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Abstract 
In this article, we have discussed basic concepts of one-dimensional maps like 
Cubic map, Sine map and analyzed their chaotic behaviors in several senses 
in the unit interval. We have mainly focused on Orbit Analysis, Time Series 
Analysis, Lyapunov Exponent Analysis, Sensitivity to Initial Conditions, Bi-
furcation Diagram, Cobweb Diagram, Histogram, Mathematical Analysis by 
Newton’s Iteration, Trajectories and Sensitivity to Numerical Inaccuracies of 
the said maps. We have tried to make decision about these mentioned maps 
whether chaotic or not on a unique interval of parameter value. We have 
performed numerical calculations and graphical representations for all para-
meter values on that interval and have tried to find if there is any single value 
of parameter for which those maps are chaotic. In our calculations we have 
found there are many values for which those maps are chaotic. We have 
showed numerical calculations and graphical representations for single value 
of the parameter only in this paper which gives a clear visualization of chaotic 
dynamics. We performed all graphical activities by using Mathematica and 
MATLAB. 
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1. Introduction and Background 

During the last few decades, dynamical system [1] has made long strides. Dy-
namical system is the study of the long-term behavior of an evolving system. It is 
observed that in various models of economics, biology and various other 
sciences of the chaotic nonlinear dynamical system has made its presence felt. 
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The phenomenon of chaos [2] has been studied extensively and it has attracted 
increasing interests from mathematicians, physicists, engineers, and so on. Since 
chaotic systems not only admit abundant complex and interesting dynamical 
behaviors but also have many potential practical applications, great efforts have 
been devoted to an investigation related to these systems. 

Chaos is an interdisciplinary theory stating that within the apparent random-
ness of chaotic complex systems, there are underlying patterns, constant feed-
back loops, repetition, self-similarity, fractals, self-organization, and reliance on 
programming at the initial point known as sensitive dependence on initial con-
ditions. The butterfly effect describes how a small change in one state a determi-
nistic nonlinear system can result in large differences in a later state. 

Chaos theory concerns deterministic systems whose behavior can in principle 
be predicted. Chaotic systems are predictable for a while and then “appear” to 
become random [3]. The amount of time that the behavior of a chaotic system 
can be effectively predicted depends on three things: How much uncertainty can 
be tolerated in the forecast, how accurately its current state can be measured, 
and a time scale depending on the dynamics of the system, called the Lyapunov 
time. Some examples of Lyapunov times are: chaotic electrical circuits. In chao-
tic systems, the uncertainty in a forecast increases exponentially with elapsed 
time. Hence, mathematically, doubling the forecast time more than squares the 
proportional uncertainty in the forecast. This means, in practice, a meaningful 
prediction cannot be made over an interval of more than two or three times the 
Lyapunov time. When meaningful predictions cannot be made, the system ap-
pears random. The most important aspects of chaotic behavior should appear in 
systems of lowest dimension. Thus, we would like in the first step to reduce as 
much as possible the dimension of state space. However, this quickly conflicts 
with the requirement of invertibility. On the one hand, it can be shown that 
maps based on a one-dimensional homeomorphism can only display stationary 
or periodic regimes, and hence cannot be chaotic. On the other hand, if we sacri-
fice invertibility temporarily, thereby introducing singularities, one-dimensional 
chaotic systems can easily be found. In Mathematics, researchers deal with vari-
ous maps to study the different qualitative features related to it. It is also seen 
that map with one critical point, is not too difficult to study. But a map with two 
critical points in symmetrical case which was first investigated by May [4] [5] 
who was motivated by a problem in genetics involving one locus with two alleles 
is little difficult. After the investigation, he concluded that cubic map could de-
scribe the population dynamics of certain genetic groups. Also various research-
ers contributed in the study of the cubic map [6]. Perhaps the two most fre-
quently mentioned are the logistic map and the tent map. It is shown to be 
“universal” for a large family of maps. It is also shown in [7] that unimodal maps 
such as the sine map with negative Schwarzian derivative are chaotic (in many 
definitions on the word). The use of symbolic dynamics in analysis of maps on 
the unit interval can be seen in [8]. 

In the literature, many chaotic properties numerically and graphically have 
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been developed in order to understand the dynamics of one-dimensional maps 
and have been applied to different maps. Griffin [9] discussed the bifurcation 
and entropy of one dimensional sine map, Hemanta [10] represents various bi-
furcations in a cubic map, Hemanta and Sarmah [11] showed Lyapunov expo-
nents and time series analysis of a chaotic cubic map. Hidayet and Mustafa [12] 
represented the application of sine map in image cryptosystem; Xiuping [13] 
showed the application of cubic map in image encryption. Ruman [14] discussed 
the dynamical behaviors of one-dimensional logistic map. Zakir [15] represents 
the dynamical behaviors of one-dimensional doubling map. The study aimed at 
finding whether the considered maps represent randomness in dynamics on a 
unique interval. 

Yet despite these tremendous accomplishments and other remarkable ad-
vances in our understanding of chaotic dynamics, there is still no clear discus-
sion about the dynamics of sine and cubic maps in different chaotic approaches. 
These two maps are neglected yet. Such gaps in our understanding thrives us to 
find the dynamics of these two maps by analyzing more chaotic properties. 

2. Basic Preliminaries 

Dynamical Systems: Dynamical Systems is a branch of mathematics that at-
tempts to understand processes in motion. The world’s weather is another sys-
tem that changes in time as is the stock market. 

Iteration: Iterate means to repeat a process over and over again. To iterate a 
functions means to evaluate the function over and over, using the output of the 
previous application as the input for the next. 

Orbit: Given 0x R∈  ( 0x  is called the seed or initial value of the orbit), we 
define the orbit of 0x  under f to be the sequence  

( ) ( ) ( ){ }2
0 1 0 2 0 0, , , , ,n

nx x f x x f x x f x= = =  . 
Fixed Points: Let :f →R R  be a map. The point 0x  is called fixed point if 
( )0 0f x x= . Note that ( ) ( )( ) ( )2

0 0 0 0f x f f x f x x= = = , and in general  
( )0 0

nf x x= . 
Periodic Orbit or Cycle: The point 0x  is called periodic if ( )0 0

nf x x=  for 
some 0n > , where n is called the prime period of the orbit. 

Chaotic Orbits: Over the last twenty five years, one of the major developments 
in mathematics is that many simple functions such as quadratic function of real 
variable exhibits orbits of incredible complexity called “sensitivity to initial con-
ditions” and also called chaotic behavior. 

Sensitivity on Initial Conditions: Mathematically, A continuous map  
:f X X→  has sensitive dependence on initial conditions if there exists 0δ >  

such that, for any x X∈  and any neighborhood ( )N x  of x, there exist 
( )y N x∈ , 0n ≥  such that ( ) ( )( ),n nd f x f y δ> , where ( ),X d  is a com-

pact metric space. 
Devaney’s Definition of Chaos (R. L. Devaney 1989):  
Let X be a metric space. A continuous function :f X X→  is said to be 
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chaotic on X if f has the following three properties: 
(C-1) Periodic points are dense in the space X. 
(C-2) f is topologically transitive. 
(C-3) f has sensitive dependence on initial conditions. 
Lyapunov Definition of Chaos: Consider the continuous and differentiable 

map :f →R R . Then f is said to be chaotic according to Lyapunov or 
L-chaotic if: 

1) f is topologically transitive. 
2) f has a positive Lyapunov exponent. 
Trajectory: In dynamical systems, a trajectory is the set of points in state space 

that are the future states resulting from a given initial state. In a discrete dynam-
ical system, a trajectory is a set of isolated points in state space. In a continuous 
dynamical system, a trajectory is a curve in state space. 

Cubic Map: The Cubic map :f →R R  is defined by ( ) 3f x x rx= − . 
Where r is the parameter, which is one of the simplest polynomial maps of the 
desired type. If r is restricted to the range 0 3r≤ ≤  then f maps the interval 

[ ]1,1x∈ −  into itself and we will study the family rf f=  for these parameter 
values. 

Sine Map: The Sine map is defined by ( ) ( )sin πf x xλ= ; [ ]0,1x∈ , 
[ ]0,1λ ∈ , where λ  is the parameter value which lies between 0 and 1. This 

map is similar to the logistic map on the unit interval. 

3. Theorems 
3.1. Proposition 

Show that the Cubic map ( ) 3f x x rx= −  is chaotic in the interval 0 3r≤ ≤ . 
Proof: Here we discuss the Lyapunov exponent for the Cubic map  
( ) 3f x x rx= − . 
Consider two iterations of the Cubic map starting from two values of x which 

are close together. Let the two starting values be 0x  and 0 0x xδ+ . These map 
to 1x  and 1 1, , n nx x x xδ δ+ + .  Expanding ( )f x  about nx  we have  

( )1 1n n nx f x xδ δ− −′= . Assuming that nxδ  is sufficiently small. Hence the sepa-
ration of two trajectories after n steps, nxδ  is related to their initial separation  

0xδ  by ( )
1

00

n
n

i
i

x
f x

x
δ
δ

−

=

′=∏ . We expect that this will vary exponentially at large 

n like 
0

Lrnx
e

x
δ
δ

=  (Large n). 

And so we define the Lyapunov exponent Lr  by ( )
1

1lim ln
n

L in i
r f x

n→∞ =

′= ∑ . If  

0Lr >  neighboring trajectories diverge from each other at large n this corres-
ponds to chaos. However if the trajectories converge to a fixed point or limit 
cycle they will get closer together, which corresponds to 0Lr < . 

Hence we can determine whether or not the system is chaotic by the sign 
of the Lyapunov exponent. 
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Below we calculate the Lyapunov exponent for some values of parameter r 
(not to be confused with the Lyapunov exponent Lr ). For 2.56r =  we get 

0.571265Lr = . The positive value indicates that 2.56r =  is in a region of chaos. 
By contrast if we specify 2.116r =  we get 1.54957Lr = −  which is a negative 
value, indicating that the trajectory of points ( )0,1,2,ix i =   converges to an 
attractor, which in this case we already know is a length of 2 limit cycle. Next lets 
plot the Lyapunov exponent for a range of values of r. 

The main significance of Figure 1 is that one can easily distinguish the regions 
which are chaotic ( )0Lr >  from the regions which tend to a fixed point or limit 
cycle ( )0Lr < . We see several points (the first is at 1r = ) where the Lyapunov 
exponent hits 0 and then goes negative again. These are the period doubling bi-
furcations. Precisely at the period doubling point the system is at the limit of 
chaos, but then becomes non-chaotic when the period doubles. However, at the 
end of the period doubling regime, at r about 2.3024, Lr  crosses the axis and 
the system enters a chaotic regime. 

Note that for r in the range greater than the point where Lr  first goes posi-
tive, there are many regions where Lr  is negative, is known as “island of stabil-
ity” where the behavior is fixed point or limit cycle [16]. Notice that there are 
fine details no matter how much one expands the scale. We see that chaos 
emerges (i.e. 0Lr > ) for r between 2.3024 and 2.8999. It is again become non 
chaotic for the values of r between 2.8999 and 2.985 then it enters into the chao-
tic region again. 

3.2. Proposition 

Show that the Sine map ( ) ( )sin πf x xλ=  is chaotic in the interval 0 1λ≤ ≤ . 
Proof: Here we discuss the Lyapunov exponent for the Sine map  

( ) ( )sin πf x xλ= . 
Consider two iterations of the Sine map starting from two values of x which 

are close together. Let the two starting values be 0x  and 0 0x xδ+ . These map  
 

 
Figure 1. Lyapunov exponent for 0 3r≤ ≤ . 

https://doi.org/10.4236/jamp.2019.75077


S. A. Al Nahian et al. 
 

 

DOI: 10.4236/jamp.2019.75077 1154 Journal of Applied Mathematics and Physics 
 

to 1x  and 1 1, , n nx x x xδ δ+ + .  Expanding ( )f x  about nx  we have  
( )1 1n n nx f x xδ δ− −′= . Assuming that nxδ  is sufficiently small. Hence the sepa-

ration of two trajectories after n steps, nxδ  is related to their initial separation  

0xδ  by ( )
1

00

n
n

i
i

x
f x

x
δ
δ

−

=

′=∏ . We expect that this will vary exponentially at large 

n like 
0

Lnx
e

x
λδ

δ
= .

 
(Large n) And so we define the Lyapunov exponent Lλ  by  

( )
1

1lim ln
n

L in i
f x

n
λ

→∞ =

′= ∑ . If 0Lλ >  neighboring trajectories diverge from each 

other at large n this corresponds to chaos. However if the trajectories converge 
to a fixed point or limit cycle they will get closer together, which corresponds to 

0Lλ < . Hence we can determine whether or not the system is chaotic by the sign 
of the Lyapunov exponent. Below we calculate the lyapunov exponent for some 
values of parameter λ  (not to be confused with the Lyapunov exponent Lλ ). 
For 0.9λ =  we get 0.354839Lλ = . The positive value indicates that 0.9λ =  
is in a region of chaos. By contrast if we specify 0.55λ =  we get 

1.42149Lλ = −  which is a negative value, indicating that the trajectory of points 
( )0,1,2,ix i =   converges to an attractor, which in this case we already know is 

a length of 2 limit cycle. Next lets plot the Lyapunov exponent for a range of 
values of λ . 

One can easily distinguish from Figure 2 the regions which are chaotic 
( )0Lλ >  from the regions which tend to a fixed point or limit cycle ( )0Lλ < . 
We see several points (the first is at 0.31849a = ) where the Lyapunov exponent 
hits 0 and then goes negative again. These are the period doubling bifurcations. 
Precisely at the period doubling point the system is at the limit of chaos, but 
then becomes non-chaotic when the period doubles [16]. However, at the end of 
the period doubling regime, at λ  about 0.865, Lλ  crosses the axis and the 
system enters a chaotic regime. Notice that there is fine detail no matter how  
 

 
Figure 2. Lyapunov exponent for 0 1λ≤ ≤ . 
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much one expands the scale. We see that chaos emerges (i.e. 0Lλ > ) for λ  
between 0.8655 and 0.8660. It is again become non chaotic for the values of λ  
between 0.8810 and 0.8825 then it enters into the chaotic region finally. 

4. Theoretical Foundation 

In this article we have not established new theorem but we have analyzed new 
chaotic properties for two maps named Sine map, Cubic map graphically and 
numerically based on the chaotic properties established by renowned mathema-
ticians R. L. Devaney, Henry Poincare, Edward Lorentz and some of modern re-
searchers. These strong properties show that these maps are chaotic clearly. 

5. Result Discussion 
5.1. Behavior of the Maps Taking Initial Seeds 

Cubic map: In this section we iterate the cubic map ( ) 3f x x rx= −  for the 
following r and 0x  values (initial seeds) and investigate the dynamical behavior 
of the given function ( )f x  considering the following case: 2.9r =  

1) For 0 0.30x = , The orbit is:  
{ }0.30, 0.84,1.84,0.93, 1.89, 1.30,1.57, 0.68,1.66,− − − −   

2) For 0 0.35x = , The orbit is:  
{ }0.35, 0.97,1.90,1.35, 1.44,1.16, 1.79, 0.59,1.51,− − − −   

3) For 0 0.45x = , The orbit is:  
{ }0.45, 1.21,1.73,0.17, 0.48,1.30, 1.56,0.68, 1.67,− − − −   

4) For 0 0.50x = , The orbit is:  
{ }0.50, 1.32,1.51, 0.91,1.88,1.23, 1.69,0.05, 0.17,− − − −   

Do you see any pattern? Obviously not. There is no initial seed for which the 
orbit forms any cycle and forms any kind of patterns. The orbits approach ran-
domly. The initial seeds 0.30, 0.35, 0.45 and 0.50 are neither fixed/periodic 
points nor eventually fixed/periodic points of ( )f x . We conclude that the dy-
namical behavior [17] of the given function for 2.9r =  is chaotic. 

Sine map: Now we want to investigate the behavior of sine map for [ ]0,1λ ∈ . 
For this we iterate the Sine map ( ) ( )sin πf x xλ=  for the following λ  and 

0x  values (initial seed) and we investigate the dynamical behavior of the given 
function ( )f x  considering the following case: Taking 0.95λ = ; 

1) For 0 0.30x = , The orbit is:  
{ }0.30,0.77,0.63,0.87,0.37,0.88,0.35,0.84,0.44,  

2) For 0 0.35x = , The orbit is:  
{ }0.35,0.84,0.44,0.93,0.19,0.55,0.94,0.18,0.52,   

3) For 0 0.45x = , The orbit is:  
{ }0.45,0.94,0.18,0.51,0.95,0.15,0.44,0.93,0.20,  

4) For 0 0.50x = , The orbit is:  
{ }0.50,0.95,0.15,0.92,0.22,0.60,0.89,0.30,  

We see that there is no initial seed for which the orbit forms any cycle and 
forms any kind of patterns. The orbits approach randomly. The initial seeds 0.30, 
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0.35, 0.45 and 0.50 are neither fixed/periodic points nor eventually fixed/periodic 
points of ( )f x . We conclude that the dynamical behavior of the given function 
is chaotic [18] for 0.95λ = . 

5.2. Orbit Analysis of the Maps 

Cubic map: Here we want to observe closely the behavior of the orbit graphi-
cally for given cubic map ( ) 3f x x rx= − . Consider 2.6r =  to make a decision 
about the dynamical behavior of the orbits graphically for the following initial 
seeds. 

Taking different initial seeds graphically we see from Figure 3 and Figure 4 
that the orbit of given dynamical system changes its nature randomly. So we can 
conclude that the given Cubic map is chaotic for some values of [ ]0,3r∈ . 

Sine map: Now we want to perform same analysis for Sine map to do this we 
observe closely the behavior of the orbit graphically for given Sine map 
( ) ( )sin πf x xλ=  considering different 0x  values (initial seeds). Take 0.95λ =  

and observe the dynamical behavior of the orbits graphically for the following 
initial seeds. 

Taking different initial seeds from Figure 5 and Figure 6 graphically we see 
that the orbit of given dynamical system changes its nature randomly. So the 
given Sine map is chaotic for some values of [ ]0,1λ ∈ . 

5.3. Sensitivity Analysis of the Maps 

We want to check the difference of the orbit by taking two neighbouring initial 
seeds. We first define the function governing the system and then calculate the 
distance between two orbits for the considered neighbouring initial seeds. Here 
we will consider 100 iteration and calculate the distance between two orbits. Af-
ter that we will analyze whether the function is chaotic or not. 

Cubic map: In this passage we want to analyze the sensitivity of Cubic map 
( ) 3f x x rx= − . Taking 2.6r =  and two neighboring initial seeds 0 0.30x =  

and 0 0.31x =  we get the following table. 
 

 
Figure 3. Consider initial seed 0 0.30x = . 
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Figure 4. Consider initial seed 0 0.35x = . 

 

 
Figure 5. Consider initial seed 0 0.30x = . 

 

 
Figure 6. Consider initial seed 0 0.35x = . 
 

Table 1 tells us the “story” of the two orbits from the 1st to 100th positions. 
We see that the distance between the two orbits is bouncing between 0 and 2.5 in 
an apparent erratic manner. This type of behavior tells us the system is chaotic.  
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Table 1. Sensitivity analysis of cubic map. 

(Iteration) n 0 0.30x =  0 0.31x =  Distance 0 0.6x =  0 0.6000001x =  Distance 

1 −0.75 −0.77 0.02 −1.58 −1.58 0 

2 1.53 1.55 0.02 0.77 0.77 0 

3 −0.39 −0.30 0.09 −1.86 −1.86 0 

4 0.96 0.76 0.20 −0.87 −0.87 0 

5 −1.61 −1.54 0.07 1.95 1.95 0 

. . . . . . . 

45 0.14 −1.31 1.45 −0.58 1.83 2.41 

46 −0.35 1.16 1.51 1.54 0.67 0.87 

47 0.87 −1.45 2.33 −0.96 −1.72 0.76 

48 −1.60 0.70 2.30 1.99 0.04 1.95 

49 0.04 −1.48 1.52 1.97 −0.13 2.10 

50 −0.09 0.62 0.71 1.71 0.40 1.31 

 
We can say that the given Cubic map is chaotic for 2.6r =  according to the 
sensitivity to initial condition. Here we have only taken the values up to 2 de-
cimal places and analyzed the orbits from the 1st to 100th positions. From this 
analysis we have already reached to our goal which we sat before. We found that 
given function is chaotic for some values of [ ]0,3r∈ . The graphical representa-
tion of the above sensitivity analysis is shown below. 

Is there any clear message for us in Figure 7 and Figure 8? Yes. In Figure 7 
the orbits for two considered initial seeds are same up to 7th iteration than go far 
from each other. In Figure 8 the orbits for two considered initial seeds are same 
up to 18th iteration than separate. The orbits of the given Cubic map for two sets 
of neighbouring initial seeds do not coincide with each other. Two orbits are 
scattered. They show randomness in distance from each other and go far from 
each other after a large number of iteration. In above Figures red line represents 
the orbit of 0 0.30x =  and 0.6 and green line represents the orbit of 0 0.31x =  
and 0.6000001. 

Sine map: In this passage we want to analyze the sensitivity of Sine map
( ) ( )s in πf x xλ= . Taking 0.95λ =  and two neighbouring initial seeds 

0 0.600x =  and 0 0.601x =  we get the following table. 
We see from Table 2 that the distance between the two orbits is bouncing 

between 0 and 1 in an apparent erratic manner. This type of behavior tells us the 
system is chaotic. We can conclude that the given Sine map is chaotic [19] for 

0.95λ =  according to the sensitivity to initial condition. 
Here we have only taken the values up to 2 decimal places and analyzed the 

orbits from the 1st to 100th positions considering neighbouring initial seeds 

0 0.3x = , 0 0.301x =  and 0 0.6x = , 0 0.6000001x = . From this analysis we can 
make decision that if we take any other neighbouring initial seeds our results will 
be same. The graphical representation of the above analysis is shown below. 
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Figure 7. Two nearby seeds 0 0.30,0.31x = . 

 

 
Figure 8. Two nearby seeds 0 0.6,0.6000001x = . 

 
Table 2. Sensitivity analysis of Sine map. 

(Iteration) 
N 0 0.3x =  0 0.301x =  Distance 0 0.6x =  0 0.6000001x =  Distance 

1 0.77 0.77 0 0.90 0.90 0 

2 0.63 0.63 0 0.28 0.28 0 

3 0.87 0.87 0 0.74 0.74 0 

4 0.37 0.36 0.01 0.69 0.69 0 

5 0.88 0.86 0.02 0.78 0.78 0 

. . . . . . . 

45 0.77 0.44 0.33 0.15 0.16 0.01 

46 0.63 0.93 0.30 0.43 0.47 0.04 

47 0.87 0.19 0.68 0.93 0.95 0.02 

48 0.38 0.53 0.15 0.21 0.15 0.06 

49 0.88 0.94 0.06 0.59 0.45 0.14 

50 0.35 0.16 0.19 0.91 0.94 0.03 
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From Figure 9 we see that the orbits for two considered initial seeds are same 
up to 4th iteration than go far from each other. In Figure 10 the orbits for two 
considered initial seeds are same up to 22th iteration than separate. The orbits of 
the given Sine map for two sets of neighbouring initial seeds do not coincide 
with each other. They show randomness in distance from each other and go far 
from each other after a large number of iteration. 

In above Figures red line represents the orbit of 0 0.3x =  and 0.6 and green 
line represents the orbit of 0 0.301x =  and 0.6000001. 

5.4. Time Series Analysis Graphically 

Cubic map: The orbits listed in the numerical iteration part considering dif-
ferent initial seeds seem to be wandering around the interval 1 1x− ≤ ≤  rather 
aimlessly. Let’s see if we can detect a pattern from the time series for one of these 
orbits. Here is the time series graph for the seed 0 0.2,0.2001x =  with iteration 
100 respectively. 

Just when we think we are beginning to see a pattern in the above Figure 11 
and Figure 12, the time series graphs begins to do something else and a new 
pattern emerges after some iteration we observe that there is no pattern in the 
above picture. This is called the unpredictability [20] which is another meaning 
of Chaos. 

Sine map: The orbits of given Sine map seem to be wandering around the in-
terval 1 1x− ≤ ≤  rather aimlessly. Let’s see if we can detect a pattern from the 
time series for one of these orbits. Here is the time series graph for the seed 

0 0.34,0.2x =  with iteration 50, 100 respectively. 
From the above time series graph we see that there is no pattern and when we 

think for a pattern the graph in the Figure 13 and Figure 14 display some new 
shape. This graph approaches with erratic manner which we call as chaos. 

 

 
Figure 9. For initial seeds 0 0.3,0.301x = . 
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Figure 10. For initial seeds 0 00.6, 0.6000001x x= = . 
 

 

Figure 11. For 03, 0.2, 100r x n= = = . 
 

 

Figure 12. For 03, 0.2001, 100r x n= = = . 
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Figure 13. For 00.95, 0.34, 50x nλ = = = . 
 

 

Figure 14. For 00.95, 0.2, 100x nλ = = = . 

5.5. Cobweb Diagram 

Analysis: While all of this vocabulary is helpful, a visual presentation of orbits 
helps solidify the concept. We call these diagram cobweb plots [18] and con-
struct them as follows. 

Let 0x  be the seed of our orbit. In our plot we graph both our function 
( )f x  and the line ( )g x x= , in red. With these guidelines, we first trace a line, 

in black, from ( )0 0,x x  to ( )( )0 0,x f x , then from ( )( )0 0,x f x  to  
( ) ( )( )0 0,f x f x  (this is where plotting ( )g x x=  is useful). From there we can 

trace a line to ( ) ( )( )2
0 0,f x f x , then to ( ) ( )( )2 2

0 0,f x f x  and so on. With 
these plots, we can find ( )nf x  for any n and perhaps more importantly, see 
how the orbit of x got to ( )nf x . 
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Cubic map: With a basic understanding of cobweb plots, we can start to visu-
al the behavior of cubic map ( ) 3f x x rx= −  for larger values of n . 

We see that the orbit of 0.1 continues to hit new points. Figures 15-17 reveal 
that the orbit of 0 0.1x =  under f seems to travel all over the interval 

[ ]1.5,1.5− . This phenomenon is called chaotic behavior. So we can say that the 
given Cubic map is chaotic for 2.5r = . 

Sine map: Now we can start to analyze the behavior of sine map 
( ) ( )s in πf x xλ=  from cobweb plot for larger values of n. 
The orbits still covering new ground. Figures 18-20 reveal that the orbit of 

0 0.1x =  under f seems to travel all over the interval [ ]0.25,0.95 . This pheno-
menon is called chaotic behavior. So we can say that the given Sine map is chao-
tic for 0.9λ = . 

5.6. Histogram Analysis 

Cubic map: Here we consider the cubic map ( ) 3f x x rx= −  and investigate 
the dynamical behavior of the given function by analyzing the histogram image. 

From above histogram in Figure 21 we see that the variable values of the giv-
en function fall into different bin or bucket [20] and each bin touches each other. 
The variable of the given function is scattered and hence the function is chaotic 
for 2.6r = . 

Sine map: Now we plot the histogram image of Sine map ( ) ( )s in πf x xλ=  
and investigate the dynamical behavior of the given function by analyzing the 
histogram image with the idea mentioned above. 

From above histogram in Figure 22 again we see that the variable values of 
the given function fall into different bin or bucket [20] and each bin touches 
each other. The variable of the given Sine map is scattered and hence the func-
tion is chaotic for some [ ]0,1λ ∈ . 
 

 
Figure 15. Represents the cobweb plot of 0 0.1x =  under the map ( ) 3f x x rx= −  with 

2.5r =  up to 50 iterations. Clearly the orbit of 0.1 is covering a fair amount of the inter-
val [ ]1.5,1.5− . 
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Figure 16. Represents the cobweb plot of 0 0.1x =  under the map ( ) 3f x x rx= −  

with 2.5r =  up to 100 iterations. 

 

 
Figure 17. The cobweb plot of 0 0.1x =  under the map ( ) 3f x x rx= −  with 2.5r =  

up to 100 iterations. 
 

 
Figure 18. Represents the cobweb plot of 0 0.1x =  under the map ( ) ( )sin πf x xλ=  

with 0.9λ =  up to 50 iterations. Clearly the orbit of 0.1 is covering a fair amount of the 
interval [ ]0.25,0.95 . 
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Figure 19. Represents the cobweb plot of 0 0.1x =  under the map ( ) ( )s in πf x xλ=  

with 0.9λ =  up to 100 iterations. 

 

 

Figure 20. The cobweb plot of 0 0.1x =  under the map ( ) ( )s in πf x xλ=  with 

0.9λ =  up to 500 iterations. 

 

 
Figure 21. Histogram of cubic map for 2.6r = . 
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Figure 22. Histogram of sine map for 0.90λ = . 

5.7. Mathematical Analysis by Newton’s Iteration 

Cubic map: Consider the cubic map ( ) 3f x x rx= −  and choose 2.6r = . 
The Newton’s iteration function [21] associated with ( )f x  is defined by 

( ) ( )
( )

3 3 3 3

2 2 2

2.6 3 2.6 2.6 2
3 2.6 3 2.6 3 2.6

f x x x x x x x xN x x x
f x x x x

− − − +
= − = − = =

′ − − −
 

Using the Mathematica program, we get the following orbits for the points 
3.90, 3.92, 3.94, 3.96, 3.98,3.90,3.92,3.94,3.96x = − − − − −  and 3.98 under N. 

3.90 2.13 1.49 1.79 1.50 1.76 1.51 1.75 1.52 1.73 1.52 1.72 1.53→ → → → → → → → → → → →  
3.92 2.14 1.49 1.79 1.50 1.76 1.51 1.74 1.52 1.73 1.53 1.72 1.53→ → → → → → → → → → → →  
3.94 2.15 1.49 1.78 1.51 1.76 1.51 1.74 1.52 1.73 1.53 1.72 1.53→ → → → → → → → → → → →  
3.96 2.16 1.50 1.78 1.51 1.76 1.51 1.74 1.52 1.73 1.53 1.72 1.53→ → → → → → → → → → → →  
3.98 2.17 1.50 1.78 1.51 1.76 1.52 1.74 1.52 1.73 1.53 1.72 1.53→ → → → → → → → → → → →  

Thus we see that orbit of any positive or negative real point under N makes a 
cycle of period-2 for all real value of r. 

Sine map: Now we consider the Sine map ( ) ( )s in πf x xλ=  and choose 
0.9λ = . The Newton’s iteration function associated with ( )f x  is defined by 

( ) ( )
( )

( )
( )

( )
( ) ( )

sin π sin π
tan π

cos π cos π
f x x x

N x x x x x x
f x x x

λ
λ

= − = − = − = −
′

 

Using similar program we get the following orbits for the points  
3.90, 3.92, 3.94, 3.96x = − − − −  under N. 

0.6 1.58 2.82 3.02 2.99 3 3 3 3 3→ → → → → → → → →  

1.2 0.97 1 1 1 1 1 1→ → → → → → →  
1.8 2.03 1.99 2 2 2 2 2→ → → → → → →  
2.4 1.42 0.17 0.02 0 0 0 0 0→ → → − → → → → →  

Thus we see that orbit of any positive or negative real point under N con-
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verges to a fixed point. Here in this analysis we notice that there are infinitely 
many fixed points for all real value of λ . For different initial values we get new 
fixed points whether we increase or decrease the initial value in any scale [21]. 

5.8. Sensitivity to Numerical Inaccuracies 

Cubic Map: For some values of the parameter r, the Cubic model 
3

1n n nx x rx+ = −  is very sensitive to numerical inaccuracies. To see this, we calcu-
late 100 values from the model with r = 3, first by using normal decimal num-
bers and then by using high-precision numbers. In the latter case, we start with 
numbers that have a precision of 65 digits: 

( )
( )

3

3

values1 NestList # 3# &,0.02,40 ;

values2 NestList # 3# &,0.02 5̀5,40

 = − 
 = − 

 

Values corresponding to values 2 are thick. From approximately iteration 37 
on, the values differ greatly. In calculating values 2, we started with numbers 
having 55 digits of precision. During the calculation, many digits were lost so 
that the last value −0.7512329 only has a precision of approximately 7.25962. 
Look at some elements of values 2. 

Thus, we know that all the digits of values2 are correct. This means that the 
values in values1 are incorrect from approximately iteration 37 on. This demon-
strates the sensitivity to numerical inaccuracies of the Cubic map for some val-
ues of the parameter r. Thus, if we calculate long sequences from the Cubic 
function, it is important to use a high enough precision during the calculation. 
From the plot of values2 in Figure 23, we see that the series behaves quite 
chaotically. It is known that chaotic models are very sensitive to numerical in-
accuracies. 

Sine map: For some values of the parameter λ , the Sine map 
( )1 sin πn nx xλ+ =  is very sensitive to numerical inaccuracies. To see this, we 

calculate 90 values from the model with 1λ = , first by using normal decimal 
numbers and then by using high-precision numbers. In the latter case, we start 
with numbers that have a precision of 35 digits: 

( )( ) ( )( )val1 NestList sin # &,0.01,90 ; val2 NestList sin # &,0.01̀35,90 ;π π   = =     

Values corresponding to val2 are thick. From approximately iteration 53 on, 
the values differ greatly. In calculating val2, we started with numbers having 35 
digits of precision. During the calculation, many digits were lost so that the last 
value 0.1282 only has a precision of approximately 9.68. Look at some elements 
of val2. 

Thus, we know that all the digits of val2 are correct. This means that the val-
ues in val1 are incorrect from approximately iteration 53 on. This demonstrates 
the sensitivity to numerical inaccuracies of the Sine map for some values of the 
parameter λ . To calculate long sequences from the Sine function, it is impor-
tant to use a high enough precision during the calculation. From the plot of val2  
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Figure 23. Sensitivity to numerical inaccuracies of the cubic map. 

 
in Figure 24, again we see that the series behaves quite chaotically. It is known 
that chaotic models are very sensitive to numerical inaccuracies. 

5.9. Trajectories of the Maps 

Cubic map: Write the equation in the form ( )3
1n n n n ny y y ry y+ − = − −  and 

draw the trajectories for different [ ]0,3r∈ . We first calculate a solution set by 
starting from various points and iterating the equation n times. The starting 
points are chosen between 01y  and 0 2y  in steps of 0dy . When r = 1.5, we 
get the following trajectories. 

The trajectory in Figure 25 seems to form a cycle of two points. In Figure 26 
the trajectory appears to be chaotic. Thus from the trajectory [22] of Cubic map 
we can make decision that it is chaotic for some [ ]0,3r∈ . 

Sine map: Now we want to perform same analysis for sine map which we 
performed above for cubic map. To do this we first write the equation in the 
form ( )1 sin πn n n nxx x xλ+ − = −  and plot the trajectories for different value of 

[ ]0,1λ ∈ . We first calculate a solution set by starting from various points and 
iterating the equation n times. The starting points are chosen between 01x  and 

0 2x  in steps of 0dx . When 0.6λ = , we get the following trajectories. 
The trajectory in Figure 27 seems to approach to a fixed point. In Figure 28 

the trajectory appears to be chaotic. From the above trajectories of Sine map we 
can find that it is chaotic for some [ ]0,1λ ∈ . 

5.10. Bifurcation Diagram 

Cubic map: A bifurcation diagram is a visual summary of the succession of 
period-doubling produced as r increases. The next figure shows the bifurcation 
diagram of the Cubic map, r along the x-axis. For each value of the system is first 
allowed to settle down and then the successive values of x are plotted for a few 
hundred iterations. 

We observe from below Figure 29 that for r lees than one, all the points are 
plotted at zero. Zero is the one point attractor for r less than one. Bifurcations 
occur at r = 1, r = 2, 2.23, 2.28, 2.29... (approximately), etc., until just beyond 
2.30, where the system is chaotic. However, the system is not chaotic for all val-
ues of r greater than 2.30. From the above figure, we can see that we are getting 
nice clean bifurcation, and we can see some nice details in the chaotic parts of  
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Figure 24. Sensitivity to numerical inaccuracies of the sine map. 

 

 
Figure 25. Trajectory for r = 1.5. 
 

 
Figure 26. Trajectory for r = 2.6. 
 

 
Figure 27. Trajectory for 0.6λ = . 
 
the diagram. The bifurcation diagram is a fractal because if we zoom in on any 
of the bifurcation point and focus on one arm up to 2.30r = , the situation 
nearby looks like a shrunk and slightly distorted version of the whole diagram. 
The same is true for all other non-chaotic points. The period two (at about r = 2), 
period four (at about r = 2.23), and period eight (at about r = 2.28) are clearly 
visible in the above diagram. Notice that at several values of r, greater than 2.30, 
a small number of x values are visited. These regions produce the “white space” in 
the diagram. In fact, between 2.30 and 3, there is a rich interleaving of chaos and 
order. A small change in r can make a stable system chaotic [23], and vice versa. 
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Figure 28. Trajectory for 0.9λ = . 

 

 
Figure 29. Bifurcation diagram of cubic map for 0 3r≤ ≤ . 

 
Sine map: The next figure shows the bifurcation diagram of the Sine map, λ  

along the x-axis. For each value of the system is first allowed to settle down and 
then the successive values of x are plotted for a few hundred iterations. 

We observe that for λ  less than 0.3, all the points are plotted at zero in be-
low Figure 30. Zero is the one point attractor for λ  less than 0.3. For λ  be-
tween 0.3 and 0.72 (approximately), we still have one-point attractors, but the 
“attracted” value of x increases as λ  increases, at least to 0.72λ = . Bifurca-
tions occur at 0.72λ = , 0.83,0.85,0 0 6. 2, ,7 .8λ =   (approximately), etc., un-
til just beyond 0.94, where the system is chaotic. However, the system is not 
chaotic for all values of r greater than 0.94. Here we can see some new lines ap-
pear. For the non-chaotic parts of the diagram, these lines trace the values that x 
visits before settling into an oscillation. The windows of period three (at about 

0.94λ = ), period four (at about 0.85λ = ), and period eight (at about 
0.86λ = ) are clearly visible in the above diagram. The appearance and behavior 

of the bifurcation diagram is very similar to that of the logistic map, albeit with 
different parameter values. There is a good reason for this. 

6. Socio-Economic Importance 

Chaos theory was born from observing weather patterns, but it has become ap-
plicable to a variety of other situations. Some areas benefiting from chaos theory 
today are geology, mathematics, microbiology, biology, computer science, eco-
nomics, engineering, finance, algorithmic trading, meteorology, philosophy, 
physics, politics, population dynamics, psychology, and robotics. Chaos theory is 
not new to computer science and has been used for many years in cryptography. 
Another type of computing, DNA computing, when paired with chaos theory, 
offers a more efficient way to encrypt images and other information. Robotics  
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Figure 30. Bifurcation diagram of Sine map for 0 1λ≤ ≤ . 

 
is another area that has recently benefited from chaos theory.  For over a hun-
dred years, biologists have been keeping track of populations of different species 
with population models. Another biological application is found in cardiography. 
Fetal surveillance is a delicate balance of obtaining accurate information while 
being as non-invasive as possible. 

In this paper we have worked on two real maps namely Sine and Cubic maps. 
These two maps have many uses in socio-economic sectors such as Sine map can 
be used in electricity, digital signals, sound systems, image encryptions etc. and 
cubic map can be used in traffic systems, in robotics, in computer science etc. To 
apply any map in any sector it is sufficient to know the nature or dynamics of 
that map otherwise the predictions will be wrong and the ultimate goal will not 
been obtained. We have tried to analyze the main dynamical properties of chaos 
which are essential for the new mathematics researchers. Then they will be able 
to apply the chaos in real life and will bring new revolutionary changes in the 
research fields of chaos which will open the new way of mathematical research. 

7. Limitations 

In this paper we have found a major limitation which is software problem while 
preparing Orbit analysis, Cobweb and bifurcations of Sine & Cubic map. First 
we have done these properties graphically using Mathematica 7.0 but it works 
very slowly and takes much time to show those graphs. The graphs are not 
clearly visualized for the software problem. Therefore Software version problem 
can be treated as our major limitation of our paper. Of course high speed super 
computer is very much needed to run those related programs quickly to show 
the graphs clearly. 

8. Conclusion 

In this paper, we have tried to discuss the basic chaotic properties for 
one-dimensional mentioned maps. We have shown all properties numerically 
and graphically. To perform such kind of activities we have used software named 
Mathematica and MATLAB. In the near future, we will try to make a relation 
among these properties. We will also try to establish new theorems taking these 
dynamical behaviors which will change the world. 
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