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ABSTRACT 

This paper investigates impact of noise and signal 
averaging on patient control in anesthesia applica-
tions, especially in networked control system settings 
such as wireless connected systems, sensor networks, 
local area networks, or tele-medicine over a wide 
area network. Such systems involve communication 
channels which introduce noises due to quantization, 
channel noises, and have limited communication 
bandwidth resources. Usually signal averaging can be 
used effectively in reducing noise effects when remote 
monitoring and diagnosis are involved. However, 
when feedback is intended, we show that signal av-
eraging will lose its utility substantially. To explain 
this phenomenon, we analyze stability margins under 
signal averaging and derive some optimal strategies 
for selecting window sizes. A typical case of anesthe-
sia depth control problems is used in this develop-
ment. 
 
Keywords: Anesthesia Depth; Anesthesia Monitoring; 
Anesthesia Control; Signal Averaging; Noise Reduction; 
Open and Closed Loop Systems; Communications; Net-
worked Systems 

1. INTRODUCTION 

To maintain an adequate depth of anesthesia without 
compromising patient’s health, an anesthesiologist usu-
ally works as a multi-task feedback controller to roughly 
regulate the drugs titration while observing a variety of 
patient outcomes. Automatic anesthesia controller design 
aims to automatically regulate anesthesia levels by tak-
ing account on several physiological measurements and 
then frees up anesthesiologists for more important tasks 

in operation. Closed-loop control of anesthesia has been 
a goal of many researchers since the middle of 20th 
century. With the emergence of BIS monitor in late 
1990s, the interests in closed-loop control of depth of 
hypnosis is renewed, the most notable works are seen in 
[1,2,3,4]. In an operation room, a wide range of medical 
devices are connected together or connected to patient 
through cables for measuring, monitoring and diagnosis. 
The cable clutter interferes with patient care, creats haz-
ards for clinical staff and delays transport and position-
ing. To improve the clinical room efficiency and safty, it 
has been suggested to replace those cables with wireless 
connections [5]. 

While anesthesia patient vital signs such as anesthesia 
depth index, blood pressure, heart rate etc. are transmit-
ted through a noisy wireless channel in a wide area, 
those transmitted signals will be corrupted by the trans-
mission noise. It is well understood that within most 
algorithms that reduce effects of random noises on sig-
nals and systems, some types of signal averaging are 
used [6,7]. This is mainly because the laws of large 
numbers and central limit theorems provide a foundation 
for noise reduction. The rationale is that when averaging 
is applied, noises diminish in an appropriate sense. This 
fundamental understanding leads to algorithms in filter-
ing, signal reconstruction, state estimation, parameter 
estimation, system identification, and stochastic control. 
The signal averaging can be used effectively when re-
mote monitoring and diagnosis are involved. On the 
other hand, signal averaging introduces dynamic delays. 
Such delays will have detrimental effects on closed-loop 
systems, even destabilizing the system. Consequently, 
signal averaging encounters a fundamental performance 
limitation in feedback systems. To explain this phe-
nomenon, we analyze stability margins under signal av-
eraging and derive some optimal strategies for selecting 
window sizes. A typical case of anesthesia depth control 
problems is used in this development. 

*Research of this author was supported in part by the National Science 
Foundation under ECS-0329597 and DMS-0624849, and Michigan 
Economic Development Council. 
**Research of this author was supported in part by Michigan Economic 
Development Council and Wayne State University’s Research En-
hancement Program. 

This paper is organized as follows. Section 2 dis-
cusses patient modeling and control in anesthesia appli-
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cations. A typical case is presented with a detailed pa-
tient model derived from clinical data. A feedback con-
trol is designed to achieve closed-loop system stability, 
on the basis of state observers and pole placement con-
trol. Signal averaging and its effectiveness on open-loop 
and closed-loop applications are demonstrated in Section 
3. We show that while extending filter windows can im-
prove noise attenuation in open-loop systems, it can 
de-stabilize a closed-loop system, implying a fundamen-
tal performance limitation. The idea of using fast sam-
pling is discussed. 

Theoretical foundation of our performance analysis is 
presented in Section 4. It is shown that this can be trans-
formed into a calculation of gain margin of a modified 
system. Performance limitation is analyzed that leads to 
an optimal selection of filter windows. It is shown that 
for a given sampling rate, even optimally designed av-
eraging filters can only have very limited benefits in 
reducing noise effects. It is shown that noise reduction 
ratio is proportional to the sampling interval, providing a 
means of obtaining noise reduction with communication 
resources. These findings are applied to anesthesia con-
trol problems in Section 5. Finally, Section 6 summa-
rizes some issues that are related but not resolved in this 
paper. 

2. PATIENT MODELS AND FEEDBACK 
CONTROL 

Real-time anesthesia decisions are exemplified by gen-
eral anesthesia for attaining an adequate anesthetic depth 
(consciousness level of a patient), ventilation control, etc 
[3,4,8,9]. One of the most critical requirements in this 
decision process is to predict the impact of the inputs 
(drug infusion rates, fluid flow rates, ventilator mode, 
etc.) on the outcomes (consciousness levels, blood pres-
sures, heart rates, airway pressures, and oxygen satura-
tion, etc.). This prediction capability can be used for 
control, display, warning, predictive diagnosis, decision 
analysis, outcome comparison, etc. 

2.1. Patient Models 

The core function of this prediction capability is em-
bedded in establishing a reliable model that relates the 
drug or procedure inputs to the outcomes in real-time 
and in individual patients. Due to significant deviations 
in physical conditions, ages, metabolism, pre-existing 
medical conditions, and surgical procedures, patient dy-
namics demonstrate nonlinearity and large variations in 
their responses to drug infusion. A basic information- 
oriented model structure for patient responses to drug 
infusion was introduced in [10,11,12]. Propofol (a com- 
mon anesthesia drug) titration is administered by an in-
fusion pump. The patient’s anesthesia depth is measured 
by a BIS (Bi-Spectrum) monitor [13,14]. The monitor 
provides continuously an index in the range of [0,100] 

such that the lower the index value, the deeper the anes-
thesia state. Hence, an index value 0 will indicate “brain 
dead” and 100 will be “awake”. 

To establish patient models for monitoring and control, 
clinical data were collected. One of these data sets is 
used in this paper. The anesthesia process lasted about 
76 minutes, starting from the initial drug administration 
and continuing until last dose of administration. Propofol 
was used in both titration and bolus. Fentanal was in-
jected in small bolus amount three times, two at the ini-
tial surgical preparation and one near incision. Analysis 
shows that the impact of Fentanal on the BIS values is 
minimal. As a result, it is treated as a disturbance and not 
explicitly modeled in this example. The drug infusion 
was controlled manually by an experienced anesthesi-
ologist. The trajectories of titration (in μg/sec) and bolus 
injection (converted to μg /sec) during the entire surgical 
procedure were recorded, which are shown together with 
the corresponding BIS values in Figure 1. 

The patient was given bolus injection twice to induce 
anesthesia, first at  minute with 20 mg and then at 

 minute with 20 mg. They are shown in the figure 
as 10000 μg /sec for two seconds, to be consistent with 
the titration units. The surgical procedures were manu-
ally recorded. Three major types of stimulation were 
identified: 1) During the initial drug administration (the 
first 6 minutes), due to set-up stimulation and patient 
nervousness. 2) Incision at  minute for about 5 
minutes duration. 3) Closing near the end of the surgery 
at  minute. 

3=t
5=t

=t

45=t

60
The data from the first 30 minutes are used to deter-

mine model parameters and functional forms. For esti-
mating the parameters in the patient block, the data in 
the interval where the bolus and stimulation impact is 
minimal (between  to  minutes) are used. 
The patient model parameters were identified through 
Least-Squares estimation method [15]. 

10=t 30=t

Under a sampling interval 1=T  second, which is the 
standard data transfer interval for the BIS monitor, the 
combined linear dynamics was estimated. The patient 
model with propofal infusion rate as the input and BIS 
measurement as the output was identified as  

0.26780.29840.59890.75011.159

0.090160.088130.01872
=

)(

2345

2




zzzzz

zz

zP

(1) 

The actual BIS response is then compared to the 
model response over the entire surgical procedure. 
Comparison results are demonstrated in Figure 2. Here, 
the inputs of titration and bolus are the recorded 
real-time data. The model output represents the patient 
response very well. In particular, the model captures the  
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Figure 1. Actual patient responses.                        Figure 2. Patient model responses. 
 
key trends and magnitudes of the BIS variations in the 
surgical procedure. This indicates that the model struc-
ture contains sufficient freedom in representing the main 
features of the patient response. 

2.2. Feedback Control 

Usually to eliminate steady-state error in tracking  
 

 

control, an integrator is inserted into the system  

1

1
=)(

z
zC  

A stabilizing feedback controller is then designed for 
the patient model (1) by using a full-order observer and 
pole placement design, leading to  

0.083430.57140.40570.72522.2842.341

0.24791.9813.673.6440.62981.234
=)( 23456
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These system components result in a combined open- 

loop system   

)()()(=)( zPzCzFzG              (2) 

3. SIGNAL AVERAGING AND CONTROL 
PERFORMANCE 

We will use a typical anesthesia control problem to un-
derstand impact of communication channels and utility 
of signal averaging on anesthesia monitoring and control. 
There are different window functions for signal averag-
ing, such as uniform windows, exponential windows, etc. 

They are different only in their forms, but most conclu-
sions for system analysis or error bounds are usually 
valid for all window types. As a result, we shall use the 
exponential windows to carry out our analysis. A signal 
averaging by exponential decaying weighting of rate 

1<<0   is  

i
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k

i
k xh 


 
=

)(1=              (3) 

whose transfer function is   
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Figure 3. Signal filtering in open-loop system. 
 
3.1. Open-Loop Systems 

In wireless-based monitoring and diagnosis applications, 
the system is running in open-loop. In this case quanti-
zation errors and communication noises can be grouped 
as an additive noise to the patient output y. When signal 
averaging is applied to reduce noise effects, the resulting 
system can be represented by the block diagram in Fig-
ure 3. 

Figure 4 illustrates impact of filtering on open loop 
systems. In open loop applications, filtering will not 
de-stabilize the system. Consequently, one may choose a 
window of long horizon to reduce the effects of noise. It 
is apparent that the longer the averaging window, the 
less the noise effect on the signal. However, it is also 
observed that signal averaging slows down system’s 

 

Figure 4. Effects of signal averaging on open-loop systems. 

response to the input. In other words, filtering introduces 
a dynamic delay. This delay has very important implica-
tion in the closed-loop applications. 

3.2. Closed-Loop Systems 

On the other hand, if feedback control for anesthesia 
management decisions is intended, signal filtering be-
comes part of a closed-loop system. When signal aver-
aging is applied, the averaging filter Fa is inserted into 
the system, resulting in a modified closed-loop system 
shown in Figure 5. 

The close-loop system equations are:   

)(=,= kkkkkk dyFreGey          (5) 

Then  

kkkk dGFyGFGry  =  

and 

kkrk dHrHy =              (6) 

where,  

GF

GF
H

GF

G
Hr






 


 1
=;

1
=          (7) 

Figure 6 illustrates impact of filtering on closed loop 
systems. Although signal filtering can reduce the noise 
effect of the signal, it introduces a dynamic delay which 
has detrimental effects on the closed-loop system. The 
plots confirm that when filtering window is long the 
filter can destabilize the closed-loop system. Even when 
the filtering window size is small, its effectiveness is not 
very obvious. This example suggests that in closed-loop 
applications signal filtering has limited effectiveness. 
This understanding will be used to introduce new meth-
ods to reduce noise effects in such applications. 

3.3. Re-Sampling  

The plant in this case is identified as a 5 t  order differ-
ence equation in (1). The system can be well approxi-  

h
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Figure 5. System modules and their equivalent representation. 

 

       
Figure 6. Effects of signal averaging on closed-loop systems.     Figure 7. Step responses of the original system and the simplified system. 
 
mated by a continuous-time system that consists of a 
pure time delay and a first-order dynamics, sampled with 
sampling interval T=1 second. Let a continuous-time 
system be   

173

0.93
=)( 5




s
esP s               (8) 

The step responses of the original system (1) and the 
simplified system P(s) are shown in Figure 7. 

This approximation allows us to use smaller sampling 
intervals to re-sample the output of the system. The 
benefits of re-sampling will become clear after some 
theoretical analysis in the next section. 

4. ANALYSIS OF STABILITY AND   
PERFORMANCE 

Definition 1 The stability margin against exponential 
averaging, abbreviated as α-margin and denoted by 

)(Gmax , is the largest 10   such that for all 

)(<0 Gmax , the close-loop system (6) is stable and 

the system is unstable if . If the close-loop 

system is stable for all α, we denote 

)(> Gmax
1=)(Gmax .  

Suppose that the input to the filter is a noise corrupted 
constant 

= kdkx   

An exponential window of rate 1<<0   is applied to 
this signal and its output is  
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In other words, for system y approxi-
m

 Ex l    

The between 

t
dxkTy   )/ )(

1
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ate the discrete-time filter in (3) by its continuous-time 
counterpart in (9). These relationships between discrete- 
time averaging and continuous time averaging will be 
used to derive stability margins. 

4.1. Stability Margin against
Averaging 

relationship   and   will allow us to 
in

ty margin in the 
co

focus on stability analysis  continuous time systems 
and then transform the results to the discrete-time filters. 

This is stated in the following theorem. 

Theorem 1 If the exponential stabili
ntinuous-time domain is max , then  

max
maxT

T 


=
ln

lim
0 

 

Proof: This follows from the relationship  

We now concentrate on calculation of .  

nst nential 
av

 /= Te  
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Definition 2 The stability margin agai expo
eraging for the continuous-time closed-loop system, 

abbreviated as continuous exponential A-margin and 
denoted by )(Gmax , is the smallest 0>  under which 
the closed-loop system becomes able. If the 
closed-loop system remains stable for all 0>

unst
 , we de-

note =)(Gmax .  

Supp = Nose )()/( sDs
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)(sG  where 
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)(sn  and )(sd  
)(sNe polynom and copri hat is,  

and )(sD  do not have common zeros). Then max
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  is 

the t 0>larges   before the closed-loop syste e-
comes unstabl onsider the characteristic equation of 
the closed-loop system  
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or  

0=)()()( sNsDssD           (11) 

which leads to   

0=
)()(
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1

sNsD
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            (12) 

This expression leads to the following conclusion. 

Theorem 2 The exponential A-margin )(Gmax  of 
)(sG  is the gain margin of   

)()(

)(
=)(

sNsD

ssD
sH


         (13) 

We make several interesting observations from (12). 
First, from (11), max  may be calculated by using the 
Routh-Hurwitz test. Second, (12) is in a standard form 
for using root locus technique. So, we may plot the root 
locus of the system (13) (it is an improper system) and 
detect the   value that reaches marginal stability, 

which will b  maxe  . The root locus plot starts at the 
poles of system (13) which are precisely the poles of the 
closed-loop system without the averaging filter. Since  
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Figure 8. Using bode plots to obtain the gain margin. 

the closed-loop system is stable, for small   the closed- 

ppose . Then,  

loop system with the filter will remain stable. The root 
locus plot moves towards the zeros of system (13) which 
are the poles of the open-loop system. Hence, if the 
open-loop system is unstable, the exponential A-margin 
is always finite. 

Example 1 Su 1)2)/((=)(  sssG
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The gain margin can be obtained by using the Matlab 
function “margin” (which gives 2=max ) or by plotting 
the bode plot as shown in Fi  which gives 
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4.2. Performance  

Within the A-margin, what is th
aging? On one hand, signal averaging can reduce noise 
effect. On the other hand, averaging introduces delays 
and reduces closed-loop system performance. Conse-
quently, an optimal choice of averaging becomes an is-
sue. 
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λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

η 6.22 7.00 7.87 9.00 10.49 12.59 15.73 20.96 31.44 62.85

Figure 9. Optimal averaging rate. 
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4.3. Fast Sampling for Disturbance Attenuation 

Although the optimal 2L  performance   in (16) can-
not be improved for the continuous-time system, noise 
attenuation in the sampled system can be further im-
proved. 

We first establish a relationship between the 2L  
 of 

-

 to be-
 

norm of the continuous-time system and the  norm
its sampled system. Suppose that the dis bance se

quence passes through a ZOH of in T
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pulse response of the sampled system, become  
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If 2
2HP P  is optimized, then 2 2

2H =P P  as in (16). 

Consequently, the noise reduction ratio can be expressed 
as   

2 2= T                 (17) 

This is a relationship between noise reduction in the 
sa stem and the optimal L2 norm of the continu-
ous-time system. This analysis concludes that using 
faster sampling (smaller T) can reduce the noise effects. 

V ING 

Findings from Section 4 provide some useful design 
guidelines. 1) Signal averaging is beneficial in reducing 
noise effects. 2) Effectiveness of signal averaging in 
closed-loop systems varies substantially with the filter 
windows or decaying rates. There is an optimal decaying 
rate at which signal filtering becomes most effective. 3) 

 filter window is optimally selected, further 
noise attenuation can only be achieved by ng the 
sampling rates. 4) Increasing sampling rates incurs 
hi  ban  for com

 performance limit for noise attenuation. This is a 
unique feature for closed-loop 
applications, convergence can be
si

mpled sy

5. CONTROL WITH SIGNAL A ERAG

When the
 increasi

gher dwidth requirements munications. 
When channel bandwidths are limited, there is a funda-
mental

systems. In open-loop 
 obtained by applying 

gnal averaging over a very long horizon. However, this 
cannot be applied to closed-loop systems since long 
windows of filtering destabilize the feedback system. 

5.1. Anesthesia Applications 

We now apply these understandings to anesthesia control 
systems. The open-loop transfer function in (2) can be 
derived as  
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and  
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( ) = 4.5 9.248 11.48

9.576 5.684 2.528 0.7518

0.2721 0.6608 0.507

D z z z z z
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z z z

  

   

  
 

0.2003 0.02234z 

Since the open loop system is unstable, the stability 
margin of the closed-loop system with inserted averag-
ing window is always limited. The closed-loop system’s 
stability concerns have already been depicted in Figure 
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6. The closed-loop system’s H2 no , which defines the 
system’s ability in noise attenuation, is shown in Figure 
10. 

, the closed-loop system’s step response is simu-
lated when the filter is optimally selected and shown in 
Figure 11. The system inherent sampling rate is T=1 
second. 

While re-sampling is performed with T=1, the H2 
norm of the closed-loop system will be reduced further. 

uced sampling intervals, improvements of noise 
tion are illustrated in Figure 12.  

5.2. Discussions 

It can be seen from Figure 10 that the optimal filter de-
caying rate is with the corresponding H2 
norm 9.0872 wh  closed-loop system is stable 
and it’

rm

Then

For red
attenua

0.1300=opt  
en T=1. The

s step response has much fluctuation in steady 

state. From the relationship, optoptT
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obtain 0.49=opt . This leads to the optimal choice of 

 
Figure 10. Closed-loop system performance vs. filter decaying 
rates. 

 

 
Figure 12. The closed-loop system performance for reduced 
sampling intervals. 

decaying rate when the sampling interval T is reduced 
from 1 as  

When sampling rate is increased to 1T, the H2 norm of 
the closed-loop system will be reduced to 9.0872T as 
established in (17). Figure 12 illustrates the step re-
sponses of the closed-loop system with sampling interval 
T=0.5, T=0.1 and T=0.01 second respectively. The 
steady state fluctuation of the step response is decreasing 
with the reduced sampling intervals. 

6. CONCLUSIONS 

ed sys-
tems was investigated in this paper. Such systems in-
volve communication channels which are corrupted by 
noises and have limited bandwidth resources. Signal 
averaging is the fundamental method in dealing with 
stochastic noises and errors. It is used effectively in re-
ducing noise effects when only remote monitoring and 
diagnosis are involved. However, the case is different 
when feedback is intended. 

Our results show that the decaying rate of the averag-
ing window has significant impact on the performance of 
the close-loop system. When α is larger than some value, 
the close-loop system becomes unstable. A concept of 
stability margins against exponential averaging is intro-
duced. Its calculation can be performed by either the 
Routh-Hurwitz method or the root-locus method on a 
modified system. Furthermore, the strategy for choosing 
the optimal decaying rate is derived. Our results con-

and design method is applied to anesthesia patient con-

.=== 2.04/0.49/ TToptT
eee  

  

The impact of communication channels on feedback 
control in anesthesia applications in wireless bas

clude that fast sampling must be used for improving 
noise reduction after optimal filter design. The analysis Figure 11. Step response of the closed-loop system when the 

filter is optimally selected, and sampling interval T=1. 
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sis is conducted on the basis of the linear 
systems. Actually, anesthesia patient models contain non- 
linearity. Our future work will consider analysis of non- 
l
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trol problems. 
Our analy
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method of blind carrier tracking for OFDM, IEEE Trans-
actions on Signal Processing, 56(7). 
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