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ABSTRACT 
Current computerized pulse diagnosis is mainly based 
on pressure and photoelectric signal. Considering the 
richness and complication of pulse diagnosis infor-
mation, it is valuable to explore the feasibility of novel 
types of signal and to develop appropriate feature 
representation for diagnosis. In this paper, we present 
a study on computerized pulse diagnosis based on blood 
flow velocity signal. First, the blood flow velocity sig-
nal is collected using Doppler ultrasound device and 
preprocessed. Then, by locating the fiducial points, 
we extract the spatial features of blood flow velocity 
signal, and further present a Hilbert-Huang trans-
form-based method for spectrum feature extraction. 
Finally, support vector machine is applied for com-
puterized pulse diagnosis. Experiment results show 
that the proposed method is effective and promising in 
distinguishing healthy people from patients with cho- 
lecystitis or nephritis. 
 
Keywords: Pulse Diagnosis; Blood Flow Velocity; Hil-
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1. INTRODUCTION 

Pulse diagnosis, one of the most important diagnostic 
methods in Traditional Chinese Medicine (TCM), has 
been used in disease examination and in guiding medi-
cine selection for thousands of years [1]. In traditional 
Chinese pulse diagnosis (TCPD) theory [1], the wrist 
radial pulse signals, which caused by the fluctuation of 
blood flow in radial artery, contain rich and critical in-
formation which can reflect the state of human viscus, 
i.e. gallbladder, kidneys, stomach, lungs and so on [2]. 
That is the pathologic change of these internal organs 
can be reflected from the variations of rhythm, velocity, 
strength of radial pulse by which an experienced practi-
tioners can tell a person s healthy condition. Moreover, 
TCPD is noninvasive and convenient for effective diag-
nosis. 

The diagnostic results of TCPD, however, sincerely 
depend on the practitioner s subjective analysis and some-
times may be unreliable and inconsistent. Therefore, it is 
necessary to develop computerized pulse signal analysis 
techniques to make TCPD standard and objective. In 
recent years, techniques developed for measuring, proc-
essing, and analyzing the physiological signals [3-5] are 
considered in computerized pulse signal research [6-8]. 
A series of pulse signal acquisition systems [9,10] have 
recently been developed and a number of methods have 
been proposed to analyze the digitized pulse signals 
[11-15]. 

By far, considerable achievements have been obtained 
in the development of computerized pulse diagnosis based 
on the analysis of pulse signal acquired by pressure [9] 
or photoelectric sensors [10]. Since the information util-
ized in TCPD is comprehensive and complicated, photo- 
electric or pressure sensors cannot acquire all the neces-
sary information for pulse diagnosis. Thus it is necessary 
to develop new types of sensors, to develop appropriate 
feature extraction methods, and to test the feasibility of 
other types of pulse signal. 

Doppler ultrasonic blood flow inspection and meas-
urement [16] is widely used as a noninvasive clinical 
check technique to evaluate the dynamic characteristics 
of peripheral artery. Thus, the effectiveness of Doppler 
ultrasonic blood flow signal for computerized pulse di-
agnosis has been recognized and preliminarily investi-
gated [17-19]. In this paper, we systematically investi-
gates the acquisition, pre-processing, feature extraction 
and classification of Doppler ultrasonic blood flow sig-
nal, and propose to use both spatial and spectrum fea-
tures for computerized pulse diagnosis. 

Generally speaking, as shown in Figure 1, the pro-
posed scheme involves three major modules: data col-
lection and preprocessing, feature extraction, and classi-
fication. In the first module, blood flow signal of the 
wrist radial artery is first collected by Doppler ultra-
sound device and then denoised using empirical mode 
decomposition (EMD)-based method [18]. In the feature  
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Figure 1. Schematic diagram of the proposed computerized 
pulse diagnosis method. 
 
extraction module, spatial features are first extracted and 
then a Hilbert-Huang transform (HHT)-based method is 
adopted to extract the spectrum features. Finally, in the 
classification module, the support vector machine (SVM) 
classifier is used to distinguish healthy person from pa-
tients with two typical visceral diseases, cholecystitis and 
nephritis. 

The remainder of this paper is organized as follows. 
Section 2 describes the procedure of data acquisition and 
preprocessing. In Section 3, we first extract the spatial 
features of blood flow signal, and then a HHT-based 
method is proposed to effectively extract the spectrum 
features. The classification results are described in Sec-
tion 4. Finally, Section 5 concludes this paper. 

2. DATA ACQUISITION AND  
PREPROCESSING 

In our scheme, blood flow signals of the wrist radial 
artery are collect by a Doppler ultrasonic acquisition 
device. At the beginning of signal acquisition, operator 
uses his/her finger to feel the fluctuation of pulse at the 
patient s styloid process of radius to figure out a rough 
area where the ultrasound probe is then put on and 
moved around carefully until the most significant signal 
is detected. Then, a stable signal segment with 30 sec-
onds is recorded and stored. The raw data acquired is 
represented in the form of Doppler spectrogram (see 
Figure 2(a)), of which the up envelope corresponds to 
the blood flow velocity signal.  

In the preprocessing, the blood flow velocity signal is 
first extracted, and is then further processed to remove 
the noise and the baseline drift. An EMD-based method 
described in our former work [18] is adopted for denois-
ing. To address the baseline drift problem, the wave-
let-based cascade adaptive filter method [20] is adopted. 
As an example, Figure 2(b) shows an extracted blood 
flow velocity signal, and Figure 2(c) shows the result of 
blood flow velocity signal after denoising and baseline 
drift removal. 

3. FEATURE EXTRACTION 

This section describes the feature extraction methods 
used in our scheme. First, the spatial features of blood 
flow velocity signals are extracted. Then we discuss how  

 
(a) 

 
(b) 

 
(c) 

Figure 2. An illustration of the preprocessing of wrist blood 
flow signal, where: (a) is a typical Doppler spectrogram of 
blood flow signal; (b) is the blood flow velocity signal ex-
tracted from Doppler spectrogram; (c) is the blood flow signal 
after denoising and baseline drift removal. 
 
to utilize the Hilbert-Huang transform (HHT), which 
includes empirical mode decomposition (EMD) and 
Hilbert transform, for spectrum feature extraction. 

3.1. Spatial Feature Extraction of Blood Flow 
Velocity Signal 

Blood flow velocity signal is a semi-periodic signal 
where each period signal is constructed by a primary 
wave, a secondary wave, and a dicrotic notch (see Figure 
3). As shown in Figure 3, we define several fiducial 
points, and the meanings (of a, b, c, d, a') are explained 
in Table 1. 
 

 

Figure 3. An illustration of the fiducial points of blood flow 
velocity signal. 
 
Table 1. Fiducial points of blood velocity signal. 

Points Feature Meaning 

a Onset of one period 

b Peak point of primary wave 

c Dicrotic notch 

d Peak point of secondary wave 

a  Onset of the next period 



D. Y. Zhang et al. / J. Biomedical Science and Engineering 3 (2010) 361-366 

Copyright   2010 SciRes.                                                                  JBiSE 

363

The procedure of fiducial point location is described 
as follows 

1) Find the onsets of each period using the method 
described in [20], and then locate the points a and a', and 
their corresponding time labels are ta and ta . 

2) Detect the peak point b of the primary wave in 

'[ , ( ) / 3]a a a at t t t+ − , and obtain the time label tb and the 
amplitude hb corresponding to b. 

3) Detect the subsequent peak point d within the time 
interval '[ , ( ) / 2]b b a bt t t t+ − , and obtain its corresponding 
time label td and amplitude hd. 

4) Detect the dicrotic notch point c within time inter-
val [tb, td], and obtain its time labels tc and amplitude hc. 

5) Calculate the parameters in this period by 

'

' '

a a

ba b a

cb c b

dc d c

a b a b

T t t

T t t

T t t

T t t

T t t

= − 
= − = − 
= − 

= − 

.               (1) 

6) Repeat Step 1-Step 5 until all the fiducial points of 
blood flow velocity signal is detected. 

After all the fiducial points are detected, we extract 
six spatial features from blood flow velocity signal, as 
listed in Table 2. We adopt the mean of relative ratios 
between different fiducial point information as spatial 
features because they are more stable. 

3.2. EMD-Based Spectrum Feature Extraction 

In this subsection, we first introduce the Hilbert-Huang 
transform (HHT), and then discuss how to utilize HHT 
for spectrum feature extraction of blood flow velocity 
signals. 

3.2.1. Hilbert-Huang Transform 
Hilbert-Huang transform (HHT) [21] is an adaptive sig-
nal processing method for analyzing non-linear and 
non-stationary signals. In HHT, Hilbert spectrum, a time- 
frequency-energy spectrum of a signal is generated for 
signal analysis. The cores of HHT are empirical mode 
decomposition and Hilbert transform. 
 
Table 2. Meanings of spatial features. 

Features Meanings 

Tba/T 
Ratio of time of ascent part of primary wave to the 
period 

Tcb/T 
Ratio of time of decent part of primary wave to the 
period 

Tdc/T 
Ratio of time of ascent part of secondary wave to the 
period 

Ta b/Tba 
Ratio of time of ascent part to decent part of wave-
form 

hc/hb 
Ratio of amplitude of dicrotic notch to that of pri-
mary peak 

hd/hb 
Ratio of amplitude of secondary peak to that of pri-
mary peak 

1) Empirical Mode Decomposition: 
Empirical Mode Decomposition (EMD) is a success-

ful method used to generate a decomposition of signal 
into several individual components, intrinsic mode func-
tions (IMFs) [21]. An IMF must satisfy the following 
two criteria: (1) the numbers of extrema and the number 
of zero-crossings of an IMF are equal or differ at most 
by one; (2) at any point, the mean value of the envelope 
defined by the local maxima and the envelope defined 
by the local minima is zero.  

With EMD, a signal S(t) is decomposed into a series 
of IMFn(t) and a residue r(t). For expression conven-
ience, the residue r(t) is treated as the last IMF. Conse-
quently, the original signal S(t) can be reconstructed by 
IMFs: 

1

( ) ( )
N

n
n

S t IMF t
=

= ∑ ,                 (2) 

where N is the numbers of IMFs. 
2) Hilbert Transform  

Hilbert transform of IMFn(t) is defined as: 

( )1
( ) n

n

IMF
Y t P d

t

∞

−∞
=

−∫
τ

τ
π τ

,          (3) 

where P  denotes the Cauchy principal value [21].  
With Hilbert transform, an analytic signal Zn(t) can be 

generated using IMFn(t) and the corresponding Yn(t), 
forming a complex conjugate pair defined as 

( )( ) ( ) ( ) ( ) nj t
n n n nZ t IMF t iY t a t e= + = φ    (4) 

where an(t) and ( )n tφ  are instantaneous amplitude and 
phase defined as: 

2 2( ) ( ( )) ( ( ))n n na t IMF t Y t= + ,        (5) 

( )( ) arctan ( )
n

n
n

Y tt IMF t
 =   

φ ,        (6) 

respectively. Furthermore, the frequency of Zn(t) could 
be calculated as 

( )1
( )

2
n

n

d t
f t

dt
=

φ
π

                  (7) 

3.2.2. Feature Extraction by Hilbert-Huang  
Transform 

The procedure to use HHT for blood flow velocity signal 
feature extraction is described as follows: 

For each blood velocity signal S(t), EMD is applied to 
decompose it into a series of IMFs which satisfy 

1

( ) ( ) 1,2, , ,
N

n
n

S t IMF t t m
=

= =∑ K      (8) 

where N is the number of IMFs and m is the length of 
S (t). 

For each IMFn (t), we extract an (t) and fn (t) using Eq.5 
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and Eq.7, and then define the average amplitude nh  and 

the average frequency nω  of each IMFn (t) as 

( )
1

,
m

n nt
h a t m

=
= ∑                   (9) 

( ) ( ) ( )
1 1

m m

n n n nt t
a t f t a t

= =
= ∑ ∑ω .     (10) 

We define the energy Pn of IMFn (t) as 

( )

( )

2

1

2

1 1

m

nt
n

N m

nn t

IMF t
P

IMF t

=

= =

= ∑
∑ ∑

.          (11) 

Using Eqs.9-11, for each blood flow velocity signal 

S(t), we extract 3 ! N parameters { nh , nω , nP }, which 
form a vector to be used for blood flow velocity signal 
classification. 

4. EXPERIMENTAL RESULT AND  
DISCUSSION 

In this section, the extracted features by methods de-
scribed in the Section 3 are tested on our blood flow 
velocity dataset. The dataset includes 33 healthy persons, 
25 nephritis patients, and 25 cholecystitis patients. All of 
the data were collected at Harbin 211st Hospital using 
our Doppler ultrasonic analyzer. Before the classification, 
all the blood flow velocity signals are segmented to have 
the same length with the result that each has 2060 points. 

For the HHT-based feature extraction method, all the 
2060 points of data are used. Figure 4 and Figure 5 
show the EMD of a healthy person and a nephritis pa-
tient. EMD is an adaptive signal processing method. For 
different signals the numbers of their IMFs may not be 
the same. For blood flow velocity signal, the typical 
numbers of IMFs are between 7 and 9. Since the number 
of IMFs differs in different signals, the feature vectors 
extracted from different signal are not guaranteed to have 
the same feature dimension. For each blood velocity sig-
nal, there is less oscillation in the higher order of IMFs, 
which means that these IMFs contain the direct-current 
component of the original signal. So, we discard the higher 
order IMFs and use the first five lower order IMFs (IMF1 
to IMF5) for feature extraction. Then a 15-dimensional vec- 
tor is extracted as 

{ }, , | [1, ,5]n n nE h P n= ∈ Kω         (12) 

For the spatial feature extraction method, since we 
have fixed the length of blood flow velocity signal and 
the periods of different signals are not the same, there 
may be a span at the end of each segmented data which 
could not cover a complete period and some spatial fea-
ture could not be extracted in that span of signal (see 
Figure 6). Thus we discard that span and only use the 
remained part for spatial feature extraction. Using the 
method described in Subsection 3.1, we form a vector, 

 

Figure 4. EMD of blood flow velocity signal of a healthy person. 
 

 

Figure 5. EMD of blood flow velocity signal of a nephritis patient. 
 

 

Figure 6. Data processing for spatial feature extraction: (a) is 
an example of segmented data with the incomplete last span of 
data; (b) is partial enlarged of (a). 
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where "  # denotes the mean value of parameters. 
Using both spatial and spectrum feature extraction, we 

extract two vectors E and S for each blood flow velocity 
signal, and formulize them into a new vector T = {E, S} 
for effective pulse classification. 

In our experiments, we adopt support vector machine 
(SVM) [22] with Gaussian RBF kernel for that it has 
good generalization on small dataset. Our experiments 
were done under the MATLAB environment by using 


