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ABSTRACT 
 
Although a great deal of research has been un-
dertaken in the area of the annotation of gene 
structure, predictive techniques are still not 
fully developed. In this paper, based on the cha- 
racteristics of base composition of sequences 
and conservative of nucleotides at exon/intron 
splicing site, a least increment of diversity al-
gorithm (LIDA) is developed for studying and 
predicting three kinds of coding exons, introns 
and intergenic regions. At first, by selecting the 
64 trinucleotides composition and 120 position 
parameters of the four bases as informational 
parameters, coding exon, intron and intergenic 
sequence are predicted. The results show that 
overall predicted accuracies are 91.1% and 
88.4%, respectively for A. thaliana and C. ele-
gans genome. Subsequently, based on the po-
sition frequencies of four kinds of bases in re-
gions near intron/coding exon boundary, initia-
tion and termination site of translation, 12 posi-
tion parameters are selected as diversity source. 
And three kinds of the coding exons are pre-
dicted by use of the LIDA. The predicted suc-
cessful rates are higher than 80%. These results 
can be used in sequence annotation. 
 
Keywords: Exon; Intron; Intergenic Region; Splice 
Site; Increment of Diversity 
 
1. INTRODUCTION 

With the completion of the genomes sequencing, more 
and more efforts were being put into understanding the 
functional elements encoded in a genome [1,2,3,4,5,6]. 
Annotation of gene structure in eukaryotic genomes cur-
rently involves both computational and experimental 

approaches [7,8,9,10]. Driven by this explosion of ge-
nome data and a need to analyze draft data quickly, 
genefinding programs have also proliferated, particularly 
those that were designed for specific organisms [11,12, 
13,14,15]. However, the accuracy was still far from sat-
isfaction [16]. 

Gene prediction methods can be generally classified 
as composition-based and similarity-based methods. 
Composition-based methods, also called ab initio gene- 
finding method, contain two important aspects: type of 
information and the algorithm. Most types of informa-
tion measure either codon usage bias, base composi-
tional bias between codon positions or splice site as well 
as periodicity in base occurrence. Several sophisticated 
algorithms that deduce the presence of a gene feature 
using signals and content information have been devised 
including GenScan [17], Fgenes [18], Genie [19] and 
MZEF [20]. Although some satisfactory results were 
obtained by using above software, a considerable pro-
portion of missing or incorrect exon and over predictions 
were found by using an experimentally validated dataset 
of some genomic sequences [21]. On the other hand, 
most ab initio gene prediction programs performed pre-
diction based on large parameters. For example, 12,288 
parameters were needed by GeneMark [22]. It will de-
duce unreliable prediction results for small genome [23]. 
Similarity-based methods such as Genewise [24] and 
Procrustes [25] predicted a gene relied on homolog se-
quences. These methods showed a high sensitivity and 
specificity for predicting genes whose sequence is 
closely related to the known input sequence. But some 
species-specific genes are likely to be missed [7]. In or-
der to improve prediction, the programs of combing 
protein sequence similarity with ab inito gene-finding 
algorithms such as GenomeScan [26] were proposed. 
Despite great progress, the experiment highlighted errors 
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with the various predictions and indicated that both types 
of gene prediction programs are currently unable to de-
termine whole gene structures consistently [27]. 

Although programs for splice site and gene structure 
recognition have reached a high level of performance on 
internal coding exons, standard splice sites might not be 
sufficient for defining introns in the genomes [28]. And 
prediction of splice sites in non-coding regions of genes 
is one of the most challenging aspects of gene structure 
recognition. The distinguishing intergenic region from 
intron should be very useful to understand the features of 
the noncoding and regulatory regions. In addition, find-
ing first exons still remains a challenge, except where 
the true full-length mRNA sequences are available. Un-
fortunately, most of the available mRNA sequences are 
incomplete at their 5’ends and do not provide informa-
tion about first exons. Apparently, the recognition of 
exon, intron and intergenic DNA at the meanwhile is 
very helpful for gene recognition. Specially, it is diffi-
culty to distinguish intron from intergenic sequence in 
past algorithm. 

In this paper, our goal is to provide a new computa-
tional method to predict gene structure base on least in-
crement of diversity algorithm (LIDA). The diversity 
measure was first introduced and employed in biological 
classification [29]. It is a kind of information description 
on state space and a measure of whole uncertainty and 
total information of a system derived from information 
theory. To compare the similarity of two sources, one 
defines the increment of diversity (ID) by the difference 
of the total diversity measure of two systems and the 
diversity measure of the mixed system. It can be proved 
that the higher the similarity of two sources, the smaller 
the ID. So, the increment of diversity of two sources is 
essentially a measure of their similarity level. 

Here, according to the theory of diversity, we firstly 
predict coding exons, introns and intergenic sequences 
of A. thaliana and C. elegans based on the analysis of 
the compositional differences in near splice sites and 
conserved sequence segments of the three kinds of se-
quences (exons, introns and intergenic sequences) in the 
complete genome of these two model organisms. Sub-
sequently, three kinds of coding exons (first coding ex-
ons, internal coding exons and last coding exons) are 
predicted by use of the least increment of diversity algo-
rithm. It may be useful for improving the prediction of 
splice sites. 

2. EXPERIMENTAL 

2.1. Data Sample 

The A. thaliana and C. elegans genomic DNA sequences 
are obtained from Genbank. The coding exons, introns 
and intergenic sequences are respectively extracted from 

the above genomes. According to the length distribution, 
we divide all sequences of one chromosome into three 
types of subsets. The ranges of three subsets are respec-
tively (30-200bp), (200-500bp) and (>=500bp) for exon 
and intron sequences, (30-2000bp), (2000-5000bp) and 
(>=5000bp) for intergenic sequences. 

The 15609 first coding exons, 67408 internal coding 
exons and 15791 last coding exons are extracted from A. 
thaliana complete genome. The 10904 first coding exons, 
87743 internal coding exons and 11035 last coding ex-
ons are extracted from C. elegans complete genome. The 
subsequences with 9 bases length flanking 5’ boundary 
sites (from –5th site to +4th site) and 3’ boundary sites 
(from –4th site to +5th site) are meanwhile extracted re-
spectively from above genome sequences. 

2.2. Least Increment of Diversity Algorithm 
(LIDA) 

Due to increment of diversity (ID) can measure incre-
ment of whole uncertainly (or information) between two 
data sources, it has been widely applied in bioinformat-
ics investigation, such as protein structural class predic-
tion [30], subcellular location of apoptosis protein [31] 
and secretory protein prediction [32]. For the purpose of 
improving prediction capability, ID combined with other 
predictive model was applied in exon/introns splice site 
prediction [33], human PolII promoter prediction [34] 
and protein predictions [35,36,37,38,39,40,41,42]. For 
reader’s conveniences, the theory of diversity is intro-
duced as follows. 

Definition 1. For a state space X{n1,n2,…,ns} consist-
ing of s information symbols, if ni indicates the numbers 
of the i-th state, then the diversity for diversity source 
X:[n1, n2,…, ns] is defined as [30], 


s

iis nnNNnnnDXD
1

21 loglog),...,,()(     (1) 

here  s

i inN . It is easily proved that the diversity 

equals N fold of information entropy [43]. 
Definition 2. If there are two sources of diversity in 

the same space of s dimension, X:[n1, n2,…, ns] and 
Y:[m1, m2,…, ms], we may define the increment of diver-
sity as 

)()()(),( YDXDYXDYX       (2) 

where D(X+Y) is the measure of diversity of the mixed 
source X+Y:[n1+ m1, n2+ m2,…, ns+ ms]. Note that 

),( YX  is a function of two sources. It is easily proved 

that the increment of diversity [Eq.(2)] is nonnegative 
and symmetry. Therefore,  is regarded as a 

quantitative measure of the similarity level of two inde-
pendence systems. 

),( YX
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2.3. Prediction of Exon, Intron and      
Intergenic Sequence 

One DNA sequence can be represented by a diversity 
source: X: [Si,, Njk  , Mlk ], where Si means the absolute 
frequency of the i-th trinucleotide in the sequence 
(i=1,2,…,43); Njk means the absolute frequency of base k 
at the j-th position from the beginning of 5’ boundary 
(j=1, 2, …, 15), Mlk means the absolute frequency of 
bases k at the l-th position from the end of 3’ boundary, 
(l=–1, –2, …, –15). By calculating above 180 
(43+15×4+15×4) parameters of exons, introns and inter-
genic sequences in standard sets (training sets), we de-
duce three standard sources of diversity : [X ,, 21

 nn  

184...n

ie ,,

] in the state space of 184 dimensions. (here 

g  indicates respectively the exon, intron and 

intergenic sequence.) Three standard measures of diver-
sity can be deduced by use of similar equations as Eq.(1), 
namely 


 kk k nnNNXD loglog)(

184

1 
      (3) 

where = (k=1, 2, …, 184), (N  

184

1k kn gie ,, ). 

Suppose that X is a DNA sequence whose class is to 
be predicted. In the same state space, the measure of 
diversity of sequence X can be expressed as: 

kk k mmMMXD loglog)(
184

1 
       (4) 

where (k=1, 2, …, 184).  


184

1k kmM

The increments of diversity between the diversity 
source X: [ ] and the three standard diver-

sity sources : [ ], (here 

18421 ,..., mmm

X 
21 ,nn 

184,...n gie ,, ) are 

)()()(),(  XDXDXXDXX  ( gie ,, ) 

(5) 

Sequence X can be predicted to be the class for which 
the corresponding increment of diversity has the mini-
mum value, and can be formulated as follows. 

)},(),,(),,({Min),( XXXXXXXX gie     (6) 

where ξ can be e, i or g and the operator Min means 
taking the minimum value among those in the parenthe-
ses, then the ξ in Eq.(6) will give the sequence class to 
which the predicted sequence X should belong. 

2.4. Prediction of Three Kinds of Coding 
Exons 

For each coding exon, the following three kinds of 
codon positions are investigated to select optimal pa-
rameters. 

1) The three bases before the 5/ boundary sites of ex-
ons (acceptor sites) and after the 3/ boundary sites of 

exons (donor sites) are chosen as information parameters 
of diversity source. 

AGA GCA↑ATG G……A TGC↑GTA AGA 
2) The three bases after the 5/ boundary sites of exons 

(acceptor sites) and before the 3/ boundary sites of exons 
(donor sites) are chosen as information parameters of 
diversity source. 

AGA GCA↑ATG G……A TGC↑GTA AGA  
3) The six bases flanking the 5/ boundary sites of ex-

ons (acceptor sites) and the 3/ boundary sites of exons 
(donor sites) are chosen as information parameters of 
diversity source. 

AGA GCA↑ATG G……A TGC↑GTA AGA 
(where↑indicates the 5’ or 3’ exon boundary sites) 

By calculating the absolute frequencies of four bases 
in above positions near splice sites of first coding exons, 
internal coding exons and last coding exons, we deduce 

three standard sources of diversity :{ ∣j=1,2,3; 

a=A,C,G,T} in the state space of 12 dimensions (here 
X 

jaN

lif ,,  corresponding to first coding exon, internal 

coding exon and last coding exon, respectively). Then, 
three standard measures of diversity for three coding 
exons can be calculated by Eq.(1), namely: 


 kk k nnNNXD loglog)(

12

1 
       (7) 

where  (k=1, 2, …, 12).  


12

1k knN 


Suppose that S is an exon whose class is to be pre-
dicted. In the same state space, the measure of diversity 
can be expressed as: 

kk k mmMMSD loglog)(
12

1 
        (8) 

According to Eq.(2), the increments of diversity be-
tween source S and three standard sets are  

)()()(),(  XDSDXSDXS   ( lif ,, ) 

(9) 

Exon (S) can be predicted to be the class for which the 
corresponding increment of diversity has the minimum 
value, can be formulated as follows 

)},(),,(),,({Min),( SXSXSXSX lif     (10) 

where ξ can be f, i or l and the operator Min means tak-
ing the minimum value among those in the parentheses, 
then the ξ in Eq.(9) will give the class to which the pre-
dicted coding exon S should belong. 

3. RESULTS 

3.1. Evaluating Predicted Performance of   
Proposed Method 

In order to evaluate the correct prediction rate and reli-
ability of a predictive method, the sensitivity (Sn), speci-
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ficity (Sp) and correlation coefficient (CC) are defined by 3.2. The Prediction of Exon, Intron and     
Intergenic Sequence )/( FNTPTPSn   

)/( FPTPTPS p   Approximate 1/2 sequences of standard sets (training 
sets) and 1/2 testing sets are randomly chosen by com-
puter programs from the corresponding subset. In order 
to eliminate the dependence of the predictive results on 
the training dataset, the standard set (training set) are 
randomly selected 10 times. The numbers of the known 
coding exons, introns and intergenic sequences are 
shown in Table 1. 

)()()()(

)()(

FPTNFNTPFNTNFPTP

FNFPTNTPCC


  

For a given sequence class , TP denotes the number 
of the sequences correctly predicted to be in  class se-
quences (true positive), FP denotes the number of the 
sequences incorrectly predicted to be in  class se-
quences (false positive), TN denotes the number of the 
sequences correctly predicted to be in non- class se-
quences (true negatives), FN denotes the number of the 
sequences incorrectly predicted to be in non- class se-
quences (false negative). Sensitivity shows the rate of 
correct prediction. Specificity shows the confidence 
level for predictive method. The correlation coefficient 
(CC) affects the entirely performance of the prediction 
algorithm. 

Based on the Eq.(6), the three classes of sequences 
are predicted by use of the 184 information parameters. 
In order to compare prediction quality of different in-
formation parameters, we perform our algorithm to pre-
dict exons, introns and intergenic sequences using 64 
trinucleotides. The contrast results of test sets between 
64 and 184 signals parameters for A. thaliana (A) and C. 
elegans (C) are shown in Table 2. 

 
Table 1. The length-distribution of three kinds of sequences in the chromosomes of the two model species. 

Standard set Test set 
Genome class 

1st subset 2nd subset 3rd subset total 1st subset 2nd subset 3rd subset total 

Exon 15229 4723 2126 22728 14982 4868 2417 22267 

Intron 16130 3183 919 20329 16181 3405 870 20456 
A.thaliana 

Chr1~4 
Intergenic 6109 2525 1109 9747 6742 2490 1105 10337 

          

Exon 10507 4896 1002 16739 12214 4809 1034 18057 

Intron 12181 2859 2283 17354 13217 2935 2317 18469 
C.elegans 
Chr1~6 

Intergenic 5023 1446 1109 7617 5483 1598 1086 8167 

 
Table2. The results for test set with 64 and 184 signals of A. thaliana and C. elegans. 

A. thaliana C. elegans 
No. of 
signals 

Class of exon 

Sn (%) Sp (%) CC (%) Sn (%) Sp (%) CC (%) 

Exon 85 (95, 98) 94 (96, 95) 83 (92, 93) 73 (78, 88) 89 (95, 95) 70 (74, 89) 

Intron 85 (81, 73) 89 (91, 83) 78 (80, 73) 92 (75, 67) 87 (78, 87) 81 (66, 57) 64 

Intergenic 86 (92, 83) 65 (78, 80) 69 (79, 75) 66 (65, 78) 53 (41,50) 50 (39,47) 

        

Exon 84 (91, 94) 96 (98, 98) 84 (90,91) 73 (76,84) 92 (98, 98) 73 (76, 88) 

Intron 98 (98, 99) 88 (87, 79) 88 (88, 85) 99 (99,100) 90 (85,93) 91 (88, 92) 184 

Intergenic 88 (90, 84) 89 (94,95) 86 (90, 86) 79 (85, 87) 65 (63,90) 65 (67, 85) 

The number outside the bracket denotes the predicted results for the 1st subset. Two numbers in bracket, respectively, denotes the predicted results for 
the 2nd subset and the 3rd subset. 

Openly accessible at  
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Table 3. The results of prediction for three kinds of exons in A. thaliana and C. elegans genomes. 

A. thaliana C. elegans 
Methods Class of exon 

Sn (%) Sp (%) CC (%) Sn (%) Sp (%) CC (%) 

First coding exon 86 74 76 86 70 75 

Internal coding exon 93 93 77 96 97 81 
First choos-
ing method 

Last coding exon 82 96 87 87 98 89 

        

First coding exon 90 54 63 82 33 45 

Internal coding exon 68 95 55 62 96 38 
Second 

choosing 
method 

Last coding exon 89 56 64 87 34 48 

        

First coding exon 86 57 64 86 40 52 

Internal coding exon 74 94 58 74 96 50 
Third 

choosing 
method 

Last coding exon 88 62 69 88 49 61 

 
3.3. The Prediction of Three Kinds of   

Coding Exons 

For predicting three types of coding exons, a total of 
1000 first coding exons, 1000 internal coding exons and 
1000 last coding exons are randomly selected as training 
sets from gene sequences of A. thaliana and C. elegans. 
The remained sequences are regarded as the test sets. In 
order to eliminate the dependence of the predictive re-
sults on the training dataset, this selected procession 
repeat 10 times. 

According to Eq.(10), three types of coding exons 
using different information parameters are predicted. 
The results are shown in Table 3. As seen from Table 3, 
the first parameter-chosen method achieve best results 
among three kinds of parameters. 

4. DISCUSSION 

The recognition results of the exon, intron and intergenic 
sequence show that the Sn, Sp and CC values with 184 
parameters are higher than the results with 64 signals. 
For A. thaliana (A) and C. elegans (C), the average cor-
rect prediction rates of standard sets are 88.6% and 
88.2%, the average correct prediction rates of testing sets 
are 93.6% and 88.4%, respectively. Overall correct pre-
diction rates are 91.1% and 88.4%, respectively. 

For evaluating performance of proposed method, ex-
ons, introns and intergenic sequences of D. melano- 
gasters and S. cerevisiae were predicted using 184 pa-
rameters. The overall accuracies of 92.28% and 94.88% 
were achieved for D. melanogasters and S. cerevisiae, 
respectively. We also performed LIDA to predict coding 
regions and intergenic sequences of E. coli. The overall 
accuracy of 92.88% was achieved. 

Despite great progress, however, gene prediction en-
tirely based on DNA analysis is still far from perfect. In 
the recent comparison of gene-prediction programs, the 
best algorithms in two well-annotated regions could 
achieve sensitivities (a measure of the ability to detect 
true positives) and specificities (a measure of the ability 
to discriminate against false positives) of less than 95% 
and 90% for different genomes, respectively [44,45]. 

In our method, three kinds of sequences (exons, in-
trons and intergenic sequences) are simultaneously pre-
dicted. If considering the random effect, the correct pre-
diction rate for three kinds of sequences is only 2/3 of 
the correct prediction rate for two kinds of sequences 
(exons and introns). That is to say, if two types of se-
quences are simultaneously predicted, the random cor-
rection rate is 1/2; if three types of sequences are simul-
taneously predicted, the random correction rate is 1/3. 
Such as, 90% correct prediction rate for predicting two 
types of sequences is only same as 60% for predicting 
three types of sequences. So, same correct prediction 
rate in our result is higher than the correct prediction rate 
of two kinds of sequences in any other methods.  

The results of the prediction for the three types of 
coding exons indicate that the sensitivity (Sn), specificity 
(Sp) and correlation coefficient (CC) are the best by use 
of three bases before the 5’ boundary sites of exons and 
after the 3’ boundary sites of exons in three selections. 
Especially, the correlation coefficient (CC) is apparently 
higher in first choosing method than that in second and 
third methods. It is consistent with the highly conserved 
sequences near the ends of introns and the conserved 
GT-AG rule. The three kinds of coding exons have not 
been studied in other methods. 

In addition, according to the statistical analysis of se-
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quences in the region near splicing sites, we find there 
are some special preferences for certain bases. The re-
sults show that the sequence of the near splice site region 
is strongly conserved. Except the GT-AG rule, there is a 
strong bias of base G in the -4th site from the 3’ term of 
introns for A. thaliana genome, but the base T is biased 
in the same site for C. elegans genome. The stop codons 
of the two model species bias TAA, and the bases GT 
and AT are biased in the two sites after the stop codon 
for A. thaliana and C. elegans genomes, respectively. It 
may be a possible signal for stopping translation. The 
base A is biased at positions –4, –2 and –1 before trans-
lation start sites. And the bases G and A are respectively 
biased in the 4-th site after translation start sites (TSS). 
These biases may be relative to the translation start sig-
nals. In addition, the base bias of the 1-st sites of the 5’ 
term within internal coding exons and last coding exons 
is different for A. thaliana from C. elegans genomes. 
The base G is biased by the A. thaliana, base A is biased 
by C. elegans.  

By the further statistics of the base pairs in the bound-
ary region of exons, the first coding exons and internal 
coding exons in A. thaliana and C. elegans genomes are 
generally ended by AG. The internal coding exons and 
last coding exons in A. thaliana genome are generally 
started by GT, but the two exons in C. elegans genome 
are generally started by AT. It is possible additional in-
formation for splice sites. These results may be very 
useful to improve correct prediction rate of splice sites. 

5. CONCLUSIONS 

This paper proposed a novel algorithm-increment of 
diversity for gene structure prediction. This algorithm 
may be deduced from information entropy. It is well 
known that the mutual information can describe how to 
extract information regarding b from source a if the con-
ditional probability p(b|a) is known [33]. But ID is dif-
ferent from mutual information. It can describe incre-
ment of complication between two informational sources. 
Our prediction results also exhibit that ID is a promising 
method. 
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