Labeled Hepasphere™ behavior during venous drainage simulation at 1.5T*

Hassan Jassar, François Langevin

UMR6600-Centre of Advanced Medical Imaging, University of Technology of Compiegne, Compiegne, France.

Email: Hassan.jassar@utc.fr

Received 19 August 2010; revised 25 September 2010; accepted 30 September 2010.

ABSTRACT
Stability of the magnetic resonance (MR) contrast agent inside vascular occlusion agents is important for their localization with magnetic resonance imaging (MRI). The aim of this paper is to study the behaviour of the superparamagnetic iron oxide (SPIO) within Hepaspheres™ microparticles (MP) by MRI when they are submitted to negative pressure induced by venous drainage of a tumor. Therefore, a venous drainage model was established and three parameters were taken into account according to physiologic parameters in tumors: pH, temperature and flow blood rate. Four cycles of pumping were performed with the presence of labeled Hepaspheres™ with Endorem®. Several MR images of MP and perfusion liquid were taken before and after pumping. Endorem® release was determined after correction of non-uniformity intensities in MR images. Intensity variation according to spatial position, coil and MR acquisition parameters was studied. Labeled microparticles (LB*MP) appeared as black spots in MRI images whatever duration and pH. Our model demonstrates the stability of the SPIO inside the occlusion agent during time. Moreover, the proposed correction method proves the reduction of the intensity non-uniformity in MRI images.

Keywords: MRI; Venous Drainage Model; SPIO; Endorem®; Hepaspheres™; Intensity Non-Uniformity

1. INTRODUCTION
Embolization with MP consists in stopping blood flow and starving tissues of oxygen and nutrients [1]. For instance, Hepaspheres™ are dry MP in original state and become non-biodegradable microspheres after swelling within ionic fluids [2]. They are used as occlusion agents in hepatocellular carcinoma and arteriovenous malformations [3] and may release drugs in situ by diffusion [4]. Labelling these MP with superparamagnetic iron oxide (SPIO) to localize them has already been demonstrated [5]. However, the stability of SPIO within MP along time remains an important question, as a release of the contrast agent from MP could avoid the detection of their real position in clinical applications. Vessel occlusion provokes negative pressure on MP, especially with existing arteriovenous shunt around necrotic tissues or tumors [6,7].

Venous drainage model was performed in this work to determine SPIO behaviour within Hepaspheres™ by MRI during time. Several physiological factors of tumors were taken into consideration in the model: flow, temperature and pH. Simulation value of the flow was chosen much higher than standard one, as pessimistic conditions. This work included correction of the MR intensity non-uniformity for quantitative analysis reproducibility on MR images, leading to the estimation of released SPIO from the MP.

2. MATERIALS AND METHODS
2.1. Labelling Hepaspheres™ MP with Endorem®
SAP-MS (sodium acrylate and vinyl alcohol copolymer) or Hepaspheres™ provided by Biosphere Medical SA France were used as occlusion agents in hepatocellular carcinoma and arteriovenous malformations [2-4]. Particle sizes of Hepaspheres™ in dry state is calibrated in 50 μm increments ranging from 50 to 200 μm (50-100, 100-150 and 150-200 μm) [2]. Their diameters after swelling are approximately 2 to 3.5 times larger than their original size [8].

500 μl (25% v/v) of Endorem® was diluted into 1.5 ml (75% v/v) of saline solution. Solution was poured respectively into a bottle containing dry Hepaspheres™ of 150–200 μm size (Ref: V705HS). After two hours of Endorem® absorption, the preparation was then poured into a glass column with porous filter (porosity: 20 μm—

*This research was supported by the Centre of Advanced Medical Imaging at the University of Technology of Compiegne.
Flex 1.0 × 30 cm- Ref: 420401-1030). Labeled Hepaspheres™ with Endorem® were washed by gravity in this column: 10 ml of saline was added to the Hepaspheres™ during 15 minutes, to let saline leave entirely the column. The washing process was repeated four times.

A few MP were picked up and then fixed between two transparent gel layers of a Petri dish for using as a control (before pumping).

2.2. Venous Drainage Model

In vitro venous drainage model consisted of closed circuit and composed of a peristaltic pump (Ref. 40578 Fisher Bioblock Scientific), a thermostat bath (Julabo 5 liters, Ref: ED-5A/B) within immersed a glass column with porous filter (Figure 1). Labeled Hepaspheres™ with Endorem® were placed in the column and submitted to 20 ml of the saline. According to physiological parameters of hepatocarcinoma, flow rate of the peristaltic pump was adjusted to 10 ml/min, four times over-evaluated blood flow through hepatic tumor of 16g [6]; tow pH, 6.0 and 7.0, were used in this model. The thermostat bath was maintained at 37°C.

Four cycles of saline pumping was performed through the closed circuit, two hours per cycle. Every two hours, 10 ml of perfusion liquid was filled into vials to dose released SPIO by MRI. After each pumping cycle, some LB*MP were picked up from the glass column and dropped on a gel of a Petri dish, with MP control unsubmitted to pumping cycles.

Two pH solutions (6 and 7) were tested, providing eight vials of perfusion samples. A new 20 ml of the saline solution at one pH was added to the glass column after each pumping cycle.

MRI scans were performed on GE Signa® 1.5T Excite™ 11.0 scanner. Quantitative analyses of all MRI images were done in our laboratory using an Advantage Windows (4.1-GE) workstation. Values averaging of signal intensities were performed with MATLAB® 7.0 and EXCEL® softwares.

2.3. Perfusion Liquid Imaging

Most intensity non-uniformities result from materials of the MR scanner such as coil, its sensitivity and the radiofrequency system [9-11]. Intensity non-uniformity correction methods may be classified into two types, as reported in literature [12]: empirical methods and post-processing techniques. Empirical methods involve scanning water or oil phantom prior to clinical examination [9,11,13,14] to obtain an estimate on the scanner’s bias field. Post-processing techniques are the most commonly used approaches in the quantitative analysis of MR images [12,15-23]. These methods privilege modelling of the effects but not the cause of the intensity non-uniformities. Therefore, it is difficult to appreciate the pertinence of these methods.

The proposed method was a hybrid method taking advantage of the two categories: it first constituted a reference from an image of a phantom with given hardware and acquisition parameters. The independence of the sample location in the analysed region was searched by averaging the extracted values from phantom images after successive rotation of the phantom or the perfusion liquid.

2.3.1. Coil and Imaging Parameters

Volume coil (Figure 2(c)), such as head coil (diameter 30 cm and length 40 cm, one channel), and 2D FSE-XL T1w were used in all MR acquisitions to provide low image-intensity non-uniformity [24-26]. Six contiguous slices were obtained in coronal plane with the imaging parameters: Repetition time/echo time = 500/15 ms, bandwidth = 15.63 kHz, field of view = 180 × 180 mm, matrix size = 128 × 128, slice thickness = 5 mm, number of signal average = 6, and echo train length = 4.

2.3.2. Reference Phantom and Intensities Averaging

A phantom composed of eight vials were uniformly filled with 10 ml of saline solution (0.9%), and equally distributed into two square matrices, matrix-1 and matrix-2 (Figure 2(a)). They were positioned on a rotating wooden support, equidistant from the coil centre with 5.6 cm of radius (Figure 2(b)). 45° is the angle between the two matrices and 8 cm is the distance between vials of the matrix. The ninth vial was in central position.

MR images of the phantom were acquired in four directions (superior «S», inferior «I», left «L» and right «R») after 90° of the support rotation. For this purpose, the phantom was brought out for each 90° rotation from the scanner without changing the support position inside the volume coil. Values of calibration in the first MR acquisition were kept the same after each «Prescan» for

Figure 1. Simulation of venous drainage model with the presence of labeled Hepaspheres™. Perfusion liquid is filled into vials at the bottom right side of the schema.

Copyright © 2010 SciRes.

3. RESULTS

3.1. Hepaspheres™ Imaging

Figure 3 shows T_{1w} images of two Petri dishes plunged into water and containing labeled Hepaspheres™ with SPIO. LB*MP submitted to pumping cycles (2h, 4h, 6h and 8h) remains visible on MR images as black spots whatever pumping time and pH of saline. This result was similar to that of LB*MP unsubmitted to pumping cycles (0h). This means that Endorem® was unreleased or slightly released without affecting the signal intensity of labeled LB*MP. Determined intensities of perfusion liquid provide more information on a trace of SPIO that possibly released from LB*MP, as shown in Subsection 3.3.

Figure 3. T_{1w} images of Petri dishes after being plunged in water. These contained labeled Hepaspheres™ with Endorem® that submitted to four cycles of pumping at pH7 (left) and pH6 (right). MR images were acquired in coronal plane with 3D SPGR T_{1w} acquisition of parameters: TR/echo time = 35/5 ms, flip angle = 45°, field of view = 140 × 140 mm, slice thickness = 1 mm, number of slices = 28, matrix size = 256 × 256, bandwidth = 15.63 kHz and Nex = 1. Imaging was realized with the use of a surface coil (phased array, 4 channels).
3.2. Phantom Imaging and Averaging Intensities Evaluation

Figure 4(a) is T_1^w image of the phantom whose vials are equidistantly distributed from the centre «c». Figure 4(b) shows clearly the influence of neighbors proximity on the signal intensity. Percentage difference between mean signal intensities of «matrix-1» and «matrix-2» is significant in the four directions (Table 1).

Figure 5 shows a non-uniformity percentage variation of intensities G versus vial positions and phantom directions, before and after averaging. Before averaging, G variation is important. It is less significant after averaging (Figure 5(a), green curves). 0.094 is the average absolute deviation of G (Figure 5(b)). This value means low intensity non-uniformity for the equidistant distribution of vials on the support.

![Matrix-2 and Matrix-1 with vials](image)

Figure 4. T_1^w images of a saline phantom acquired by FSE-XL T_1. (a) MR images of eight vials equidistantly distributed from the centre «C» into two matrices: «matrix-1» and «matrix-2» at 45°. (b) Vials’ intensities of matrix-1, matrix-2 and saline solution at the centre, in the four directions.

![Signal intensity vs direction](image)

Figure 5. (a) Non-uniformity percentage of signal intensities (%) determined on each vial (n = 0 to 8) of the saline phantom before ($G_{phant.(i,n)}$, red, blue, yellow and pink colours) and after averaging ($G_{phant.(n)}$, green colour). The point 0 corresponds to the non-uniformity percentage of signal for a vial in the central position. (b) Average absolute deviation of non-uniformity percentage averaging ($G_{phant.(n)}$, green colour) against mean of $G_{phant.(n)}$ for each element of the phantom. Zero point corresponds to the vial in common to the two matrices.

Table 1. Percentage difference between averaged intensities of «matrix-1» against «matrix-2» at 45° according to vials’ positions and directions for a phantom of saline solution.

<table>
<thead>
<tr>
<th>Directions</th>
<th>% difference of vial’s intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.19%</td>
</tr>
<tr>
<td>2</td>
<td>1.56%</td>
</tr>
<tr>
<td>3</td>
<td>1.75%</td>
</tr>
<tr>
<td>4</td>
<td>2%</td>
</tr>
</tbody>
</table>

3.3. Perfusion Liquid Signal

The signal at pH7 is greater than that of saline solution at the two first cycles of pumping, 2h and 4h. 22% is the percentage of the signal decrease between 2h and 6h of pumping time, then the signal becomes stable (Figure 6). 15% at 2h and 6% at 4h are the contrast of perfusion liquid-saline solution; it is almost zero at 6h and 8h of pumping time.
When the signal of perfusion liquid is greater than that of saline solution the contrast is important, proving that Endorem® has been slightly released from Hepaspheres™. However, when the signal is equivalent to that of saline solution, the contrast becomes zero after 6h of pumping time. Therefore, the Endorem® release does not exist.

The signal of perfusion liquid at pH6 after eight hours of pumping is close to that of saline solution. 3% is the contrast of perfusion liquid against saline solution. This means an absence of Endorem® in the perfusion liquid during all pumping time.

4. DISCUSSION

For the three physiological parameters values of hepatocellular carcinoma, pH, temperature and flow rate, we demonstrated that the labeled Hepaspheres™ with Endorem® could be detected by MRI in the proposed conditions. These are visible in conventional MRI (1.5T) as black spots (negative contrast or low signal) and distinguished from the surrounding signal of gel whatever the hours of pumping and the pH.

Perfusion liquid-saline contrast difference between pH7 and pH6 is 14.8% at 2h and 11.5% at 4h of pumping. It then becomes 2.5%. This implies a release of Endorem® from Hepaspheres™ in the first hours of pumping, only at pH7.

Then, releasing reaches the stability when the signal of perfusion liquid becomes very close to that of saline solution. This can be demonstrated by zero release of the contrast agent after several hours of pumping, although, Hepaspheres™ properties let drug absorption and delivery. This observation may be depending on the spongy behaviour of Hepaspheres™. Very low release of Endorem® at pH6 shows that the behaviour of Hepaspheres™ could be modified by pH decreasing.

For the proposed intensity non-uniformity correction method and the distribution of vials to the volume coil centre, we demonstrated that the average absolute deviation of the non-uniformity percentage was 0.094.

This method reduced the intensity non-uniformities in function of position, coil and acquisition parameters, and provided an accurate measure of the perfusion liquid signal. Consequently, quantification of released Endorem® could be determined precisely.

Finally, we noticed that the preliminary process of four hours of pumping provides visible Hepaspheres™ in MRI images.

This study determines the behaviour of labeled Hepaspheres™ with Endorem® when submitted in a venous drainage model to negative pressure and some physiological parameters of Hepatocarcinoma. Using 1.5T scanner for Hepaspheres™ imaging demonstrates a permanent MR detection of Hepaspheres™ whatever the proposed conditions that can be found nearly to tumors. This result provides stable labeled Hepaspheres™ with SPIO for using in MR interventional application.

5. ACKNOWLEDGEMENTS

Authors thank Philippe Robert of Guerbet for providing the SPIO. We thank Philippe Reb of Biosphere Medical for providing Hepaspheres™.

REFERENCES

