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Abstract 
In this article we introduce a large class of optimization problems that can be approximated by 
neural networks. Furthermore for some large category of optimization problems the action of the 
corresponding neural network will be reduced to linear or quadratic programming, therefore the 
global optimum could be obtained immediately. 
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1. Introduction 
Many problems in the industry involved optimization of certain complicated function of several variables. Fur-
thermore there are usually set of constrains to be satisfied. The complexity of the function and the given con-
strains make it almost impossible to use deterministic methods to solve the given optimization problem. Most 
often we have to approximate the solutions. The approximating methods are usually very diverse and particular 
for each case. Recent advances in theory of neural network are providing us with completely new approach. This 
approach is more comprehensive and can be applied to wide range of problems at the same time. In the prelimi-
nary section we are going to introduce the neural network methods that are based on the works of D. Hopfield, 
Cohen and Grossberg. One can see these results at (section-4) [1] and (section-14) [2]. We are going to use the 
generalized version of the above methods to find the optimum points for some given problems. The results in 
this article are based on our common work with Greg Millbank of praxis group. Many of our products used 
neural network of some sort. Our experiences show that by choosing appropriate initial data and weights we are 
able to approximate the stability points very fast and efficiently. In section-2 and section-3, we introduce the 
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extension of Cohen and Grossberg theorem to larger class of dynamic systems. For the good reference to linear 
programming, see [3], written by S. Gass. The appearance of new generation of super computers will give neural 
network much more vital role in the industry, machine intelligent and robotics. 

2. On the Structure and Applicationt of Neural Networks 
Neural networks are based on associative memory. We give a content to neural network and we get an address 
or identification back. Most of the classic neural networks have input nodes and output nodes. In other words 
every neural networks is associated with two integers m and n. Where the inputs are vectors in nR  and outputs 
are vectors in mR . neural networks can also consist of deterministic process like linear programming. They can 
consist of complicated combination of other neural networks. There are two kind of neural networks. Neural 
networks with learning abilities and neural networks without learning abilities. The simplest neural networks 
with learning abilities are perceptrons. A given perceptron with input vectors in nR  and output vectors in mR , 
is associated with treshhold vector ( )1 2, , , mθ θ θ  and m n×  matrix ( ),i jw . The matrix W is called matrix of 
synaptical values. It plays an important role as we will see. The relation between output vector  

( )1 2, , , mO o o o=   and input vector vector ( )1 2, , , nS s s s=   is given by ( ),1
k n

i i k k iko g w s θ=

=
= −∑ , with g a  

logistic function usually given as ( ) ( )tanhg x xβ=  with 1 0β> >  This neural network is trained using 
enough number of corresponding patterns until synaptical values stabilized. Then the perceptron is able to 
identify the unknown patterns in term of the patterns that have been used to train the neural network. For more 
details about this subject see for example (Section-5) [1]. The neural network called back propagation is an 
extended version of simple perceptron. It has similar structure as simple perceptron. But it has one or more 
layers of neurons called hidden layers. It has very powerful ability to recognize unknown patterns and has more 
learning capacities. The only problem with this neural network is that the synaptical values do not always 
converge. There are more advanced versions of back propagation neural network called recurrent neural network 
and temporal neural network. They have more diverse architect and can perform time series, games, forecasting 
and travelling salesman problem. For more information on this topic see (section-6) [1]. Neural networks 
without learning mechanism are often used for optimizations. The results of D.Hopfield, Cohen and Grossberg, 
see (section-14) [2] and (section-4) [1], on special category of dynamical systems provide us with neural 
networks that can solve optimization problems. The input and out put to this neural networks are vectors in mR  
for some integer m. The input vector will be chosen randomly. The action of neural network on some vector 

1
mX R∈  consist of inductive applications of some function : m mf R R→  which provide us with infinite 

sequence 1 2, , , ,nX X X  . where ( ) ( )1
1 1

n
n nX f X f X−

−= = . And output (if exist) will be the limit of of the 
above sequence of vectors. These neural networks are resulted from digitizing the corresponding differential 
equation and as it is has been proven that the limiting point of the above sequence of vector coincide with the 
limiting point of the trajectory passing by 1X . Recent advances in theory of neural networks provide us with 
robots and comprehensive approach that can be applied to wide range of problems. At this end we can indicate 
some of the main differences between neural network and conventional algorithm. The back propagation neural 
networks, given the input will provide us the out put in no time. But the conventional algorithm has to do the 
same job over and over again. On the other hand in reality the algorithms driving the neural networks are quite 
massy and are never bug free. This means that the system can crash once given a new data. Hence the con- 
ventional methods will usually produce more precise outputs because they repeat the same process on the new 
data. Another defect of the neural networks is the fact that they are based on gradient descend method, but this 
method is slow at the time and often converge to the wrong vector. Recently other method called Kalman filter 
(see (section-15.9) [2]) which is more reliable and faster been suggested to replace the gradient descend method. 

3. On the Nature of Dynamic Systems Induced from Energy Functions 
In order to solve optimization problems using neural network machinery we first construct a corresponding 
energy function E, such that the optimum of E will coincide with the optimum point for the optimization 
problem. Next the energy function E, that is usually positive will induce the dynamic system EL . The 
trajectories of EL  will converge hyperbolically to local optimums of our optimization problem. Finally we 
construct the neural network ENN  which is the digitized version of EL , where depending on initial points it 
will converge to some local optimum. As we indicated in section-1, certain category of dynamic system which is 
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called Hopfield and its generalization which is called Cohen and Grossberg dynamic system will induce a 
system of neural networks that are able to solve some well known NP problems. More recently the more 
advanced dynamic systems based on generalization of the above dynamic systems been used in [4] to to solve or 
prove many interesting problems including four color theorem. In the following sequence of lemmas and 
theorems, we are going to show that if the dynamic system L satisfies certain commuting condition, then it can 
be induced from an energy function LE , which is not usually positive and all its trajectories converge 
hyperbolically to a corresponding attractor points. Furthermore the attractor corresponding to the global opti- 
mum is located on the non trivial trajectory. Note that the energy function that is induced from optimization 
scenario is always positive and the corresponding dynamic system GL , is a commuting dynamic system. 

Suppose we are given dynamic system L, as in the following, 

( ) ( )1 2d d , 1,2, , , , , , n
i i nx t Q x i n x x x x R= = = ∈   

Also the above equation can be expressed as 

( )d dx t Q x= . 

Definition 2.1 We say that the above system L satisfies the commuting condition if for each two indices  
1 2, 1, 2,ki n k i i≤ = ≠  we have 

1 2 2 1i i i iQ x Q x∂ ∂ = ∂ ∂ . 

This is very similar to the properties of commuting squares in the V.Jones index theory [5]. 
The advantage of commuting system as we will show later is that each trajectory ( )

0xX t  passing through an 
initial point 0

nx R∈ , will converge to the critical point x∞ , and x∞  is asymptotically stable. 
In particular note that if the dynamic system is induced from an energy function E, then the induced neural 

network EN , is robot and stable. In the sense that beginning from one point 0
nx R∈ , the neural network will 

asymptotically will converge to a critical point. This property plus some other techniques make it possible to 
find the optimum value of E. The following lemma will lead us to the above conclusions. 

Lemma 2.2 Suppose the dynamic system L has a commuting property. Then there exists a function ( )LE x  
acting on nR  such that for every integer i n≤  we have 

( )d dL i i iE x x t Q x∂ ∂ = − = − . 

Furthermore for every trajectory 
0xX , d d 0LE t ≤  and d d 0LE t =  only on the corresponding critical point 

x∞  on which ( )d d 0LE t Q x∞= = . 
Proof Let us pick up an integer i n≤ . Next define ( )dL i iE Q x x= −∫ . Then for any integer ,j n j i≤ ≠ , we  

have ( ) ( )d d d dL j i j i j i i j jE x Q x x Q x x Q x t∂ ∂ = − ∂ ∂ = − ∂ ∂ = − = −∫ ∫ . finally we have, 

( ) ( )2
1 1d d d d d d 0i n i n

L L i i ii iE t E x x t x t= =

= =
= ∂ ∂ = − ≤∑ ∑ . 

And the equality holds, i.e. d d 0LE t =  only on the critical point x∞  on which d d 0LE t = . Q.E.D. 
But the problem is that the induced LE  in Lemma 2.2 is not always a positive function. In the case that LE  

is a positive function we have the following lemma. 
Lemma 2.3 Following the notation as in the above suppose L is a commuting system and that 0LE ≥  is 

analytical function. Next let nx R∞ ∈  be the critical point for the system L which is on non trivial trajectory 
with ( ) 0LE x∞ = . Then x∞  is asymptotically stable. 

Proof. Following the definition of Liaponov function and using Lemma 2.2, the fact that ( ) 0LE x∞ =  
implies that regarding to the trajectory passing through x∞ , it is asymptotically stable. Q.E.D. 

There are some cases that we can choose LE  to be a positive function as we will show in the following 
lemma. 

Lemma 2.4 Keeping the same notations as in the above, suppose that there exists a number Rα ∈ , such that 
( )LE xα ≤  for all nx R∈ . Then there exists a positive energy function LF  for the dynamic system L. 

Proof. Let us define LF  acting on nR  by ( ) ( )L LF x E x α= − . Then LF  is a positive function. Furthermore  
d dL i i iE x x t Q∂ ∂ = − =  and over the trajectories d d 0LE t ≤ , it is equal to zero only over the attracting points. 

This will complete the proof of the lemma. Q.E.D. 
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Lemma 2.5 Let L be a commuting dynamic system. Let 0LE ≥  be the induced energy function. Then if 
nx R∞ ∈  is a point on a non trivial trajectory on which LE , achieves an optimum α , then the trajectory 

passing through x∞  will converge asymptotically to x∞ . 
Proof Set ( ) ( )L LF x E x α= − , then using Lemma 2.4 LE  is an energy function for L and since  
( ) 0LF x∞ =  we are done. Q.E.D. 

Suppose L is a commuting dynamic system. Let 0LE ≥  be an induced energy function. The main goal of the 
corresponding neural network LN  is to reach a point nx R∞ ∈  at which LE  will get its optimum value. In 
Lemma 2.5, we proved that any non trivial trajectory passing through x∞  will converges to x∞  asymptotically. 
In the following we show that in general the above property holds for any attracting point of commuting dy- 
namic systems. 

Lemma 2.6 Suppose L is a commuting dynamic system and x∞  an attractive point. Then the trajectory 
passing through x∞  will converge asymptotically to x∞ . 

Proof Let ( )LE xδ ∞= . Next define the function LF  acting on nR , by ( ) ( )( )2
L LF x E x δ= − . In order to  

complete the proof we have to show that with regard to the trajectory ( ),X t x∞  passing through ∞x , ( )LF x  
is a Liapunov function. For this it is enough to show that d d 0LF t < . But  

( )( ) ( )( )( )2
d d d d 2 , d dL L L LF t E x t E X t x E tδ δ∞= − = − . Finally the fact that ( )( ), 0LE X t x δ∞ − >  implies  

that d d 0LF t <  and this complete the proof. Q.E.D. 
Suppose L is a commuting dynamic system and x∞  is a point on some non trivial trajectory at which LE  

reaches its infimum. We want to find a conditions that guarantees the existence of a non trivial trajectory passing 
through x∞ . 

Definition 2.6 Keeping the same notation as in the above, for a commuting dynamic system L, we call 0LE ≥   
canonical if for each critical point x∞ , with ( ) 0LE x∞ = , we have ( ) 2limx x L iiE x Q

∞→ < ∞∑ . 

Before proceeding to the next theorem let us set the following notations. 
Let ( ),nC x R xδ δ= ∈ =  and ( ),nO x R xδ δ= ∈ ≤ . Furthermore for nx R∈ , let ,x Cδ δ∈  be the first  

point at which the trajectory ( ),X t x  will intersect Cδ . 
Lemma 2.7 Following the above notations suppose without loss of generality, 0x∞ = , and that there is no 

trajectory passing through a point ∞≠ xx  and converging to x∞ . Then there exists 0ρ >  and a sequences  
( )0 , 1, 2,i i→ =   and ( ), 1, 2,

i i
x O i∈ =   , such that for each i N∈ , ( ),

i
X t x  will intersect Cρ  first 

time at the point ,i
x Cρ ρ∈ . 

Proof. Otherwise for each 0ρ > , there exists a positive number 0ρ >  such that for any positive number  

ρ<  , and a point x O∈  , the trajectory ( ),X t x  will lie in Oρ . This implies the existence of the sequence 

( ) , 1, 2,jy j =   converging to x∞ , such that for each j N∈ , ( ) 0,L j iE y x i N∂ ∂ = ∈ . hence assuming that  

LE  is analytic this implies that ( ) 0LE x =  which is a contradiction. Q.E.D. 
Theorem 2.8 Keeping the same notation as in the above, suppose we have a commuting system L, with the 

induced energy function LE , being canonical. Suppose there exists a point nx R∞ ∈ , with ( ) 0LE x∞ = . Then 
there exists a non trivial trajectory ( )X t , converging to x∞ . 

Proof. Suppose there is no non trivial trajectory passing through x∞ . Next for any 0> , let us choose nx R∈ , 
with x x− <  . Furthermore let ( ),X t x , be the trajectory through the point x . Now let ρ , and  

, 1, 2,i i =   be as indicated at Lemma 2.7. Next for j N∈ , consider ( ),
j

X t x , passing through 
j

x . Let  

,j
x ρ  be the first point at which ( ),

j
X t x  intersect Cρ . We have, 

( )( ) ( )( ) ( )( )2d , d , ,
j j jL i iE X t x t Q X t x G X t x= Σ =   . Now consider the trajectory ( ),

j
X t x . Let us denote by  

,j
t ρ , the time at which the trajectory ( ),

j
X t x  arrives at ,j

x ρ . This implies,  

( )( ) ( )( ) ( ) ( ) ( )( ),
, , 0

, 0, , dj

j j j j j j

t t
L L L L t

E X t x E X x E x E x G X t x tρ
ρ ρ

=

=
− = − = ∫



      . 
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Thus, applying mean value theorem implies 

( ) ( ) ( )( ), ,,
j j j jL LE x E x G X x tρ ρτ− =    , with ( ),0,

j
t ρτ ∈  .                    (1) 

To complete the proof of the Theorem 2.8, we need the following lemma. 
Lemma 2.9 Keeping the same notations as in the above then there exists a 0ω >  such that for j N∈  large 

enough, there exists a positive number 0α > , with the property that for every ( )j i∈  , j, large enough,  
,0

j
t ω α< < . 

Proof. Otherwise there exists a sequence of numbers ( ) , 1, 2,k kω =   such that 0kω →  as k →∞ , where 
for each k N∈ , we have ,i k

t ω → ∞  as i →∞ . Thus considering the Equation (1), and the fact That for the  

indices ,i j  large enough we have ( ),
j jX t x ω< , ( ),0,

i j
t t ω∈  , we can write, 

( )( ) ( )( ), , , ,
i j i j i iLt E X t x G X xω ω ε τ=   , 

( ),0,
i j

t ωτ ∈  . 

This using the fact that LE  is canonical will lead to contradiction. Q.E.D 
To complete the proof of theorem 2.8, note that for every point 

i
x , the points located on the trajectory  

( ), iX t  , can be expressed as a continuous function ( ),x tΦ  , of x  and t. The function ( ),x tΦ   acts on the 
set [ ]0,Cω α⊗ , which is a compact set. Hence there exists a number Length such that  

( )( ) ,

,
0

, i

i i

t t

t
L Length X t x Length

ω

ω

=

=
= <



   for all i N∈ . Next for each k N∈  we divide ( ),
i

X t x  into 2k  part  

each of length equal to , 2
i

kL ω . Let us define the following points, , ,1 , ,2 , , , ,2
, , , , , kii k i k i k m i k

p x p p p=    be the  

points corresponding to the above partitions. Furthermore consider the following countable set of points.  
( ), , 0, ,

, , 1, 1, 2, , 2k
i k m i k m

Q p i i k m= > > =  . Furthermore for each triple ( ), ,i k m , let us define a point ,k mp  to 

be a limit point of the set ( ), , , 1i k m i
p i > . Finally consider the following set ( ), ,

, 1, 1, 2, , 2k
k m k m

S p k m= > =  .  

Then the set S −  the closure of S in nR  is an non trivial trajectory passing through x∞  But this is a con- 
tradiction to our assumption. Q.E.D. 

Lemma 2.10 Keeping the same notations as in the above, suppose for a given commuting system L the 
induced energy function LE  is positive function. Then LE  is canonical. 

Proof. If LE  is not canonical then there exist an increasing sequences of positive numbers, ( )iα →∞  as  
i →∞ , and ( ) 0i →  as i →∞ , such that for each i N∈ , there exists a point i nu R∈ , at the distance of less  
than i  from u∞  with ( ) ( )2

1
k ni

L k i ikE u Q u α=

=
=∑ . 

Next we can assume that there exists a line ( )U t  in nR  connecting sequence of points iu  to the limiting  
point u∞ , such that ( )1 i

iU u= . But ( ) ( )d dL i i j jE Q u u Q u u= =∫ ∫ , thus using Hopital lemma,  

( ) ( )( ) ( )2 2lim lim d d d dt L i t L ii iE u Q E u t Q tχ →∞ →∞= =∑ ∑ . 

Let us set ( ) 2
iig u Q= ∑ . Then by the above, ( ) ( ) ( )2lim limt L i tiE u Q g u g u→∞ →∞ ′=∑ . Next if  

( ) ( )lim 0 0t g u g u→∞ ′ = , then using Hopital lemma we have, ( ) ( )( )limt g u g uχ →∞
′′′= . continue this process 

suppose using induction that ( )( ) ( )( )1 1lim d d d d 0 0m m m m
t g u t g u tχ + +
→∞= = , then we get by Hopital lemma, 

( )( ) ( )( )1 1 2 2lim d d d dm m m m
t g u t g u tχ + + + +
→∞= . 

Now if for each m N∈ , ( )( )lim d d 0m m
t g u t→∞ = , then using the fact that ( )( )g u t  is analytic function we  

get that ( ) 0g t = . which is a contradiction. Hence there exists an integer m N∈ , such that  
( )( )lim d d 0m m

t g u t→∞ =  but ( )( )1 1lim d d 0m m
t g u t+ +
→∞ ≠ . Therefore the above arguments imply that  

( ) 2lim 0t L iiE u Qχ →∞= =∑ , and this is a contradiction to the assumption. Q.E.D. 
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As a result of the Lemma 2.10 we get that if 0LE ≥  the system L is always canonical, hence we have the the 
following corollary, Corollary 2.11 Keeping the same notations as in the above, The results of Theorem 2.8 holds 
as long as 0LE ≥ .  

At this point we have to mention that non trivial trajectories will supply us with much more chance of hitting 
the global optimum, once we perform a random search to locate it. 

For some dynamic systems L which is expressed in the usual form ( )d dx t Q x= , the commuting condition 
does not hold. For example consider the Hopfield neural network and its corresponding dynamic system, 

( ),1d d , 1, 2, ,j n
i i i j jju t u w g u i n=

=
= + =∑  , 

where ( ) ( )tanhg x x= . It is clear that the above system does not posses commuting properties. Let us multiply 
both side of the i'th equation in the above by ( ) ( )d di i ig u u g u′= , to get the dynamic system 1L , given in the  

following as, ( ) ( ) ( ) ( )( ),1d d j n
i i i i i j jju t g u g u u w g u=

=
′ ′= − +∑ , therefore we get, 

( ) ( )( ) ( )( )2
,1d d 1 j n

i i i i j jjg u t g u u w g u=

=
= − − +∑                         (2) 

Let us denote ( )1,i iu g u=  and 1, 1,d di iQ u t= , the the dynamic system 1L  can be expressed as  

1 1d du t Q= . 

It is clear that if ( )iU t  is a trajectory of the system L, and provided ( ) 0ig u′ ≠ , then ( )iU t  is a trajectory 
of system 1L  too. Now the commuting property holds for the right side of Equation (2), hence using the same 
techniques as before we can construct the energy function ( )E u  for the system (2) such that, ( ) 1,i iE u u Q∂ ∂ = − , 
furthermore we have 

( )( ) ( )( ) ( )22
1d d 1 d di n

i iiE u t t g u u t=

=
= − −∑ . 

This implies that d d 0E t <  except on the attractive points. Now by the results of the Lemma 2.3, this implies  
that for any trajectory ( )0,U t u , the convergent asymptotically to the corresponding attractive point u∞ . 

As we mentioned before more generalized version of Hopfield dynamic system which is called Cohen and 
Grossberg dynamic system is given as in the following. 

( ) ( ) ( )( ),1d d , 1, 2, ,j n
i i i i i i j j jju t a u b u c g u i n=

=
= − =∑                       (3) 

where the set of coefficients ( ), , , 1, 2, ,i jc i j n∈  , will satisfy, , ,i j j ic c= . Furthermore  
( ) ( )0, 0, 1, 2, ,i i i ia u g u i n≥ ≥ =  . 
Likewise the system (2), system (3) is not a commuting system. But if we multiply both side of the ith 

equation in system (3) by ( )i ig u′  then we get a dynamic system where its right side is commuting. Hence each 
of the trajectories converge asymptotically to corresponding attracting point. 

4. Reduction of Certain Optimization Problems to Linear or Quadratic  
Programming 

In solving optimization problems using neural network we first form an energy function ( )E u , corresponding to 
the optimization problem. Next the above energy will induces the dynamic system L that its trajectories 
converge to local optimum solutions for the optimization problem. 

Given the energy function ( )E u  acting on nR , the induced dynamic system L is given in the following, 
d di i iu t E u Q= −∂ ∂ = . 

As we showed L is a commuting system. 
As an example consider the travelling salesman problem. As it has been expressed in section 4.2, page 77 of 

[1] the energy function E is expressed as in the following, 

( )( ) ( ) ( )2 2

, , , 1 , 1 , ,, , 1 1 1 10.5 0.5 1 1k n i n i n k n
i j i k j k j k i k i ki j k k i i kE d u u u u uγ = = = =

+ − = = = =
 = + + − + − 
 

∑ ∑ ∑ ∑ ∑  

where we are represent the points to be visited by travelling salesman as ( ) , 1, 2, ,i i
p i n=   and the distance of 
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point ip  to the point jp  by ,i jd . Since in solving optimization problems using neural network we are 
interested in variables that are of 0 or 1 nature therefore let us define new set of variables by, 

( ), , , 1, 2, ,j kv j k n=  , ( )( ), 0 ,1 2 tanh 1j k j kv uλ= + . 

Thus the dynamic system L corresponding to E, can be written as in the following, 

( )( ), , , , , , 1 , , , 11d d 2l n
j k j k j l j l j l l k l k j l l klE u v t d u d u u d uγ γ γ γ=

+ −=
∂ ∂ = − = − + + + −∑  

As we proved the point at which E reaches its optimum is a limiting point u∞ , of a trajectory belonging to the 
dynamic system L. as given in the above. 

Next as we had,  
( )( ) ( )2

, , 0 0 , , , , , , 1 , , , 11
d d 2 1 tanh d d l n

j k j k j k j k j l j l j l l j l j j l l jl
v t E u u y t d y d y y d yλ λ γ=

+ −=
= −∂ ∂ = − = + + +∑ . 

But ( ) ( )( ), 0 0 , ,d d 2 1 tanh d dj k j k j ku t v v tλ λ= −  hence we get the following dynamic system 1L , 

( )( ), , , , , 1 . , , 11d d 2l n
j k j l j l j l l k l k j l l klu t d u d u u d uγ γ γ γ=

+ −=
= + + + −∑ . 

Thus as we showed the system 1L  is a commuting system and its critical points coincides with the critical 
points of the system L. 

Now consider the following set of variables , , , 1, 2, ,i jy i j n=  , , , ,i j i j i jy u q= − , where we choose the set 
, , , 1, 2, ,i jq i j n=  . to satisfy, 

( ), , , , 1 , , , 11 2, , 1, 2, ,l n
j l j l j l l s l s j l l sl d q d q q d q j s nγ γ=

+ −=
+ + + = =∑  . 

Hence we will have the following set of equations, 

( ), , , 1 , , 1 ,1
1, , 1, 2, ,l n

j l j l l s l s l s j ll
q d q q q d j s nγ γ=

+ −=
+ + + = =∑  . 

Replacing ,j ku  by ,j ky  in equations of system 1L  implies, 

( )( ), , , , , 1 , , , 11
d d l n

j k j l j l j l l s l s j l l sl
y t d y d y y d y γ=

+ −=
= − + + +∑ . 

But , 0j ky →  as, t →∞ , which implies that, , ,j k j ku q→  as t →∞ , hence this implies that the above  
equations together with the optimality of the expression ( ), ,

, , , 1 , 1, , , 1

i j k n
i j i k j k j ki j k

F d u u u=
+ −=

= +∑  is a system of  

quadratic linear programming that will give us the optimum value much faster that usual neural network. In fact 
this method can be applied to many types of optimization problems which guaranties fast convergent to desired 
critical point. 

Let us consider the Four color Theorem. The similar scenario to Four color Theorem is to consider the have 
two perpendicular axis X and Y and sets of points ( )1 , 1, 2, ,iP x i n= =   on X axis and the set of points  

( )2 , 1, 2, ,jP y j n= =   on the Y axis. with ( ), 0ix i n=  and ( )0,jy j n= . Let us set the following four 

points ( ) ( ) ( ) ( )0,0 , 0,1 , 1,0 , 1,1O A B C= = = = . We want to connect the points of the sets 1P  to 2P  such that 

the connecting line will intersect only out side the square OACB . Now suppose we take a point ( )1 1 , 0p i n=  

and ( )1 10,q j n= , ( )2 2 , 0p i n=  and ( )2 20,q j n= . Next connecting the points 1p  and 1q  will give us the  
line 1Y . Connecting the points 1p  and 1q  will give us the line 2Y . We want to choose the lines 1Y  and 2Y  
such that the point z which is the intersection of 1Y  and 2Y  will stay outside the square OABC . Suppose  

( )1 2,z z z= . Then the above condition is equivalent to the fact that either 1 1z ≥  or 1 0z ≤ . But  

( ) ( )1 2 1 1 1 2 2z j j n j i j i= − − . Now the above condition is equivalent to the following set of inequalities, 

Case-1. If 2 1j j≥ , then either ( )2 1 1 1 2 2j j n j i j i− ≥ −  or 2 2 1 1j i j i≥ . or symmetrically, 

Case-2. If 1 2j j≥ , then either ( )1 2 2 2 1 1j j n j i j i− ≥ −  or 1 1 2 2j i j i≥ . 
Next let us take the set of following variables, ( ),0,i kw  and ( )0, ,j kw , with ( ), , 2, ,i j i n∈   and  
( ), 2, ,k i m∈  . Furthermore consider the following equalities,  
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( ),0,,0, 1
1

k m

i ki k k
w

=

=
=∑ , for all ( )1, 2, ,i n∈  . 

 ( )0, ,0, , 1
1

k m

j kj k k
w

=

=
=∑ , for all ( )1, 2, ,j n∈  . 

Furthermore let us set the following energy function to be optimize,  

( ) ( )1 21 2 1

2 2

, ,0, 0, , ,0, 0, ,, , 1 1 1 1
1 1i n k m j n k m

i j i k j k i k j ki j k k k i k j k
E d w w w wλ = = = =

≠ = = = =
   = + + − + −   
   

∑ ∑ ∑ ∑ ∑ ∑  also we must meet the 

conditions of Case-1 and Case-2 over the indices. 
Now the above system is equivalent to find the optimum solution for coloring. 
So as before assuming, ( )( )01 2 tanh 1W Vλ= +  we have, ( ),0, ,0,d di k i kE w t v∂ ∂ = −  and  

( )0, , 0, ,d dj k j kE w t v∂ ∂ = − . 

This implies, ( ) ( ),0, ,0,1d d 2 2k m
i k i k ikt v w c λ λ=

=
= − −∑  with ,1

j m
i i jj

c d=

=
= ∑ . 

Next let us define ,0, , ,i k i k i kw y q= +  
On the other hand it is easy to show that ( ) ( )0, , 0, ,1

d d 2 2k m
j k j k jk

t v w dλ λ=

=
= − −∑  with ,1

i n
j i ji

d d=

=
= ∑ . 

Next let us define, 0, , , ,j k j k j kw z p= + . 
Finally if the following inequalities holds, 

,1 2 , 1, 2, ,k m
i k ik q c i nλ=

=
= − =∑   

  ,1 2 , 1, 2, ,k m
j k jk p d j nλ=

=
= − =∑   

where the indices satisfy, the conditions of Case-1 and Case-2. then as t tends to infinity we have, ,0, ,i k i kw q=  
and 0, , ,j k j kw p= . 

At this point using the above arguments it is enough to find Q, and P, satisfying the above equalities and will 
optimize the following expression, 

( )1 21 2 1, , ,, , , , 1, ,i j i k j ki j k k kd q p i j n
≠

+ =∑ ∑   and 1 1, 2, ,k m=  . 

Therefore the above equations together with optimization expression will form a system of linear programming 
that will converge to the optimal solution at no time. 

5. Conclusion 
In this article we introduced the methods of approximating the solution to optimization problems using neural 
networks machinery. In particular we proved that for certain large category of optimization problems the appli- 
cation of neural network methods guaranties that the above problems will be reduced to linear or quadratic 
programming. This will give us very important conclusion because the solution of the optimization problems in 
these categories can be reached immediately. 
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