.1 Single Phase Excitation 
This is a simpler problem than the three phase one and 
only regions below or above the current sheet (depending 
where the strip is located) need be considered. Other re-
gions do not in any way affect the field distribution. The 
excitation is provided by a single coil of N1 turns per 
metre of axial length carrying alternating current in the 
transverse direction. The line current density takes the 
form 
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Re{ exp( )}J J jωt           (34) 

with 

12J N I   

In this case 0k  , all field relations, Maxwell’s equa-
tions and boundary conditions hold. The solution is given 
by 

cosh( ) sinh( )zB A αz C αz         (35) 

where 
2

0 rα jωμ μ σ               (36) 

If the plane 0z   passes through the central axis of 
the strip then 

/2 cosh( / 2) sinh( / 2)bB A αb C αb   

where b is the thickness of the strip and /2bB  is the axial 

(tangential) component of magnetic flux density at the 
upper surface of the strip. The axial component of mag-
netic flux density at the lower surface of the strip is given 
by 

/2 cosh( / 2) sinh( / 2)bB A αb C αb    

Hence we can write 

/2 /2 0 cosh( / 2)b bB B B αb              (37) 

where B0 is the axial component of magnetic flux density 
at the centre of the strip. 

The input surface impedance at the current sheet be-
comes 

in rZ Z                     (38) 

where Zr is obtained using (27). 
The net power density induced in the strip is obtained 

using the concept of Poynting vector and therefore the 
net power density in the strip is 

* *
, 1 , 1 , ,

2

2

1
Re{ }

2

Re{ tanh( / 2)}         

in x n y n x n y nP E H E H

J
α αb w m

σ

  




        (39) 

The terminal impedance is given by the relationship 

tanh( / 2)t

α
Z αb

σ
               (40) 

3. Numerical Results 

The solution procedure that has been described in the pre- 
vious sections is used to analyze two examples to check 
validity and accuracy. One example is a single phase 
practical induction heating system with ferromagnetic 
strip [27]. The importance of this example is that meas-
urement is available in addition to calculation. The other 

example is based on FEM solution for DSIH system [9]. 
For comparison reasons, FEM computation is adopted 

in our analysis which is widely used as a numerical tech-
nique for this kind of applications. 

In our implementation, the field domain is divided into 
a number of regions, each being defined by its coordi-
nates, permeability and conductivity. Each region is de-
scritized using first order triangular elements [28]. The 
induced power in the strip is obtained through the solu-
tion of governing differential equation for each nodal 
magnetic vector potential. Three values of power are 
computed: the power integrated over the coil, the air gap 
power and the power integrated over the strip. 

The solution is assumed to be convergent when these 
three values do not differ by more than 1% which is 
termed as the power mismatch or power imbalance. 

3.1 Practical Single Phase Induction Heating 
System 

Problem data are given in Table 1. Results obtained us-
ing the layer theory approach and FEM are in good 
agreement with measurement as shown in Table 2. This 
agreement is attributed to the fact that strip thickness is 
very small compared to strip length and width which 
coincides with the assumptions made in the mathematical 
model. 

 
Table 1. Problem data for practical induction heating sys-
tem (based on [27], Ex. 13) 

Strip thickness, (mm) 1.56 
Strip width, (mm) 1220 
Strip length, (mm) 1270 
Relative permeability of strip 50 
Mean strip conductivity, (S/m) 1.333 × 106 
Production rate, (ton/hr) 9.072 
Heat cycle, (sec) 7.5 
Speed of strip, (m/s) 0.169 
Frequency, (Hz) 9600 
Coil axial length, (mm) 1270 
Coil width, (mm) 1270 
Air gap length, (mm) 73.32 
Amplitude of line current density, (kA/m) 31.831 

 
Table 2. Computed parameters of the practical single phase 
induction heating system 

Parameter 
Measured
value [18]

Value calculated 
by empirical 
formula [18] 

FEM
Layer 
theory 
value 

Strip power 
(kW) 

1490 1856.3 1824.9 1903.9

Strip resistance
(Ω) 

— 1.86 1.82 1.9 

Reactance 
(Ω) 

— 2.32 2.35 2.37 
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Figure 3 shows the variation of the axial component 
of magnetic flux density along strip depth at mid coil 
axial length for single phase model using FEM analysis 
and the layer theory approach. The agreement between 
the results of both methods may be considered good with 
a maximum relative deviation of 4.9%. It is shown in this 
figure that the axial component of magnetic flux density 
decreases rapidly (exponentially) from the surface of the 
strip for both sides due to skin effect. Obviously there is 
no normal component for single phase induction heating 
system and this can be derived directly from Maxwell’s 
equations. 

3.2 Single Sided and Double Sided Traveling 
Wave Induction Heating Systems 

Reference [9] employed a double sided induction heating 
system whose data are given in Table 3. 
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Figure 3. Variation of axial flux density component with 
strip depth for single phase induction heating model 

 
Table 3. Problem data for traveling wave DSIH and SSIH 
systems (based on Reference [9]) 

Strip thickness, (mm) 2 
Strip width, (mm) 1000 
Strip length, (mm) 960 
Relative permeability of strip 1 
Mean strip conductivity, (S/m) 3.03 × 107 
Axial pole pitch, (mm) 480 
Slot pitch, (mm) 160 
Slot width, (mm) 80 
Slot depth, (mm) 40 
Slots per pole per phase 1 
Number of axial poles 2 
Number of conductors per slot 8 
Frequency, (Hz) 50 
Inductor axial length, (mm) 960 
Inductor width, (mm) 1000 
Magnetic yoke depth, (mm) 80 
Air gap length between yoke & strip, (mm) 15 
Amplitude of line current density, (kA/m) 200 
Input phase voltage, (V) 220 

For the sake of comparison, the same model is adopted 
as a single sided induction heating system using the same 
line current density by removing one of the inductors 
along with its backing iron. Table 4 shows the computed 
parameters for both systems using FEM and the layer 
theory approach. Again the results correlate well as dis-
cussed in Subsection 3.1. 

Figure 4 and Figure 5 show respectively the variation 
of normal and tangential (axial) flux density components 
along magnetic gap length. The maximum deviation be-
tween the results of both methods is found to be 5.2%. 

Figure 6 and Figure 7 show the variation of normal 
and tangential (axial) flux density components along dis-
tance normal to the strip. Again both methods correlate 
well within 4%. In both systems the axial flux density 
component in the air gap is greater than the normal 
component, this may be attributed to the fact that the pole 
pitch is much greater than the air gap length in both sys-
tems and in this case these systems are considered as 
axial flux machines. It is clear from these figures that the 
axial component of magnetic flux density is decreased 
within the strip due to skin effect which is not effectively 
pronounced in the normal component to the strip. 

 
Table 4. Computed parameters for traveling wave induc-
tion heating systems 

Parameter 
FEM 
Value 

Layer Theory
Value 

Per phase DSIH strip resistance (Ω) 0.0497 0.0513 
Per phase DSIH reactance (Ω) 0.014 0.017 
DSIH strip power (kW) 1210.3 1250.2 
DSIH axial force (N) 23914.5 26045.3 
Per phase SSIH strip resistance (Ω) 0.0125 0.012 
Per phase SSIH reactance (Ω) 0.0087 0.0086 
SSIH strip power (kW) 305.06 292.8 
SSIH axial force (N) 6300 6099.9 
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Figure 4. Variation of normal flux density component along 
normal distance to strip for double sided induction heating 
system 
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Figure 5. Variation of axial flux density component along 
normal distance to strip for double sided induction heating 
system 
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Figure 6. Variation of normal flux density component along 
normal distance to strip for single sided induction heating 
system 
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Figure 7. Variation of axial flux density component along 
normal distance to strip for single sided induction heating 
system 

4. Conclusions 

The layer theory approach has been used for the analysis 
of single sided, double sided traveling wave and single 
phase induction heating systems. This method has been 
applied to compute electrical parameters of various in-
duction heating systems with ferromagnetic and non-
magnetic thin strips. 

The results show clearly that the theoretical results cor- 
relate well with finite element method results in addition 
to experimental one. This may be considered as fair jus-
tification to the analysis method proposed in this paper. 
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