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ABSTRACT 

Transcription Terminators (TTs) play an impor-
tant role in bacterial RNA transcription. Some 
bacteria are known to have Species-Specific 
Subsequences (SSS) in their TTs, which are be-
lieved containing useful clues to bacterial evolu-
tion. The SSS can be identified using biological 
methods which, however, tend to be costly and 
time-consuming due to the vast number of sub-
sequences to experiment on. In this paper, we 
study the problem from a computational per-
spective and propose a computing method to 
identify the SSS. Given DNA sequences of a tar-
get species, some of which are known to contain 
a TT while others not, our method uses machine 
learning techniques and is done in three steps. 
First, we find all frequent subsequences from the 
given sequences, and show that this can be effi-
ciently done using generalized suffix trees. Sec-
ond, we use these subsequences as features to 
characterize the original DNA sequences and 
train a classification model using Support Vector 
Machines (SVM), one of the currently most effec-
tive machine learning techniques. Using the pa-
rameters of the resulting SVM model, we define a 
measure called subsequence specificity to rank 
the frequent subsequences, and output the one 
with the highest rank as the SSS. Our experi-
ments show that the SSS found by the proposed 
method are very close to those determined by 
biological experiments. This suggests that our 
method, though purely computational, can help 
efficiently locate the SSS by effectively narrowing 
down the search space. 
 

1. INTRODUCTION 

Bacterial genomes are organized into units of expression 
that are bounded by sites where transcription of DNA 

into RNA is initiated and terminated. The former site is 
called Transcription Promoter, which determine what 
region and which strand of DNA will be transcribed into 
RNA. The later site is called Transcription Terminator 
(TT), which is a stop signal to terminate the transcription 
process [1]. 

Although the mechanism of transcription termination 
in bacteria is rho-independent, or intrinsic, the TTs in 
different bacteria have a common hairpin-like RNA 
structure as shown in Figure 1: typically a stem-loop 
structure with dyadic stempairing high in guanine (G) 
and cytosine (C) residue content, followed by a uracil- 
rich (U) stretch of sequence proximal to the termination 
site [2]. 

This particular RNA structure is encoded in the certain 
region of the corresponding DNA sequence. It is well 
known that the DNA sequences of some bacteria have 
species-specific subsequences (SSS) for the TTs. That is, 
the subsequence appears significantly more frequently in 
certain species than in others. For example, for bacte-
rium Neisseria Meningitidis, the SSS is GCCGTCTGAA, 
while for bacterium Haemophilus Influenzae, the SSS is 
AAGTGCGGT [3]. Having found many DNA sequences 
of TTs of many bacteria, biologists are wondering 
whether these bacteria also have such SSS. The biologi-
cal motivation behind is that the SSS might provide bet-
ter understanding of the terminator evolution and how it 
functions in genetic exchange between pathogens. 

Of course, the SSS can be determined by biological 
experiments. However, such experiments tend to be 
costly and time-consuming because every subsequence 
has to be examined and the number of such subse-
quences can be prohibitively large due to the length of 
the DNA sequences. To overcome the difficulty, biolo-
gists typically apply domain knowledge to narrow down 
the search space. However, the process of obtaining such 
knowledge itself would also be time-consuming and 
highly expensive if they are not available yet. Therefore, 
it is desirable to study alternative ways to effectively 
identify the SSS from the given DNA TT sequences. 



B. H. GU et al. / J. Biomedical Science and Engineering 2 (2009) 184-189            185 

SciRes Copyright © 2009                                                                   JBiSE 

 
Figure 1. The stem-loop structure of bacteria transcrip-
tion terminators. 

 
In this paper we consider the problem from computa-

tional perspective. We apply machine learning tech-
niques and propose a method to compute the SSS. Our 
method has three steps. In the first step, we finds out all 
frequent subsequences that occur more than a given 
threshold (or minimum support) by using generalized 
suffix tree. In the second step, we take the frequent sub-
sequences as features to vectorize the DNA sequences 
and train an SVM classifier. In the third step, we define a 
measure of subsequence specificity and output the most 
significant features based on the measure as the SSS. 
Our experimental results show that the SSS found by our 
method are very close to the known SSS for some well 
known bacteria. This demonstrates that the proposed 
method is effective in identifying the SSS. 

Our main contribution here is to introduce a machine 
learning approach to identifying the SSS. 

We have seen successful applications of machine 
learning and data mining approaches to other biological 
problems. However, to our best knowledge, this work is 
the first that applies machine learning techniques to this 
problem. An advantage of our method is that it does not 
require biological domain knowledge although such 
knowledge would further improve the accuracy. Besides, 
our method does not make any assumption specific to 
this particular problem, and thus is potentially applicable 
to other similar problems. 

Moreover, we also contribute to computing commu-
nity by trying out new ways of using classification tech-
niques. Traditionally, a classifier is used to predict class 
labels for future unseen examples. But in this paper, we 
use the classifier in two new ways: the tested precision 
of the trained classification model is used to judge 
whether there would be any SSS, and if so the feature 
weights contained in the model are used to rank the fea-
tures in the model. In a word, our method can be consid-
ered as a novel application of classification to computa-
tional biology. 

The rest of this paper is organized as follows: Section 
2 discusses related research. The detail of the proposed 
method is presented in Section 3. Section 4 describes the 

experimental method, results and discussions. Section 5 
summarizes this paper and points out our future work. 

2. RELATED WORK 

Given a bacteria DNA sequence, how to locate the seg-
ment corresponding to the RNA structure of TTs has 
been well studied in molecular biology and biochemistry. 
Interested readers are referred to [2] for research in this 
area. In this paper, we are dealing with a different prob-
lem: given DNA sequences that encode TTs of certain 
bacterium, find out whether there would be any subse-
quence specific to this bacterium and if so what it is. As 
far as we know, this problem has not been well studied 
in the literature of machine learning and data mining. 

Support Vector Machines (SVM) has been widely 
studied and applied in machine leaning [4] and data 
mining [5] since introduced by [6]. In recent years, it has 
been applied to solve classification problems in bio- 
computing. For example, it has been used in predicting 
outer membrane proteins of bacteria in [7] and remote 
protein homology detection in [2]. 

We notice that in these applications, SVM lassifiers 
are mainly used in a traditional way, in which the classi-
fier is built from training sequences and then applied to 
predicting the class labels of future unseen sequences. In 
our method, the classifier is used in a very different way: 
we use it as an indicator of whether there exist features 
sufficiently specific to distinguish the positive class from 
the negative class. If the precision of the classifier is 
much higher than the odds of making a random guess, 
we think this classification is good and reliable. Then we 
let the classifier to tell us which features are more im-
portant to the classification, based on which we then 
define the subsequence specificity measure to rank the 
subsequences. The most significant ones are reported as 
the SSS. 

In our method, the DNA sequences have to be con-
verted into vectors in the feature space solvable by SVM. 
The conversion is done by taking all frequent subse-
quences (frequent in terms of a predefined minimum 
number of occurrences) found in DNA sequences as 
features in the SVM feature space. This sort of conver-
sion is not new, and has proved to be a very effective 
way to express genome/protein sequences for classifica-
tion, because it is able to capture the sequential relations 
of the genome/protein sequences [7,8]. The frequent 
subsequences can be efficiently found by using general-
ized suffix trees. 

Suffix tree is a very useful data structure for string 
matching problem, and has been well studied and widely 
applied. Interested reader are referred to [9] for more details. 

3. THE PROPOSED METHOD 

Basically, we treat the target problem of finding SSS as a 
classification problem. The intuition is that if there exists 
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any subsequence specific to one species, then we should 
be able to build a good classifier to separate this species 
from others. Such a classifier should have contained the 
SSS as features. As SVM has the state-of-the-art per-
formance for classification, we will train the classifiers 
using SVM. 

In general, our method can be divided into three steps. 
In the first step, it finds out all frequent subsequences 
that occur more than a given threshold (called minimum 
support) by using generalized suffix trees. Second, it 
takes the frequent subsequences as features to vectorize 
the original DNA sequences for building the SVM clas-
sifier. If the precision of the classifier is higher than the 
odds of making a random guess, we think this is a good 
classification. Then we define a measure of subsequence 
specificity and output the most significant features based 
on the measure. We will describe each step in more de-
tail in the following subsections. 

3.1 Frequent Subsequences Generation 

Note that SVM requires the input data to be vectorized. 
In this paper, the training examples are given in the form 
of DNA sequences, which are basically strings of letter 
A, C, G and T, representing the four basic amino acids of 
DNA. In order to convert a DNA sequence into a vector 
format, we need a feature space. Here we use the fre-
quent subsequences to be the features, by which the 
original sequence are transformed. We hope that the 
subsequences can keep sufficient sequential information 
about the original DNA sequences. 

Here is a toy example: Given 3 DNA sequences, S1 = 
ACGT, S2 = CGTA, S3 = GTAC. If the minimum sup-
port=2 (i.e., a subsequences must appear at least twice to 
be considered as frequent), then the frequent subse-
quences are {A,C, G, T,CG,GT,AC}. 

It is a nontrivial task to find all frequent subsequences 
from thousands of DNA sequences, each of which may 
contain more than hundreds of letters, because the total 
number of frequent subsequences could be very large. 
Although any methods that can output frequent subse-
quences from the original sequences would work as long 
as they are computationally feasible. To make it efficient, 
we make use of generalized suffix tree [9]. Suffix tree 
has proved to be an effective data structure for finding 
common substrings in linear time and linear space in 
terms of the total number of letters in the given string. 
While a generic suffix tree is built for only one string, 
it can be easily generalized to contain multiple strings. 
The generalized suffix tree provides an efficient way 
to finding frequent subsequences in multiple DNA 
sequences. Interested readers are referred to the 
abovementioned references for details on (generalized) 
suffix tree algorithms. 

3.2 DNA Sequences Vectorization 

Having obtained frequent subsequences, we take each 

subsequences as a feature in the feature space, and con-
vert an original DNA sequence into a vector of the fea-
ture space. 

Readers familiar with text categorization may draw an 
analogy from this step to the text representation, by 
viewing a DNA sequence as a document and a frequent 
subsequence as a word. Similar to text categorization, 
we can have different codings to represent a DNA se-
quence using the frequent subsequences. In our later 
experiments, we mainly use the binary coding: if a se-
quence contains a subsequences feature, it is given value 
“1” on that feature, otherwise, the feature value is “0”. 
This expression, though simple, proves to be very effec-
tive. It is also possible to use other expression such as 
TFIDF [10]. 

Here is a toy example (continued): following the 
above toy example, the three sequences can be vector-
ized using the binary coding. Let the feature space be the 
frequent subsequences set {A,C, G, T,AC,CG,GT}, the 
sequence S1 = ACGT is converted to vector (1,1,1,1,1,1, 
1), S2 = CGTA becomes (1,1,1,1,0,1,1), and the se-
quence S3 = GTAC becomes (1,1,1,1,1,0,1). 

3.3 SVM Classification 

SVM is based on the structural risk minimization princi-
ple from statistical learning theory introduced by V. 
Vapnik [6]. 

In its basic form, SVM learns linear decision hyper-

plane  bxwsignxh )( , described by a weight vec-

tor w  and a threshold b. The input is a set of n training 

example ,)),(,),,(( 11
N

nnn RyxyxS     1,1 iy . 

For a linearly separable Sn, the SVM finds the hyper-
plane with maximum Euclidean distance to the closest 
training examples. This distance is called the margin δ, 
as depicted in Figure 2. For a nonlinearly separable Sn, 
the SVM uses either a kernel function to map the origi-
nal data into another dimensional space where the data 
points are linearly separable, or a hyperplane with a soft 
margin the allows some degree of training error in order 
to obtain a large margin. Computing the hyperplane is 
 

 

   Figure 2. A linear SVM for a two dimensional training set. 
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equivalent to solving an optimization problem. The re-
sulting model is actually the decision hyperplane, ex-

pressed by w  and b. 
Note that the resulting weights can be actually viewed 

as a ranking of the features: a positive (negative) weight 
means the corresponding feature values contribute to the 
positive (negative) class; the larger the absolute weight 
value, the more important the feature is to the classifica-
tion; weights of zero or very small values have little 
contribution to classification. Later we will use this 
ranking information to define what we call the measure 
of subsequence specificity. 

We decide to use SVM for classification because it 
has proved to have a number of advantages over other 
classification algorithms. First, it can easily handle very 
high dimensional input space [11]. Second, it works well 
when the problem contain few irrelevant features [11]. 
Third, it does not require feature selection as a preproc-
essing step, because it can automatically ignore irrele-
vant features during the optimization [11]. Fourth, the 
weights contained in the resulting SVM model can be 
used to rank the features. All these are essential to solv-
ing the target problem. 

In this paper, we use the popular SVM-light imple-
mentation of SVM [12]. Note that when training SVM 
classifier, one can select a kernel function suitable for 
the studied problem. Motivated by the fact that text 
documents are in general linearly separable [11], in our 
later experiments we only consider linear SVM model 
which is used by default in SVMlight. 

3.4 Measure of Good Classifiers 

Usually the performance of a classifier is measured by 
classification accuracy, precision and/or recall. They are 
defined based on a confusion matrix as shown in Table I. 
The Precision of the positive class is defined as P= 
TP=(TP+FP), while the Recall of the positive class is 
defined as R=TP/(TP+FN). The overall Accuracy is de-
fines as A=(TP+TN)/(TP+FP+TN+FN). In our method, 
the performance of SVM classifier is not measured by 
the overall accuracy, because negative training se-
quences would be much more than those positives, and 
the overall accuracy would be heavily affected by the 
overwhelming negatives. 

Besides, as our goal is to identify the specific subse-
quences in positive species, we hope to maximize the 
precision (i.e., the probability of the classifier making a 
correct prediction is high). Therefore, we will only use 
precision as the measure of classifier’s performance. At 
the same time, we will report corresponding recalls for 
reference. Note that the precision of the classifier should 
be higher than the odds that one makes a random guess 
for the positive class label, in order to be considered as a 
good classification. Otherwise, the classifier does not 
make sense. For example, if a training data set contains 

Table 1. Confusion matrix in classification. 

 
Actual number of 
positive examples 

Actual number of 
negative examples 

Number of examples 
classified as positive

True Positive (TP) False Positive (FP) 

Number of examples 
classified as negative

False Negative (FN) True Negative (TN) 

 
100 positive examples and 100 negative examples, if one 
randomly guesses for the class label of any of the 200 
examples, the probability of making a correct guess is 
obviously 50%. If a classifier than a random guess, then 
the classifier is useless. A bad classification may suggest 
that the information contains in the training examples is 
probably insufficient for the classifier to distinguish the 
positive examples from the negative examples. 

In our method, we take this as an indication that the 
positive species probably contains no SSS. In other 
words, we consider a classifier is good only when its 
precision is much higher than the random guess odds. In 
our later experiments, the precision is obtained by test-
ing against a reserved portion of the total data, which is 
unseen during the classifier is trained. 

3.5 Subsequence Specificity Measure 

Note that the resulting classifier will not be used as usual 
to predict class label for an unseen sequence. Remember 
the task here is to identify the SSS. For this purpose, we 
make use of the weights of features in the SVM model, 
to define what we call subsequence specificity to meas-
ure how specific a subsequence f is to the positive spe-
cies as follows: 

spec(f)=svm_weight(f)×support(f,+) 
×confidence(f,+). 

here weight (f) is the weight of feature f obtainable from 
the learned SVM model, support (f,+) is a measure of 
how many sequences of positive species contain f, and 
confidence(f,+) is a measure of how many sequences 
that contain f belong to positive species. 

The definition of the subsequence specificity is based 
on the following observations and expectations: 

1) An SSS should occur frequently in the positive 
species. This means it should have a high support. 

2) An SSS should occur more frequently in the posi-
tive species than in the negative species. This means it 
should have a high confidence. 

3) Having a high support and/or a high confidence 
does not necessarily mean a high distinguishing power, 
while this can be reliably judged by the feature weights 
in SVM model. 

4) SVM may give more weight on features having low 
support and/or confidence. This means the weights alone 
are insufficient to measure the specificity. 

5) Each of the three quantities alone characterizes the 
subsequence specificity from an unique angle. Combing 
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them together should be able to give a more accurate 
characterization of the specificity, and thus is expected 
to be a more reliable measure. 

4. EVALUATION 

4.1 The Data Set 

The data set used in this project is provided by the Brink-
man Libratory of SFU Molecular Biology and Biochemis-
try Department. It contains known rho-independent tran-
scription terminator sequences for 42 bacteria genomes. 
The source of the data set is The Institute for Genomic 
Research (TIGR). Each record of the data set contains one 
terminator sequence (including left tail, stem and loop, and 
right tail) and the taxonomy id of the corresponding bacte-
rium. The total number sequences is 12763, and 18 species 
have less than 100 terminator sequences. 

Besides, we are also provided with a file containing 
the taxonomy information of all bacteria species. Figure 
3 shows the taxonomy tree for the 42 bacteria, obtained 
from the file. The tree shows the evolution paths for the 
42 bacteria. Each node in the tree represents a bacterium 
species, and marked by its taxonomy id. The leaf nodes 
are enclosed by a parenthesis. Note that among the 42 
bacteria, 41 are at leaf nodes, except species 562, which 
has species 83334 as its children. This is the only pair of 
species that has a direct parent-children relationship in 
the given data set. 

The task is to identify those DNA subsequences that 
are specific to certain species. The hope is that this 
should provide a better understanding of bacteria evolu-
tion and how it plays a role in genetic exchange be-
tween pathogens. Note that for a given species, it does 
not necessarily have any subsequences specific to it. 
Also, when talking about the specificity, one should 
consider the corresponding scope. That is, with respect 
to which species a subsequence is considered specific. 
For example, a subsequence can be specific to bacte-
rium A with respect to another bacterium B. Also, the 
subsequence can be specific to bacterium A with respect 
to all other bacteria. 

Among the 42 species, we evaluate our methods on 
four bacteria whose SSS for the TTs are already known 
biologically. The four species are: Haemophilus influ-
enzae, Neisseria meningitidis, Pasteurella multocida, 
and Pseudomonas aeruginosa [3]. As the SSS for the 
four bacteria are all found in the left inverted repeat (i.e., 
the left stem) of corresponding TTs, we will also use the 
left stem of each TT sequence to find the SSS. For each 
of the four species, we employ the one-against- 
all-others approach to build classifier by taking all its 
TT sequences (the left stems) as positive sequences 
while those of the other 41 species as negative se-

uences. q

4.2. Experimental Methodology 

All experiments are done using 5-fold cross validation. 
Averaged values over the five round experiments are 
reported. The linear classifiers are trained using SVM- 
light default settings. The frequent subsequences are 
obtained from the positive training sequences by setting 
the minimum support to be 1% of the total number of 
positive sequences (and the absolute support number no 
less than 2). These frequent subsequences represent sta-
tistically significant features with regard to the positive 
species, while resulting in substantially lower dimen-
sions compared to the feature space of all potential sub-
sequences. The classification performance is evaluated 
by the precisions, while the corresponding recalls are 
reported for reference. 

4.3 Experimental Results 

The results are given in Table II, from which we can see 
that the precisions for all the four species are signifi-
cantly higher than the respective random guess odds. 
This implies that there are subsequence features that can 
distinguish the positive species from all the others. We 
then output the top 10 subsequences based on the sub-
sequence specificity measure. The results are given in 
Table 2. In Table 3, the resulting subsequences that are 
the closest to the known SSS are underlined. 

We can see that for species Pasteurella multocida and 
Pseudomonas aeruginosa, the underlined subsequences 
are exactly the same as the known SSS. For the Haemo-
philus influenzae and Neisseria memingitidis, our results 
are very close to the known SSS: the underlined ones are 
very close to the known SSS. In all cases, our top 10 
subsequences are almost the substrings of the known 
SSS. This shows that our method is rather effective in 
finding SSSs. Note that the known SSS are found by 
applying biological domain knowledge [3], for example, 
discarding those biologically meaningless subsequences 
and/or limiting the length of the subsequences, which is 
not considered in our method. Therefore, it can be ex-
pected that our method can be improved by incorporat-
ing domain knowledge. 
 
Table 2. Classification performance for the four bacteria. 

Name of the 
Positive 
Species 

# of Freq 
Subseq 

Classifier 
Precision 

Classifier
Recall 

Odds of
Random 
Guess 

Haemophilus
influenzae 

325 55.81% 14.18% 3.19% 

Neisseria 
meningitidis 

360 99.61% 50.67% 3.62% 

Pasteurella 
multocida 

389 48.0% 1.09% 3.73% 

Pseudomonas
aeruginosa 

296 67.77% 9.34% 4.28% 
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Table 3. The top 10 subsequences with the greatest specificity values for the four species. 

The Subsequences found for each Bacterium Top spec 
rank Haemophilus Influenzae Neisseria meningitidis Pasteurella multocida Pseudomonas aeruginosa 

     
1 TGCGGT GCCGTC TGCGGTC GCCCCGC 
2 GTGCGGT CGTCTG GTGCGGTC CCCCGC 
3 GTGCGG CGTCTGA ACCGCAC GCCCCG 
4 CGCACTT CGTCTGAA CCGCAC CCCGC 
5 CCGCACT GCCGTCT TGCGGT GCCCC 
6 CCGCACTT CCGTCTG GTGCGGT CCCGGC 
7 GCGGT CCGTCTGA GCGGTC GCCC 
8 CGCACT CGTCT GGCGAA GCC 
9 TGCGG CCGTCTGAA ACCGCA GGCGACC 

1  0 TGCGGTT GTCTGA CGGTC GGC     
actual SSS AAGTGCGGT GCCGTCTGAA GTGCGGT GCCCCGC 

 
5. CONCLUSION 

In this paper, our goal is to find the species-specific 
subsequences for bacteria transcription terminators. By 
treating the problem as a classification problem, we 
propose a solution based on frequent subsequences and 
Support Vector Machines. We first find frequent subse-
quences from the terminator DNA sequences of the posi-
tive species. We then take all such subsequences as fea-
ture space to transform the original DNA sequences into 
SVM readable vectors and train SVM classifiers. The 
resulting classifiers are used indicators of the existence 
of the SSSs. In order to extract the target subsequences 
from the SVM model, we make use of the SVM weights 
on the features and define a measure called subsequence 
specificity. The most significant features based on the 
measure are output as the SSS. Our experiments show 
that this method is effective. As a conclusion, we have 
presented a novel application of classification to compu-
tational biology. 

Although the proposed method is designed and evalu-
ated on DNA terminator sequences of bacteria, we be-
lieve that it is applicable to other similar biology tasks 
with perhaps minor modifications. As for future work, it 
is desirable to evaluate the proposed method on more 
bacteria. Besides, the proposed method itself can be im-
proved in many ways. For example, to refine the speci-
ficity measure to make it more accurate, and to find bet-
ter methods to express DNA sequences for classification. 
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