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Abstract 
We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different ori-
gins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, 
however, that although invasive and non-invasive BCI signals are different, the underlying origin 
of electrical BCIs signals is the same. 
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1. Introduction 
A Brain-Computer Interface (BCI) enables people to control computers and consequently devices directly via 
their thoughts. A BCI measures specific thought related brain activity and translates it into commands for com-
munication and control [1] [2]. People affected by impaired motor functions, due to neurodegenerative diseases 
or traumata, can particularly benefit from a BCI [3] [4]. Today, however, people without disorders also benefit 
from a BCI. For example, a BCI can be used to assess, track and process actual mental states [5] [6]. 

BCIs can be divided according to their invasiveness into invasive and non-invasive BCIs, i.e., whether sensors 
used to measure brain activity are penetrating the skin or not. Over the last years particularly one type of inva-
sive BCIs repeatedly gained attention in media and in the scientific community: invasive BCIs that used small 
grids of electrodes implanted directly in the motor cortex and related areas. In this context, motor imagery is 
used as an intuitive and natural strategy to elicit brain activity changes and subsequently to control movements 
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of a robotic arm. Starting from the research with monkeys, case studies are available nowadays, demonstrating 
that the concept is also valid in humans [7]-[9]. In a setting with a robotic arm, a user was able to control up to 
ten different possible movement directions in real time [10]. We refer to this specific type of invasive BCIs 
when we use the term invasive BCI throughout this work. Despite the fact that the results of the case study show 
a high level of control, there is a critical issue with invasive BCIs: in a recent study, published by Blabe et al. 
(2015), 40% of the respondents would not consider a neurosurgery at all, even if very good results could be ex-
pected [11]. In another study, conducted by Collinger et al. (2013), non-invasiveness was also rated as a high 
priority [12]. 

The vast majority of non-invasive BCIs are realized with electroencephalogram (EEG) measurements of brain 
activity [13]. Two concepts in non-invasive EEG based BCIs are common: 1) evoked response based BCIs and 
2) induced response based BCIs [14]. Evoked response based BCIs have already proven to work satisfactorily 
for communication purposes, even in home environments and on a daily basis over years [15]-[18]. Evoked re-
sponse based BCIs rely in their concept on external stimuli and generate control signals by shifting attention 
between stimuli. This artificial type of control can be irritating or tiring for users. A more intuitive control me-
thod is used in induced response based BCIs. These rely on changes in the EEG due to self-induced brain tasks 
such as motor imagery [19] [20]. This is the non-invasive counterpart of the above mentioned invasive BCI. We 
have this second concept in mind when we use the term non-invasive BCIs in this work. Using non-invasive 
BCIs to control neuroprostheses like a robotic arm is, however, a relatively challenging task. A review on that 
topic is presented in Rupp et al. (2015) [4]. Generally speaking, non-invasive motor imagery BCIs offer lower 
information transfer rates from brain to computer and consequently less possible movement directions or res-
ponsiveness. 

Although invasive and non-invasive BCIs are based on electrical brain signals, we repeatedly perceived a 
controversy on the origin, or the underlying source of those signals. We perceived that some BCI researchers 
believe totally different origins of invasive and non-invasive BCIs signals. We think that the perceived contro-
versy has several causes: 1) different research communities with a lack in exchange of information and different 
naming conventions, 2) differences in signal processing and system handling make them “feel” different, 3) dif-
ferences in media coverage change the perception of the BCI systems. Based on available literature, our view is, 
however, that although invasive and non-invasive BCI signals are different, they rely on the same underlying 
source. To underpin our view, we provide a condensed and focused summary of available information on origins, 
similarities and differences of invasive and non-invasive electrical brain signals in the following sections, fol-
lowed by a comparative discussion. 

2. Origin of Invasive BCI Signals 
Brain tissue is electrically active. Ionic currents cause local extracellular potential changes whose superposition 
is termed local field potential (LFP) [21]. The LFP has a broad frequency spectrum starting from DC up to sev-
eral hundred hertz. Action potentials (AP) and synaptic transmissions are regarded as main sources of the LFP 
[22]. A plausible assumption is that APs are the source of high frequency components (>500 Hz) and synaptic 
transmissions the source of low frequency components [21]. The contribution of single sources to the LFP de-
cays with the square of the distance if ohmic impedance and electric dipole sources are assumed [23]. The type 
of impedance of brain tissue is controversial. Typically brain tissue is assumed to have high pass properties, but 
there are also indications for low pass properties [24] [25].  

However, a work of Logothetis et al. (2007) showed that pure ohmic impedance is a sufficient assumption for 
low frequencies (<1000 Hz) [26]. A recent modeling of the LFP conducted by Linden et al. (2011) brought up 
that for uncorrelated activity, a reach of 200 µm is a realistic assumption. For correlated activity it is more diffi-
cult, but they concluded that “...the LFP recorded by an electrode is dominated by populations with substantial 
synaptic processes in the recording layer.” [27]. Hence, nearby sources contribute most to the LFP and distant 
sources contributions are subject to strong attenuation.  

Invasive BCIs measure the LFP directly with tissue penetrating electrodes, typically with more than one elec-
trode. Often a rectangular grid of about 100 microelectrodes referred to as microarray is applied. A common mi-
croelectrode length is 1.5 mm and was used in the invasive BCI experiments mentioned above [7]-[10]. The 
(motor) cortex is histologically divided into 6 layers and is about 3 to 4 mm thick [28]. The motor cortex is 
agranular, hence layer 4 is very thin. However, layer 3 compensates for layer 4 and is thicker [28]. Keeping in 
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mind the spatial reach of the LFP and the electrode length, one can assume that the measured LFP is primarily 
generated in layers 1 to 4 (see Figure 1 right hand panel). Efferent fibers in layers 1 to 4 mainly connect to other 
cortical regions of the same and opposite hemisphere [28]. Afferent fibers in layers 1 to 4 mainly originate from 
other cortical regions, thalamus and brainstem [28]. This implies that primary sources of the measured LFP are 
internal processing inputs from the thalamus and brainstem, but not outputs to the motor system, as they start in 
layers 5 and 6.  

The numbers of APs per time unit-also termed firing rate-of neural populations in specific motor cortex areas 
are tightly correlated with movement directions and imagined/attempted ones [29] [30]. 

In summary, non-invasive BCIs directly measure the LFP in layers 1 to 4 of specific motor cortex areas and 
extract high frequency components to estimate AP firing rates. These firing rates are subsequently used to de-
code imagined/attempted movement directions. 

3. Origin of Non-Invasive BCI Signals 
EEG is by far the most common method for measuring electrical brain activity non-invasively. It measures po-
tentials at the scalp using electrodes with a diameter of approximately 2 mm to 1 cm. These scalp potentials are 
a modified version of the LFP in the brain [21]. The modification has at least two causes: 1) as mentioned above, 
the electric field decays with the square of the distance. Therefore, the LFP is subject to substantial attenuation 
until it reaches electrodes at the scalp; 2) Volume conductance of the heads tissues (brain, cerebral fluid, skull, 
scalp) cause spatial smoothing over an area of about 10 cm² [21]. 

Due to the attenuation and smoothing, only synchronous brain activity, meaning brain activity that sum up 
over brain areas, can be measured at scalp level. Rhythms that occur synchronously are typical for lower fre-
quency ranges of the LFP. One prominent example at motor cortex is the mu rhythm at 8 - 13 Hz [19]. The low  

 

 
Figure 1. Sketch of BCI signal sources. I - VI mark the cortical layers. Cortical layer 
5 and 6 pyramidal cells are highlighted in green. Their apical and basal synapses are 
color coded. The spatial and temporal dendritic integration of synaptic transmission 
leads to formation of dipoles (left side). If millions of neurons receive synchronous 
basal or apical synaptic transmissions, the resulting electrical field propagates over 
large distances and is even detectable at the scalp where it is called EEG. In contrast, 
implanted electrode arrays are capable of measuring APs due to their close vicinity to 
neurons (right side). Therefore, (presynaptic) action potentials can be recorded and 
decoded from LFP by signal processing. 
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frequency components of LFP are mainly caused by correlated synaptic transmissions that form neural dipoles 
in parallel pyramid cells (see Figure 1 left hand panel) [21] [22]. Since only afferent APs cause synaptic trans-
missions, it can be assumed that the major contribution to LFP at lower frequencies comes from these afferent 
APs of cortex layers 1 to 4 (see Figure 1 left hand panel). 

APs cause synaptic transmissions, but information coded in AP spike trains is not one-to-one equivalent to in- 
formation in low frequency components of the LFP [22]. In fact, the connection from APs via synaptic trans-
missions to the LFP is not entirely understood yet. Ionic transmembrane currents can be well described by mod-
els, however influences like feedback of the LFP to surrounding cell activity, but also random effects, like syn-
aptic transport failure limit our understanding [22] [31] [32]. 

In summary, APs of afferent fibers in the cortex can cause synaptic transmissions. Correlated synaptic trans-
missions form parallel neural dipoles which contribute most to synchronous low frequency components of the 
LFP and therefore also to the scalp EEG. 

4. Discussion 
Similarities: when comparing invasive and non-invasive BCI signals, one can find that the underlying sources 
are equal. At the very base, both signals’ origins are AP spiking rates of cortical layers 1 to 4. Hence, they both 
use internal processing inputs from thalamus and brainstem rather than outputs to the motor system. 

Differences: invasive BCIs measure the LFP directly, whereas non-invasive BCIs only have access to a mod-
ified LFP. Known modifications are transformation from spiking to oscillatory activity, attenuation, and spatial 
smoothing. Spatial smoothing can be reduced by applying spatial filters and by using methods like EEG brain 
imaging. In EEG brain imaging, a model of the head conductivity is applied to reconstruct a possible and plausi-
ble EEG source distribution [33]. Although the problem is heavily underdetermined, the results show a substan-
tially improved spatial resolution as well as interpretability [21]. With this method, high gamma band EEG ac-
tivity is successfully reconstructed, albeit not on a single trial level for BCI application and, of course, already 
lost information cannot be reconstructed [34]-[36]. Also the effect of signal attenuation cannot be undone. Sig-
nal attenuation with constant noise level leads to a reduced signal-to-noise ratio and makes it in turn more diffi-
cult or even impossible to access the signal of interest, especially in single trial analysis. Furthermore, it is not 
totally clear yet how AP spiking rates, as used in invasive BCIs, are transformed into low frequency components 
of the EEG, as they are typically utilized in non-invasive BCIs. 

Concluding our view on the controversy, invasive BCIs measure LFP signals directly, whereas non-invasive 
BCIs measure modified LFP signals. The modifications are not fully understood, cannot be undone yet and are 
the reason for the poorer performance of non-invasive BCIs. But although invasive and non-invasive BCI sig-
nals look quite different, the origin of electrical BCIs signals is the same. 
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