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Abstract 
This work focuses on a brief discussion of new concepts of using smartphone 
sensors for 3D painting in virtual or augmented reality. Motivation of this re-
search comes from the idea of using different types of sensors which exist in 
our smartphones such as accelerometer, gyroscope, magnetometer etc. to 
track the position for painting in virtual reality, like Google Tilt Brush, but 
cost effectively. Research studies till date on estimating position and localiza-
tion and tracking have been thoroughly reviewed to find the appropriate algo-
rithm which will provide accurate result with minimum drift error. Sensor fu-
sion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter 
based global translational localization systems are studied. It is observed, pre-
vailing approaches consist issues such as stability, random bias drift, noisy ac-
celeration output, position estimation error, robustness or accuracy, cost ef-
fectiveness etc. Moreover, issues with motions that do not follow laws of 
physics, bandwidth, restrictive nature of assumptions, scale optimization for 
large space are noticed as well. Advantages of such smartphone sensor based 
position estimation approaches include, less memory demand, very fast oper-
ation, making them well suited for real time problems and embedded systems. 
Being independent of the size of the system, they can work effectively for high 
dimensional systems as well. Through study of these approaches it is ob-
served, extended Kalman filter gives the highest accuracy with reduced re-
quirement of excess hardware during tracking. It renders better and faster re-
sult when used in accelerometer sensor. With the aid of various software, er-
ror accuracy can be increased further as well. 
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1. Introduction 

Portable, compact, easily accessible, and cost-effective means of services and 
technology are of great use in recent times. A lot of works have been carried out 
in the field of computer algorithm and application development which is based 
on mobile and portable workstations like cellphone, smartphone, tablet, Person-
al Digital Assistant (PDA) etc. These devices are especially opted since they fea-
ture few unique characteristics i.e. portability, cost effectiveness, multiple plat-
form and OS compatibility, easy internet connectivity for firmware update, user 
friendly UI etc. Moreover, with the advances in semiconductor chip and inte-
grated circuits technology, these devices now boast highly powerful processors 
and a wide range of sensors. A developer hence can take advantage of this po-
werful yet portable computing ability of these devices to design innovative ap-
plications. To accurately estimate position and localization, and to achieve effec-
tive tracking, various combinations of sensors, algorithms have been designed 
and developed which work together in synchronization. After thorough scrutiny 
and analysis of relevant works in this area, it is found that they can be broadly 
categorized and discussed based on their methodology, framework, and experi-
mental results. Hence our discussion is separated into three afore-mentioned 
kinds so that it is possible to critically analyze relevant works in an effective way 
considering every criterion and come up with a new idea. 

2. Position Estimation Methodologies 
2.1. Using Miniature Inertial Sensors 

Various types of sensors have been used to accomplish various tasks. Miniature 
inertial sensors based on biomechanical models and sensor fusion algorithm can 
accurately track human motion [1]. A rigid body can move freely in 3D space in 
six degrees of freedom (6DOF) which refers to specific number of axes. The 
number of independent parameters is characterized in 6DOF which elucidates 
the configuration of mechanical system. The rigid body can move with X, Y and 
Z axes and change its orientation among these axes with the help of rotation 
which are usually referred as pitch, yaw and roll. 6DOF is mainly used in engi-
neering and robotics to count the number of degrees of freedom of an object 
having 3D space. In short, it can be said that there are six parameters which are 
created during the movement of body. The movement of the cell phone can be 
tracked using 6DOF sensors of cellphone. Six degrees of freedom are more in 
number in case of robotics. Robotic arm has 18 degrees of freedom because three 
segments are found in its arm with each segment having six degrees of freedom 
[2]. It is an expensive system for robotics and the cost of equipment, software 
and personal requires can restraint use of this system only to large productions. 

2.2. Using Sensor Fusion Approach  

Sensor fusion is another effective approach where data from several sensors is 
combined in a time triggered network that can correct deficiencies from indi-
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vidual sensors to calculate accurate position and orientation information [3]. It 
proposes two sensor fusion algorithms to accomplish this task, the systematic 
confidence-weighted averaging algorithm and the application-specific robust 
certainty grid algorithm. TT (Time-Triggered) design requires detailed design 
phase. Data arrival at fusion node does not coincide due to variable propagation 
delays. This sensor fusion can be used in android devices for indoor positioning 
quite satisfactorily [4]. It focuses in estimating the position of the phone inside a 
building where the GPS signal is bad or unavailable. By using data from the de-
vice’s different sensors, such as, accelerometer, gyroscope, and wireless adapter, 
the position is determined. Advantages of using sensor fusion are redundancy, 
complementary, timeliness and less costly information. However, it has higher 
power assumption. 

2.3. Using Triaxial Accelerometers 

Mobile robot position can be accurately recorded using accelerometer [5]. Here 
Kalman filter is used to reduce error caused by random noise. Although it can 
reduce error caused by random noise as well as having low cost and small size, 
random bias drift problems can occur here. Tri-axial accelerometer has also been 
used to determine position and orientation precisely [6]. Triaxial accelerometers 
provide simultaneous measurements in three orthogonal directions, for analysis 
of all the vibrations being experienced by a structure. Here, each unit is a com-
bination of three sensing elements, separated from one another and aligned at 
right angles with each other. It helps to diminish cost, amenity and upgrade 
tangential sensitivity, but it is bulkier in size. A combination of accelerometer, 
gyroscope, magnetometer can be used as well for 3D knee kinematics, having 
low error percentage results [7]. A combination of two sensors has also been 
used to develop the error propagation equations [8]. Beginning with the basic 
multi-sensor triangulation equations to estimate a 3D target position, error 
propagation equations are derived by taking the appropriate partial derivatives 
with respect to various measurement errors. Gaussian measurement is also used. 

2.4. Inertial Measurement Units (IMU) 

Integrated electronic devices containing accelerometers, gyroscopes, magneto-
meters are incorporated in Inertial Measurement Units (IMU) [9]. IMUs are in-
tegrated electronic devices that contain accelerometers, magnetometers and gy-
roscopes. This system is not free from drift error, a difference between the actual 
position and system detected position. Growth of quadratic error in position and 
linear error in velocity occurs due to constant error of acceleration in the time of 
integration. On the contrary, quadratic error in velocity and growth of cubic er-
ror in position appears because of constant error of gyroscope [10]. To mitigate 
drift error, MEMS based low cost system has been designed for pedestrian navi-
gation using only accelerometer and gyroscope sensors without incorporating a 
magnetometer [11]. Inertial measurement units have been used for gait analysis 

https://doi.org/10.4236/jcc.2018.64006


S. Akhter et al. 
 

 

DOI: 10.4236/jcc.2018.64006 68 Journal of Computer and Communications 
 

as well [12]. A miniature inertial/magnetometer package wirelessly coupled to 
PDA is reported to track pedestrian position effectively with or without GPS 
availability [13]. Using MEMS inertial sensor, it is possible to measure accurately 
up to 50 cm in case of diameter [14]. The advantage of inertial sensor is being 
self-contained and non-reliant on external field, disadvantage is it is typically 
rate measurement and expensive. Though the system does not require calibra-
tion and is stride length independent, it can be affected to render erroneous data 
from surrounding metal infrastructures or buildings. Foot mounted inertial 
sensors have also been used in indoor environment for pedestrian localization 
[15]. The system takes advantage of the low cost and small size of inertial sensors 
but it requires dedicated experiment space and walking range. 

2.5. Kalman Filter Based Tracking 

A widely-used approach of accurate tracking is Kalman filtering [16] [17]. This 
approach has several advantages. It requires smaller memory allocation which 
makes it well suited for real time problems and embedded systems. It is a conve-
nient form for online real-time processing. However, use of Kalman filter can 
sometimes make the final error level worse. 1D Kalman filter, a statistical tech-
nique, can adequately describe the random structure of experimental data 
through a connection with GPS and Wiener filter [18]. Here, the error is smaller 
with time varying gain. Kalman filter can be implemented with an accelerometer 
sensor that gives excellent noise reduction, increases dynamic range, and reduces 
displacement of mass under closed loop structure [19]. Kalman filter fusion al-
gorithm in IMU/UWB can be used to track human operators effectively [20]. 
Kalman filter approach has also been used for global pose estimation using multi 
sensor fusion [21]. The system is made using Kalman filter for fusion of Diffe-
rential GPS (DGPS) or Real Time Kinematic (RTK) for AR (Augmented Reality) 
and IMU with visual orientation tracker. Altitude Kalman filter is not indepen-
dent because of 9 parameters for altitude representation and not easy to use and 
understand, besides real-time kinematics is no longer useful. 

2.6. Extended Kalman Filter (EKF)  

The extended Kalman filter (EKF) is the nonlinear version of the Kalman filter 
which linearizes about an estimate of the current mean and covariance [22]. EKF 
usually gives less accurate measure of covariance. It is incorporated in designing 
indoor positioning system based on IMU/magnetometer [23]. This filter also 
renders better and faster result when used in accelerometer sensor. Besides EKF, 
Unscented Kalman filter (UKF) algorithm is used for better position accuracy 
and reliability, uses U transform during filtering [24]. UKF is more appropriate 
in solutions to nonlinear systems compared to EKF [25]. 

3. Framework of Position Estimation Approaches 

Among different frameworks, MVN consists of 17 inertial and magnetic sensor 
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modules [1]. The magnetic sensor is not always able to find out below-surface 
defects, and inertial sensor is typically rate measurement and expensive. Com-
puter, motion sensors (accelerometer) and rotation sensors (gyroscope) are used 
in inertial navigation system (INS) for continuous calculation of dead reckoning 
position, orientation and velocity of moving objects without external reference 
[26]. In sensor-fusion approach, the application is structured as a single activity 
with different layouts (views) [4]. The main processing line takes care of the 
sensors reading which is handled by an event listener. When a new value from 
the sensors is sampled depending on the mode it will be processed by the posi-
tioning engine, displayed on the screen or stored in a sampling array. The UI is 
handled from an independent thread, the screen updates are controlled by a ti-
mer and by external calls from the positioning block. The mode changes are 
triggered either by the 30-user interaction (through the menu) or by special 
event in the block which handles the sensors (e.g. the calibration is completed). 

IMUs work by the principle such as, the first and the second frames depend 
on orientation and mounting position, and remain constant during motion be-
tween joint center and origin of their position [12]. Here, MT9 need six channels 
to change and each channel needs to record separately [9]. On the other hand, 
magnetometer calibration is done in implementing the Navshoe system based on 
inertial sensors [13]. 

Kalman filter based inertial motion capture system and UWB localization sys-
tem for hybrid tracking incorporates measurements from the GypsyGyro-18 
[20]. These are transformed to the Ubisense coordinate system using transfor-
mation matrix in the same coordinate system. Kalman filter is used for predic-
tion step and correction of step, whereas the Ubisense system usually returns 
accurate positions. However, some measurements from the Ubisense system 
have big errors and shouldn’t be incorporated to the Kalman filter. In case of 
orientation estimation and position estimation, dedicated Kalman filter and al-
titude Kalman filter can be used together [21]. Altitude Kalman filter, a linear 
Kalman filter is used to estimate altitude and vertical velocity by doing sensor 
fusion of acceleration and any altitude measurement sensor such as e.g. barome-
ter or SONAR. Algorithm of the Kalman filter has several advantages. This is a 
statistical technique that adequately describes the random structure of experi-
mental measurements. This filter can consider quantities that are partially or 
completely neglected in other techniques (such as the variance of the initial es-
timate of the state and the variance of the model error). It provides information 
about the quality of the estimation by providing the variance of the estimation 
error in addition to the best estimate. Kalman filter is well suited for online digi-
tal processing. Its recursive structure allows its real-time execution without 
storing observations or past estimates. EKF orientation estimation method is ef-
fective to provide accurate reconstructed trajectory in an indoor environment 
[27]. EKF is also designed based on quaternions for heading estimation which is 
a combination of gyroscopes and accelerometers with better accuracy [28]. 
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4. Result Analysis of Reviewed Estimation Approaches 

It is observed that miniature inertial sensors based on biomechanical models and 
sensor fusion algorithm can accurately track human motion and finds unknown 
initial position [1]. In case of estimating the position of a phone by sen-
sor-fusion, a double integration is required to calculate position from accelera-
tion [4]. The INS algorithm needs large processing time. To reduce the effect of 
the errors, the linear acceleration method is complemented with additional 
functions: movement detection, walking speed limit and step detection. This 
improved the INS position estimation significantly.  

To successfully estimate the orientation and position of a triaxial accelerome-
ter on industrial robot, two basic steps are observed [6]. First, the internal sensor 
parameters and the accelerometer with orientation of the sensor. Second, the 
position respect to the robot tool coordinate system. Here, there is no elimina-
tion of error. On the other hand, two-sensor 3D position estimation technique 
comprises steps such as, 3D position estimation, then error propagation for two 
sensors, Tylor series expansion for unknown values, then error propagation with 
Gaussian statistics to target the position. However, these steps can be avoided 
[8]. 

It is observed during calibration of IMUs for 3D orientation, spreading of er-
ror in absolute orientation is present [9]. Besides in the time of raw data 
processing, the total error was split into component rotations about the global 
axis to further understand the sources of the orientation error. Each sensor 
needs to be mapped to the rigid body segment. In case of INS for pedestrians 
based on MEMS IMU, only accelerometer and gyroscope measurements were 
considered (no magnetometers required) [11]. The sensor error model parame-
ters were included in the state vector of an extended Kalman filter. This analyti-
cal approach was appropriated for foot stance detection at zero-velocity [11]. 
Comparison on Razor IMU and Xsens MTi IMU was drawn as well. It is also 
observed that the experimentation of various systems depicts different levels of 
non-consistency. Noise and slow drifting occurs in IMU based gait analysis [12]. 
Accuracy of only 0.3 percent is observed in indoor, outdoor experimentation of 
shoe-mounted inertial sensors based pedestrian tracking [13]. Indoor environ-
ment localization technique for pedestrians did not remove errors present [15]. 
It required a dedicated experiment space and the walking range. 

The Kalman filter combines all previous predicted values and information in 
implementing accelerometer sensor data for three state positions in dynamic 
system [19]. It is very inexpensive since it completes the whole process without 
storing data. Besides, it uses simple loop equations. It is also mandatory to point 
out the independent Kalman gain and error covariance equation of actual ob-
servation. To obtain preliminary information of estimator performance, these 
parameters are easy to use. It is found that the algorithm is recursive and easy to 
implement because dimensional matrix cannot be changed with time. It is very 
useful for solving all problems in multi-state or multi-dimensional conditions. 

https://doi.org/10.4236/jcc.2018.64006


S. Akhter et al. 
 

 

DOI: 10.4236/jcc.2018.64006 71 Journal of Computer and Communications 
 

The solution is obtained with less computational time in respect of large cost 
overhead in modeling. R\q value of 28 could be good solution to reduce errors in 
acceleration, velocity and position which are found from graph analysis [19]. It 
is observed, Kalman filter based inertial motion capture system and UWB loca-
lization system for hybrid tracking incorporating measurements from the Gyp-
syGyro-18 [20] in Ubisense system is not suitable, because Ubisense has small 
data frequency (5 - 9 FPS) which causes extremely high latencies in industrial 
environments. Ubisense system having considerable amount of errors shouldn’t 
be incorporated to the Kalman filter. GypsyGyro-18 gives accumulated errors in 
global translational measurements. GypsyGyro-18 represents an error of 0.56 m 
regarding the pre-established path. This error is due to the GypsyGyro-18 foot-
step extrapolation algorithm because it sometimes estimates wrongly when the 
feet meet the floor. That’s why they need to use UWB localization system. The 
GypsyGyro-18 global translational error has been reduced to 0.14 m and the re-
sulting data rate is equal to the GypsyGyro-18 frequency (30 Hz). It consists of 
two components: an inertial motion capture system (GypsyGyro-18) and an 
UWB localization system (Ubisense). The MoCap (Motion Capture) system can 
register movements of the operator’s limbs with high precision, but global posi-
tion of the operator in the environment is not determined with sufficient accu-
racy. On the other hand, use of dedicated Kalman filter and altitude Kalman fil-
ter together for orientation estimation and position estimation is achieved by a 
hardware platform [21]. Kalman filter is then used for global pose estimation 
using multiple sensors. GPS and DGPS are used as well, which is not necessary. 
A visual panorama tracker as additional input can communicate in limited dis-
tance. Also, use of barometer gives less accurate results. 

It is shown that robustness against measurement error is found using EKF 
[29]. EKFs have been implemented for all possible combinations using gyros-
copes and accelerometers as control or measurement inputs [30]. EKF with 
Taylor series expansion of observation matrix is used for superior performance 
[31]. A comparison between Second-Order Extended Kalman Filter (SOEKF) 
based on multiplicative noise model and the random matrix approach i.e. EKF 
has been drawn. During the time of orientation changing, both SOEKF and EKF 
provides better performance [32]. SOEKF Taylor series expansion matches more 
accurately with the exact moments compared to First-order Taylor series expan-
sion [33]. It is also observed that EKF is capable of incorporating different direc-
tions during movement when compared to invariant extended Kalman filter 
(IEKF) [34]. 

5. Experimental Discussion 

Study of various position estimation approaches above exhibit that comprehen-
sive and accurate position and localization estimation as well as efficient tracking 
comprises different degree of issues where there is scope of further improve-
ments. The dimensions and joints of the character (creature) often do not exact-
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ly match the subject (actor) being captured in miniature inertial sensors based 
human motion tracking using sensor fusion algorithm [1]. Custom calibration of 
inertial measurement units for 3D orientation is valid for only 22 days, with er-
ror increasing everyday [9]. Moreover, human knee being less close to a perfect 
hinge joint, gait analysis of IMU based joint angle measurement is not com-
pletely accurate [12]. On the other hand, a large difference between altitudes 
occurs at the beginning due to slow transition oscillation for global pose estima-
tion using multi sensor-fusion by Kalman filter approach [21]. Lack of accuracy 
and drift over time is observed as well. 

To compensate for the drift, existing sensor fusion systems use various types 
of external sensor, such as, GPS, ultrasonic beacons etc. In our approach, we 
propose to implement a single camera SLAM [20] [21] with controller smart-
phone’s camera to obtain visual odometry of the handheld device in real-world 
environment. Lucas-Kanade sparse optical flow [35] is used to track good fea-
tures between frames. We then calculate essential matrix to obtain rotation and 
translation information, which eliminates dependency on any external position-
ing system. Proposed approach is tested on Sony Xperia Z2 smartphone, which 
runs on Android OS 6.0.1, API level 23. Android API's Sensor Manager Class is 
used to make use of events and information, such as, sensor’s type, time-stamp, 
accuracy, and sensor’s data. Android API provides a 3D vector indicating acce-
leration along each device axis, excluding gravity. The smartphone used in the 
experiments consist of BMA2X20 Accelerometer, having a resolution of 0.019 
m/s2 and maximum range of 39.227 m/s2.  

Accelerometers have very fast response but consists noise. Experimental data 
shows white noise propagation in raw linear acceleration over constant time 
domain with controller device in flat position. By using EKF, relatively smooth 
data is found as in Figure 1. During construction of EKF, we set three values.  
 

 
Figure 1. Accelerometer linear acceleration data 
from X-axis: (a) Noisy data (b) Smooth data after 
extended Kalman filtering (arbitrary units). 
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They are expectation value (0.001), process noise (1e-5) and measurement noise 
(0.0195). Data from linear acceleration of X, Y and Z-axis is sent to EKF to con-
vert noisy data into smooth data. There is still some bias found when accelero-
meter data is sent after filtering. Computing filtered or smooth data by double 
integration, we get position estimation of the handheld device. However, an is-
sue of rise in drift is observed. Bias increases the amount of drift error as well. 
So, we accumulate long term average of bias for bias estimation. Then we calcu-
late bias estimation before double integration to reduce drift. Inertial measure-
ment sensors are MEMS based. Hence, flicker noise or 1/f noise is present. 

6. Conclusion 

It is observed from detailed analysis above; there is scope of state estimation 
(velocity, position and pose) by using accelerometer, gyroscope and magneto-
meter sensors and EKF which requires further study. The significance of this 
approach is to be able to get room scale canvas and introduce immersive expe-
rience to users. Extensive experimentation can be performed by using IMU of 
mobile device. Further analysis on estimating accurate drift and error can be 
performed as well. Monocular odometry to compute the accurate relation be-
tween IMU provided position and visual localization in real world co-ordinate 
system is another scope of possible study. We propose to use monocular visual 
inertial system integrated with accelerometer to reduce observed flicker noise in li-
near acceleration data. From monocular images, depth map can be created using 
concurrent inertial measurements and pose recovery. With Structure-from-Motion 
method we can estimate camera pose estimation and trajectory to get stable 3D 
coordinates for handheld device with reduced residual noise from IMU sensors. 
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