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ABSTRACT

There is considerable interest in quantitatively mea-
suring nucleic acids from single cells to small popula-
tions. The most commonly employed laboratory me-
thod is the real-time polymerase chain reaction (PCR)
analyzed with the crossing point or crossing threshold
(Cp method. Utilizing a multiwell plate reader we have
performed hundreds of replicate reactions each at a set
of initial conditions whose initial number of copies span
a concentration range of ten orders of magnitude. The
resultant C; value distributions are analyzed with stan-
dard and novel statistical techniques to assess the va-
riability/reliability of the PCR process. Our analysis
supports the following conclusions. Given sufficient
replicates, the mean and/or median C; values are statis-
tically distinguishable and can be rank ordered across
ten orders of magnitude in initial template concentra-
tion. As expected, the variances in the C; distributions
grow as the number of initial copies declines to 1. We
demonstrate that these variances are large enough to
confound quantitative classification of the initial condi-
tion at low template concentrations. The data indicate
that a misclassification transition is centered around
3000 initial copies of template DNA and that the transi-
tion region correlates with independent data on the
thermal wear of the TAQ polymerase enzyme. We pro-
vide data that indicate that an alternative endpoint
detection strategy based on the theory of well mixing
and plate filling statistics is accurate below the mis-
classification transition where the real time method
becomes unreliable.

Keywords: Misclassification Transition; Single
Molecule Counting; Rank Ordering Running Title; PCR;
Replicates and Reliability

1. INTRODUCTION
Real time Polymerase Chain Reaction (PCR) is widely
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used for quantitative analysis [1-3] in a variety of clini-
cal and research areas including the study of genetically
modified foods, vaccine efficacy, and in systems biology
[4-6]. In a real time PCR reaction the DNA amplification
process is recorded. The goal of a quantitative analysis is
to use the amplification time series data, y(n) = AX(n),
to solve the inverse problem of determining a reasonable
proxy for the amount of initial template, X(0). A satis-
factory solution of this inverse problem has been ham-
pered by the amplification of error, dilution error, the
multivariate nature of the enzyme system and the lack of
a model that accounts for the variability [1,7-11].

In its stead, the ad-hoc crossing point, C;, method has
emerged [12]. The heuristic behind the selection of the
crossing threshold is predicated on the observation that
amplification curves from identically prepared initial
conditions diverge dramatically with iteration. In accor-
dance with this observation a threshold value is chosen
close to the detection threshold to limit variability from
amplification error. But variability remains. It is a well
known result from the statistics of Subsection 4.8 [13]
that averaging over replicates reduces variance in ratio to
the number of replicates. In practice, from 1 to 5 repli-
cates appears typical. Since there is a balance between
cost, time, effort, and accuracy it is of practical interest
to understand the requirement for replicates and its de-
pendence on initial template concentration.

The goal of this study was to examine the variability
in the distribution of C; values generated from a large
number of identically prepared replicates as a function of
the initial template concentration to determine the fol-
lowing:

1) Are measures of central tendency informative of
initial template concentration over 10 orders of magni-
tude?

2) How many replicates are required to discriminate
between different initial template concentrations?

3) How does the number of replicates depend on the
initial template concentration?
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Using a multiwell plate format we measured hundreds
of replicates to produce C; value distributions. Using
standard and novel statistical techniques we analyze the
C, value distributions and demonstrate that the sample
mean and/or median C; values are statistically signifi-
cantly distinguishable over ten orders of magnitude.
Furthermore, we show that the sample mean C; values
are reliably ordered according to the initial concentration
of template. In other words, if X and y are initial template
concentrations with X <y and Ly and [y are the corres-
ponding sample mean C; values then [ > [,. The order
reverses because less initial template requires more
cycles of PCR to amplify. We utilize ordering as a con-
venient and natural device to quantify the role of repli-
cates on reliability. We ask and answer the following
question: Given an unlabeled dilution series how many
replicates are required to reliably order the tubes? We
find that the answer depends on the range of initial tem-
plate.

A focus of this work was to cover as broad a range of
initial conditions as possible with the same experimental
format. We observed that the mean and/or median C,
values had the smallest variance above 10* initial copies.
Most published standard curves focus on this range [2].
Few studies have analyzed issues of variability and ro-
bustness below this range. We show that below 10* ini-
tial copies the probability of misclassification of the ini-
tial template concentration given a C; value grows ra-
pidly and saturates near a half. The dispersion in the C;
value distributions and the rise in misclassification cor-
relate with an independent measure of the thermal wear
of the TAQ polymerase enzyme.

Driven by the observed broadening of the C, value
distributions below a thousand initial copies, and in-
spired by elegant methods that sidestep the issues
created by the dynamics of exponential growth [14-18],
we examined a format for single molecule detection uti-
lizing an endpoint analysis and the statistical properties
of well mixing and plate filling. We present data that
such an assay is accurate where the real time method
becomes unreliable.

2. MATERIALS AND METHODS
2.1.PCR

Rt-PCR results were generated using linearized double
stranded EC3 plasmid DNA containing the ybdO gene.
The plasmid was linearized by digestion with the restric-
tion enzyme BamH]1 prior to PCR. The following primer
sequences were used.

1) Forward: 5’-AAT TAT TCT AAA ACC AGC
GTG TC-3°

2) Reverse: 5’-TTT GGG ATT GAA TCA CTG TTT
Cc-3

The PCR supermix was prepared as described in [19],
with the exception that we used Qiagen HotStarTaq Cat
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# 203203, Roche dNTPs Cat# 13583000, DMSO Sigma
# D8418 at 2%, and Sybr Green (Sigma # 86205) at
5-times the recommended concentration. Primers were
used at a concentration of 1 pM. All samples were run
on the 384 well plate platform using an Applied Biosys-
tems 7900HT thermocycler and the SDS 2.3 software.
The C; value threshold was set at 5.0 RFU (Relative
Fluorescence Units) for all samples. The DNA concen-
trations of concentrated stocks were measured using a
Nano-Drop 100 spectrophotometer prior to use. Subse-
quent dilutions were performed using sterile, nuclease
free water from Ambion # AM9937. The following
thermo-cycling program was used.

1) 2 min at 50°C Initial Warmup Phase;

2) 15 min at 95°C Initial TAQ Activation Step;

3) 1 min at 95°C DNA Denaturation;

4) 1 min at 50°C Primer Annealing;

5) 1 min at 72°C DNA Extension;

6) 0.25 min at 80°C Fluorescence Measurement;

7) Repeat Steps 3-6 forty times.

2.2. Preparation of Identical Replicates

To ensure uniformity in the face of pipetting error the
PCR supermix was prepared in well-mixed batches in a
14-mL conical tube. Each sample consisted of 184 rep-
licates and 8 negative controls, requiring exactly half of
a 384 well plate. All of the components except for DNA
were loaded into a 14 mL conical tube in the following
order: 800 pL PCR buffer, 5.6 mL of nuclease free water,
160 pL DMSO, 320 pL MgCl2 (Qiagen Cat #
124113012), 160 pPL of a primer mix (a 1:1 mix of the
forward and reverse primer stored at a concentration of
50 M each), 160 pL Sybr Green (100X stored in DMSO),
160 pL of ANTPs, and lastly 80 pL of Taq polymerase.
We have noticed that the order at which these are added
affects the reproducibility of the assay. The mixture was
vortexed at high speed for 1 minute. 335 YL of supermix
was then removed to be used as a negative control and
placed into a 1 mL eppendorf tube and 25 pPL of water
was added. This mixture was then briefly vortexed to
ensure well mixing. The remaining 7.105 mL of super-
mix was then split equally four ways into 2 mL cryostat
tubes, and 134 pL of water plus the amount of desired
DNA was added to each cryostat tube. Each tube was
then briefly vortexed. For each reaction contained within
a single well of the plate, 10 UL of the respective reac-
tion mix was loaded into a well of the 384 well plates.

2.3. TAQ Polymerase Pre-Wear Assay

The PCR supermix was prepared as described above, but
without template DNA. Steps 1 and 2 of the PCR
process were executed following which samples were
pre-worn by thermocycling the supermix as described in
steps 3 through 6 above. Samples were pre-worn from 5
to 40 cycles. 10® copies of initial template DNA were
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added to the preworn enzyme with subsequent resump-
tion of cycling. An efficiency was calculated by averag-
ing the derivative over the resultant amplification curve.

2.4. Statistical Analysis of C; Distributions

The sample mean C; values for each initial template con-
centration were compared pairwise using a permutation
test that is asymptotically valid and robust in situations
where the distributions are not necessarily normal and/or
the ratio of the variances is unknown, indicating that a
t-test is not supported [20,21]. The test statistic T [20],
measures the difference in mean rank of the samples
within their union, scaled by a consistent estimator of
their variance. Because the C; value distributions may be
skewed by outliers, we also considered the median as a
measure of central tendency. The median C; values were
compared pair-wise using a bootstrap test that has been
shown to outperform all reasonable alternative methods
[22].

Given a linear regression, y=mx+b, of the mean/

median C; values against X = log(n), the log of the num-
ber of initial copies of template, a relative error was cal-
culated from the quantiles of the C; value distributions as
follows. Allow Q, and Q to be high and low quan-

tile values chosen from the C; value distribution gener-
ated by initial log template x. Since the C; value gener-
ally increases with decreasing amount of initial template
the slope m of the regression line(s) is negative. Thus,
the difference in the predicted amount of initial template
DNA from the distributions divided by the input amount
is given as:

An 10D/ @/

n 10* M
Let U represent the universe of possible C; values, and
let T stand for the collection of possible initial template
concentrations. The initial template concentrations are
thought of as the class labels. We consider the probabil-
ity of misclassifying an observed C;value given a known
class label. Suppose that we draw a C;value from a giv-
en class, how likely is it to find that value in any of the
other classes? The mean misclassification probability is
estimated from the C; value distributions corresponding
to different initial template concentrations according to
the following formula.

P(x)=Y_P(i|x)P{|T\x) 2)

ieU

where P(i|Xx) is the conditional probability of finding
the C; value 1, given the initial template concentration X,
and the P(i|T\Xx) is the conditional probability of
observing that same value given any initial template
concentration other than X. The later conditional prob-
ability is interpreted as the probability of misclassi-
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fication. The conditional probabilities are estimated from
the measured C; value frequency distributions.

2.5. Plate Filling with Microbeads

Experiments were performed using 20pm latex beads
from Beckman Coulter (#PN6602798) using flat bottom
96 well plates from Becton Dickinson Labware. 96 well
plates were used in place of 384 well plates for ease of
microscopic analysis. Various dilutions of beads were
prepared using a Beckman Multisizer Coulter Counter 2.
25 PL of each dilution was loaded into each well of the
96 well plate. The number of beads in each well was
counted with a Nikon TE-2000 microscope.

2.6. Plate Filling Simulations

The statistics of the plate filling stochastic process were
modeled using Monte-Carlo simulation. For instance, the
expected number of empty wells in a 96 well plate was
estimated by simulation using the following function:

Table[Mean|
Table[Length[
Complement[Range[96],
RandomlInteger[Range[96], m]]], {10000}]], {m,
1,600} ]

Here m is the number of molecules being plated from
a well mixed solution. The mean is estimated from
10,000 realizations. The standard deviation is computed
by replacing the function Mean by Standard Deviation.
A graph of these functions is shown in Figure 9. All
simulations and analysis were carried out in Mathemati-
ca 6.03 (Wolfram Research), and the notebooks are
available upon request.

3. RESULTS

The C; value data are summarized in Figure 1. The fig-
ure shows that above 10" copies the data are distributed
about the median with smaller variance than those below.
Outliers exist across all the data, mostly trending upward
of the median, indicative of reactions lagging behind the
pack. The data show the distributions as collected across
ten orders of magnitude in initial template.

3.1. Mean and Median C; values

While the C; value distributions below 10* copies of ini-
tial template DNA are broad and noisy, the sample
means and medians form a monotone increasing series
when stratified according to initial template. These data
are shown in Table 1. The means and medians are very
nearly equal in all cases and the data distributions appear
unimodal.

At initial template concentrations larger than 10* ini-
tial copies the data distributions seen in Figure 1 appear
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Table 1. Sample mean and median C; values. The corresponding distributions are shown in Figure 1.
Observe that the sample means and medians form an ordered sequence stratified by initial template.

Distribution Number 1 2 3 4 5 6 7 8 9 10 11
Log Copies Template 9.0 80 73 63 57 41 31 21 19 1.1 03
Replicates 184 182 183 183 184 183 184 179 730 175 178
Mean C;Value 6.6 106 128 156 19.5 255 27.6 28.8 30.7 355 364
Median C,Value 6.6 104 128 157 193 25.5 28.1 28.7 30.7 35.0 35.7
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Figure 1. Summary of the C,value data, stratified as a function of the log of the initial number of copies
of DNA amplified. As described in the materials and methods section, a minimum of 175 replicates were
run at each initial condition. The box covers two quartiles about the median with outliers shown as the red
dots. Outliers are defined as points beyond 3/2 the discrete interquantile range from the edge of the box.

to identify distinguishable mean and median values and
no hypothesis test appears necessary. However at lower
template concentrations it is not clear that the means are
not within a fraction of a standard deviation of one
another. When all of the data points are taken into ac-
count the means and medians are statistically different at
a level of significance greater than 1/20000 with the ex-
ception of the smallest two medians that were statisti-
cally different at the 3/1000 level of significance. The
result of the significance test for the means is displayed
in Table 2.

The C, value distributions may not be normal and
because we do not a priori know the ratio of the va-
riances, standard hypothesis tests to compare means are

Copyright © 2010 SciRes.

not justified. Several non-parametric methods have
been proposed for this common situation [20,21] and
have shown to have power. The last row of Table 2
contains the T-statistic comparing template-adjacent
distributions. The values of the T-statistic are generally
declining as template decreases and come closer to the
upper boundary of the null distribution. Because the
fourth and fifth distributions are non-overlapping the
variance estimator takes its minimum value and this
explains the large T value. All of the other pairs of dis-
tributions contain some overlap and hence have much
larger variances. The data indicate that with approx-
imately 184 replicates the C; method can provide dis-
crimination over nine orders of magnitude. One goal of
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our work, to be described below, is to provide some
analysis of how few replicates are required to reliably
make the same claim.

3.2. Standard Curves

A linear regression of the mean C; values against log
initial copies of DNA template is shown in Figure 2.
The regression line captures the data reasonably well
over the entire range of initial template concentration. In
contrast, Figure 1 gives the impression that the data are
described by a function that is initially linear and then
contains at least two sigmoid like transitions. This can
also be seen in the oscillation of the data about the re-
gression line in Figure 2.

In an independent experiment with the same enzyme
and supermix, we examined the wear that the enzyme
experiences as a function of thermocycling alone. The

middle of the transition region corresponds to a C; value
of approximately 25. As seen in Figure 1, the thermal
wear transition corresponds to the region near 10* copies
where the distributions begin to broaden. Because of this
independent observation, we split the data in two at this
transition point and considered a piecewise linear re-
gression. The data are summarized in Figure 4.

Given a regression model of the data we computed a
measure of the relative error of the inversion process,
from the spread in the C; value distributions, using the
equation for n, as described in Subsection 2.4. The first
and third quartiles were used to produce the data shown
in Figure 5. The data show that the relative error is ap-
proximately 20% above 10* initial copies, and rises
sharply below. The piecewise linear regression, shown
as the red line, produces a larger relative error in the
transition region, and agrees elsewhere.

Table 2. Results of testing the null hypothesis of stochastic equality. A hypothesis test was
applied pairwise to C; value distributions adjacent in initial template concentration. The ex-
treme values of the distribution of the T-statistic under the null hypothesis are shown along
with the T-statistic for adjacent distributions. The distributions, e.g. “2v1”, are labeled as in
Table 1. In each test, the null distribution was simulated using 20,000 random permutations
applied to the pooled data as described in [20]. In each test the calculated T-statistic fell out-
side of the range indicating that the p-value is less than 1/20000. In each case the null hypo-

thesis is rejected with confidence.

Property 2vl 3v2 4v3 Sv4

6v5 7v6 8v7 9v8 10v9  11v10

Min 502 385 463 425 406 410 -394 462 -450 357

Max 393 417 387 374 413 503 477 487 373 374

T 68433 39.61 5145 238097 91.0 2427 729 1837 817 422
401

30

Ct Value
™)
T

10 -

6 8

Log Number of Initial Copies

Figure 2. Linear regression of the mean C; values with log initial copy number. The regres-
sion line is shown in red along with a 95% confidence interval in dashed line. The error bars
on the individual data points reflect one standard deviation computed from the C; value dis-

tributions.
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Figure 3. TAQ efficiency as a function of thermo-cycling pre-wear. An efficiency is
computed as the average derivative of relative fluorescence over the amplification curves.
Error bars represent a standard deviation over three independent experiments.
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Figure 4. Piecewise linear regression of the mean C; values. The data were split according

to the trends observed in Figures 1 and 3.

3.3. Misclassification

The graph of the relative error of the linear regression,
shown in Figure 5 is an attempt to quantify the effect
that the broadening of the C; value distributions has on
the inverse problem of assigning an initial template con-
centration from a measured C; value. In an alternative
attempt to summarize the impact of the variance of the
C, value distributions on the process of categorizing the
initial template concentration based on a measured C;
value we considered statistics such as that summarized
in the equation for P(X) described in Subsection 2.4.

The construction of a standard curve, as described in

Copyright © 2010 SciRes.

the previous section, is one way to assign a template
concentration to a measured C; value. Now consider
another. Consider each distribution of C; values as
representing a class. The class label is the initial tem-
plate concentration. The heuristic is this: Given a meas-
ured C; value coming from one of these classes, how
likely is it to misassociate this value with the wrong
class label? The larger the overlap between the meat of
the distributions, the more likely it is that an unknown
value will be misclassified. The formula for P(x) given
quantifies this notion. The results, conditioned on our
data set, are shown in Figure 6.
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Figure 5. Relative error of the PCR process as calculated from the C; value distributions

and the standard curves shown in Figures

2 and 4, Blue and Red respectively. The C; val-

ues corresponding to the first and third quartile were used to calculate a ADNA value
whose limits were calculated using the regression line(s), according to the definition of n

given in Subsection 2.4.
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Figure 6. Misclassification frequency calculated according to the definition of P(X) given in
Subsection 2.4 and conditioned upon the C, value distributions shown in Figure 1. A best fit
Hill's function is shown as the dashed line. The midpoint of the transition occurs at ap-
proximately 2950 copies of initial template DNA.

The analysis indicates, as is clearly correlated with the
results shown in Figure 1, that above 10° copies the
probability of misclassification are small, less than 0.1.
Over a narrow range spanning the next two decades of
concentration the probability rises to one half. Subse-
quently, at lower concentrations, the probability more or
less saturates at the value of one half and equates

Copyright © 2010 SciRes.

classification to coin flipping. The two sided nature of
the flip is interpreted as the chance of being in the right
class or out, in a one versus all sense. From a best-fit
Hill’s function, shown as the dotted curve, it is deduced
that the midpoint of the misclassification transition oc-
curs at 10%*7 = 2950 initial copies of template DNA. As
can be seen in Figure 2, the ordered pair (3.47,25) lies
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close to the regression line and well within the error
stripe, indicating the concordance between the relative
error, misclassification and pre-wear data.

3.4. Rank Ordering with Replicates

In the first section we summarized the findings that the
sample mean and median C; values computed from all the
data are statistically distinguishable and rank ordered.
This was the case using all 184 replicates per initial tem-
plate concentration. Doubtless it is of interest to under-
stand how few data are required to make this same claim.

In this section we imagine the following experiment.
Suppose that an investigator has produced a serial dilution
in a set of tubes, with no error other than that coming from
a correctly calibrated pipetteman. However, the tubes con-
taining the dilution series are unlabeled and become
scrambled as to order, but not contents. It is unequivocal
that the amount of DNA within the tubes form a monotone
series. The question is to determine how many replicate
PCR runs are required such that the resultant sample mean
C, values correctly order, and hence label, the tubes with a
given level of confidence? We imagine that rank ordering
is one level of quantitation removed from inversion, but a
closely related pre-requisite.

Conditioned on our data we can answer this question by
Monte-Carlo simulation. From each C,; value distribution
we draw K replicates uniformly at random and compute
their sample mean pj. This mimics an experiment with
k-replicates. The resulting set are sorted according to their
numerical values and if this order agrees with that of their
class labels, X, we score this trial positive. We compute the
fraction of positive draws that resulted in correctly ordered
sample means, from a total of 20,000 draws at each value
of k. The results are shown in Figures 7 and 8.

Figure 7 shows that individual data points can rank
order the highest concentrations from 10* to 10° initial
copies with greater than 90% accuracy conditioned on
our data. The use of 8 or more replicates guarantees 99%
accuracy. The inset to Figure 8 shows the performance
when all the data are considered together. These data
indicate that 35 or more replicates are required to exceed
90% accuracy over the entire concentration range. Fig-
ure 8 shows that the larger variance of the distributions
with smaller initial template is responsible for the beha-
vior of the sample over the entire range.

3.5. End Point Detection

In the previous sections we have detailed an analysis of
variance that shows that below 10* and certainly below
100 initial copies of template DNA, quantitation via stan-
dard curves or classification via a C; value is confounded
by error. As an alternative we describe a format for single
molecule detection utilizing an endpoint analysis. We have
separated the analysis into two parts. In the first part we
consider the process of plate filling. We show that theory
and experiment are in good agreement. In the second part
we show that the process of amplification by PCR simply
reveals the pattern of plate filling.

Suppose, as before, that we pipette identical, well
mixed, aliquots of a DNA solution into the wells of a
multiwell plate and perform 40 cycles of PCR and count
the total number of wells that amplified above the detec-
tion limitation of the machine. Our data demonstrate that
the expected number of unamplified wells is an informa-
tive statistic that has the property that its error declines
as the total number of molecules of DNA declines [23].

Figure 9 shows the excellent congruence between

0.99 -

0.96

Fraction Ordered

0.92

10 1

N
th

Replicates

Figure 7. Reliability of replicates given the task of rank ordering a dilution series. The results for

rank ordering the initial template concentrations with x > 10%.
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Figure 8. Reliability of replicates given the task of rank ordering a dilution series. The
results for rank ordering the initial template distributions with x < 10*. Inset shows the

results over the entire range of initial template DNA, see Table 1.
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Figure 9. Agreement between experimental and theoretical plate filling statistics. The ex-
pected number of empty wells is shown as a function of the total number of beads distri-
buted among the wells of a 96-well plate. The expected number of unfilled wells calculated
from theory is shown as the solid blue line, while one standard deviation is shown as the
dotted green line. Experimental data are shown in red.

theory and experiment for filling of 96-well plates with
solutions of 20 micron latex beads as described in the
methods. Utilizing PCR to discriminate wells filled with
DNA from those that are not, is more complex than opt-
ical bead counting. Figure 10 describes the results of an
endpoint analysis. Each data point represents an inde-
pendent experiment. The concentrations of DNA plated
for PCR were determined through dilution as described

Copyright © 2010 SciRes.

in methods. When these putative DNA concentrations
are uniformly scaled by a factor of 2.4 the data agree
remarkably well with the theory over the entire length of
the plate filling curve.

4. CONCLUSIONS

With a sensitive PCR plate reader we have examined the
variability of real time PCR process. We have shown

JBISE



468 C. C. Stowers et al. / J. Biomedical Science and Engineering 3 (2010) 459-469

100

Expected Number of Empty Wells

Initial Template DNA

Figure 10. The number of unamplified wells as a function of the number of DNA mole-
cules spread over a 384 well plate. The expected number of empty wells calculated from
theory in blue. The red dots represent experimental PCR endpoint data.

that using less than a few hundred replicates per initial
template concentration ensures that the mean C, values
are statistically distinguishable and rank ordered corres-
ponding with the initial amount of template DNA. We
have shown that the mean/median values can be re-
gressed over ten orders of magnitude.

The C; value distributions appear noisy below 10*
copies of initial template DNA and the results of two
independent statistical techniques confirm this observa-
tion. Independent data on TAQ-wear indicate that the
enzyme experiences a transition of decreasing efficiency
in the corresponding region.

Given a standard curve, the C,value distributions were
used to quantify the impact of the variability of the C;
values on the process of predicting the initial template
concentration. The relative error varies from 7% to 50%
over the highest initial template concentrations averag-
ing near 20%. Both the relative error and the misclassi-
fication analysis capture the transition from low variance
to high. The misclassification frequency is smoother and
perhaps more intuitive to interpret while the relative er-
ror analysis perhaps more quantitative. The misclassi-
fication analysis suggests an alternative clasification
approach to solving the inverse problem. Instead of us-
ing a standard curve to convert a C; value into an initial
template concentration we consider probabilistic classifi-
cation into one of a discrete number of template classes.
We are currently exploring this idea.

A question central to the analysis of the C; value dis-
tribution data concerns the role of replicates. The value
of replicates stems from the statistical fact that the va-
riance of the distribution of sample means is smaller

Copyright © 2010 SciRes.

than the variance of the data distributions. What lessons
can the data distributions teach about how many repli-
cates are required in practice for resolution and reprodu-
cibility? Rank ordering of the sample means is a conve-
nient and meaningful device for exploring this question.
Rank ordering simulations with our data suggest that the
number of replicates required depends on the range of
initial template. Below the transition region individual
data points provide better than 90% rank accuracy, while
35 or more replicates are suggested below the transition
region for the same degree of rank accuracy. But this is a
disheartening result for the following reason: More rep-
licates are required precisely where the sample may be
scarce. For samples with small initial template concen-
trations it may be more accurate to consider an endpoint
method using the expected number of (un) amplified
wells than to consider replicates.

These data, and the work of other groups [24] have
demonstrated that the use of the C; method in conjunc-
tion with statistical replicates renders the process of real
time PCR capable of quantitative analysis for initial
DNA samples ranging from upwards of 10* molecules.
However the data presented above show that for tens to
hundreds of initial copies real time PCR is unreliable for
quantitation. We and other groups have been exploring
alternative methods for single molecule detection and
counting. In this regard, a process involving endpoint
analysis shows significant promise.

We have described a decomposition of single mo-
lecule counting into plate filling and amplification. We
have demonstrated through simulation and experiment
that the expected number of (un)amplified wells is a
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robust statistic on which to base an inverse problem or
a rigorous hypothesis test to count small numbers of
single molecules. The observed linear scaling between
expected and perceived DNA concentration indicates
that amplification by PCR is directly related to plate
filling.

It remains an open problem to determine the condi-
tional probability with which PCR can amplify above
threshold in 40 cycles from a single strand of DNA.
While it is currently impossible to enumerate individ-
ual molecules or particles smaller than a nanometer, it
is straightforward to count macroscopic objects such
as latex beads or single yeast cells with a Coulter
counter. Haploid yeast cells provide a convenient and
verifiable means to deliver single copies of Bacillus
subtilis genes such as ybdO into the wells of a multi-
well PCR plate.

In this way, we are currently exploring the relation-
ship between amplification and DNA copy number.
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