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Abstract 
There are many factors influencing personal credit. We introduce Lasso tech-
nique to personal credit evaluation, and establish Lasso-logistic, Lasso-SVM 
and Group lasso-logistic models respectively. Variable selection and parame-
ter estimation are also conducted simultaneously. Based on the personal cre-
dit data set from a certain lending platform, it can be concluded through ex-
periments that compared with the full-variable Logistic model and the step-
wise Logistic model, the variable selection ability of Group lasso-logistic 
model was the strongest, followed by Lasso-logistic and Lasso-SVM respec-
tively. All three models based on Lasso variable selection have better filtering 
capability than stepwise selection. In the meantime, the Group lasso-logistic 
model can eliminate or retain relevant virtual variables as a group to facilitate 
model interpretation. In terms of prediction accuracy, Lasso-SVM had the 
highest prediction accuracy for default users in the training set, while in the 
test set, Group lasso-logistic had the best classification accuracy for default 
users. Whether in the training set or in the test set, the Lasso-logistic model 
has the best classification accuracy for non-default users. The model based on 
Lasso variable selection can also better screen out the key factors influencing 
personal credit risk. 
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1. Introduction 

In the 21st century, with the rapid development of China’s economy, the concept 
of Chinese people’s consumption has undergone tremendous changes, and the 
credit industry has developed rapidly. Among them, the development of credit 
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card business is increasing day by day, and the credit risk that comes with it is 
not to be underestimated. Credit scoring model has been the core of credit risk 
management. In fact, the credit scoring model is a statistical model that analyzes 
a large number of customers’ historical data, extracts key factors affecting credit 
risk, and then constructs a suitable model to evaluate the credit risk of new ap-
plicants or existing customers. Therefore, the construction of the personal credit 
scoring model can respond to credit risk in a timely and effective manner, which 
will play an important role in both banks and regulatory authorities. 

In this era of information explosion, however, the emergence of big data has 
also led to some credit information, and the existing scoring models often can-
not effectively screen out dangerous customers. At the same time, the increasing 
of the high customer information can lead to the complexity of the credit scoring, 
model bias and instability, thus variable selection becomes the key issues and 
difficulties in personal credit evaluation model. It is of great significance to apply 
the variable selection method to the development of the credit scoring model. In 
the credit scoring model, the subset selection such as stepwise regression is a 
discrete and unstable process, and the variable selection will be changed by small 
changes in the data set. Selection and parameter estimation also need to be car-
ried out in two steps. Subsequent parameter estimation does not take into ac-
count the bias caused by variable selection, and accordingly it underestimates 
the actual variance. The calculation of subset selection is also quite complicated. 
In view of these defects, we adopt the Lasso method which can simultaneously 
perform variable selection and parameter estimation. After quantifying many 
explanatory variables, it is necessary to establish dummy variables as explanatory 
variables of the model. When using stepwise regression to select variables, only 
one dummy variable can be selected, which is the reason why the results are dif-
ficult to explain. However, the above problems can be well solved by Group lasso 
when it performs variable selection on group variables, making the dummy va-
riables belonging to the same group be completely retained or fully eliminated in 
the model. 

In this paper, the Logistic and SVM models of Lasso were mainly used to se-
lect and classify the influencing factors of personal credit evaluation. Then, the 
prediction accuracy of several models for default users is compared. 

2. Literature Review 

Typical credit evaluation models are: linear discriminant analysis, logistic re-
gression, K-nearest neighbor, classification tree, neural network, genetic algo-
rithm, support vector machine [1]-[7], etc. Among them, Logistic regression is 
most widely used in personal credit score, and support vector Machine (SVM) is 
a new artificial intelligence method developed in recent years. In 1980, Wiginton 
[8] first applied logistic regression to credit score analysis and analyzed the pre-
diction accuracy of the model. Baseens and Gestel first applied the support vec-
tor machine method to the letter in 2003. In the scoring field, the support vector 
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machine method is obviously superior to the linear regression and neural net-
work methods. 

On the contrary, in China, the construction of the credit score system just 
started. Shi and Jin [9] summarize the main models and methods of personal 
credit score. Xiang [10] proposed to establish personal credit evaluation by using 
multiple discriminant analysis (MDA), decision tree, logistic regression, Bayes 
network (Bayes), BP neural network, RBF neural network and SVM. Shen and so 
on [11] did a follow-up study on support vector machines. Hu [12] believed that 
the most representative Logistic model are widely concerned by researchers due 
to its high prediction accuracy, simple calculation and strong variable explana-
tory ability. 

There are two main methods for selecting variables: subset selection method 
and coefficient compression method. Subset selection method is that in linear 
model, all variables form a set, and each subset of the set corresponds to a model. 
According to certain criteria, an optimal subset fitted regression model is se-
lected from all subsets or partial subsets. 

The main research on subset selection are AIC (Akaike Information Criterion) 

[13] proposed by Akaike, BIC (Bayesian Information Criterion) [14] proposed 
by Scllwaz, CIC (covariance expansion criterion, Tibshirani and Knight) [15] 
and Mallows’ C_P Guidelines [16]. Although these methods have strong practi-
cability, there are many problems. For example: large algorithm complexity, high 
computational cost, poor interpretability of explanatory variables, etc. 

With the continuing research, the variable selection method based on penalty 
function has been widely concerned by statistical researchers. The basic idea of 
this method is to add a new penalized term to the least squares or maximum li-
kelihood function and we then minimize or maximize the augmented objective 
function. Thus, by compressing the regression coefficients of the insignificant 
variables to zero, the variables are eliminated, and the significant variables are 
compressed very little or it can be retained in the regression model without 
compression. Hence it performs the variables selection and parameters estima-
tion simultaneously, greatly improving the speed of calculation. Regarding the 
penalty function, the earliest penalty function is the ridge regression method 
proposed by Hoerl and Kennard [17], but it cannot make variable selection. 
Since then, Frank and Fredman [18] have proposed the bridge regression me-
thod. The Lasso method is proposed by Tibshirani [19], which combines the ad-
vantages of ridge regression and subset selection. The least angle regression 
(LARS) proposed by Efron [20] gives everyone a deeper understanding of Lasso. 
Zou [21] overcomes the problem of excessive compression parameters of Lasso 
by introducing weights, and proposes an adaptive lasso model. It has the prop-
erty of “Oracle properties”. Yuan and Lin [22] proposed group lasso, Wang et al. 
[23] proposed group SCAD, and Huang et al. [24] proposed group MCP. For 
group variable selection, the variables in one group either all enter into the mod-
el or are all eliminated. However, in practical applications, there are cases where 
individual variables in some groups are not significant. Therefore, a method 
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which can not only select group variables but also select variables in a group is 
needed. That is the so-called, the so-called bi-level variable selection. After that, 
Huang et al. [25] proposed group bridge, and Simon et al. [26] proposed sparse 
group lass. All these are bi-level variable selection methods. The main contribu-
tion of this paper is to apply Logistic, Lasso-logistic, Group lasso-logistic and 
Lasso-SVM models to evaluate personal credit scores. Through experimental 
comparison, the advantages of the progressive selection, the backward selection 
and the Lasso method in the selection of variables are compared, and the predic-
tion accuracy of each model is also compared. 

In the third section, we present the algorithm models of Lasso-logistic, Las-
so-SVM and Group lasso-logistic, and propose the method to select the parame-
ter lambda in the model. In the fourth section, with the help of the credit data of 
the credit platform, SPSS software is used to preprocess the data. Section five 
and six use R language to compare and analyze the variable selection ability and 
prediction accuracy of the model through numerical experiments, so as to draw 
relevant conclusions. 

3. Model 
3.1. Logistic Model 

Logistic regression is a probabilistic nonlinear model, which is a multivariable 
analysis method used to study the relationship between binary observation re-
sults and some influencing factors. Its basic idea is to study whether a result oc-
curs under certain factors. For example, this paper uses some variable indicators 
to judge a person’s credit status. Logistic regression can be expressed as: 

1 ,
1 e sP −=
+

 

0
1

.
n

i i
i

s xβ β
=

= +∑
 

where ( )1,2, ,ix i n=   is the explanatory variable in the credit risk assessment 
(or the characteristic indicator of the individual), ( )1,2, ,i i nβ =   regression 
coefficient. Logistic regression value ( )0,1P∈  is the discriminant result of cre-
dit risk. 

The graph of the function in Logistic regression model has an s type distribu-
tion, as shown in Figure 1. 

As you can see from Figure 1, P is a continuous increasing function of s, 
( ),s∈ −∞ +∞ , and: 

1lim lim 1,
1 e ss s

P −→+∞ →+∞
= =

+
 

1lim lim 0.
1 e ss s

P −→−∞ →−∞
= =

+  
For someone ( )1,2, ,i i n=  , if iP  is close to 1 (or 1iP ≈ ), then it is judged 

as a “poor” credit person (or risk of default); if iP  is close to 0 (or 0iP ≈ ),  
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Figure 1. The graph of the logistic function. 

 
then the person is judged to be “good”. That is, the value of iP  farther away 
from 1 indicates that the person is less likely to fall into default set. On the con-
trary, it means that the risk of default is greater. 

Suppose there are data variables ( ), , 1, 2, ,i ix y i n=  , 
where ( )1 2, , ,i i i imx x x x=   which is the observed value of the explanatory va-
riable and { }0,1iy ∈  is the observed value of the interpreted variable. In the 
general regression model, the observed values of the explanatory variable and 
the interpreted variable are often considered to be independent. In addition,  

assume that ijx  is standardized. Namely, 21 10, 1ij ij
i i

x x
n n

= =∑ ∑ . Let  

( )1|i i iP P y x= =  be the conditional probability of 1iy =  given ix . The con-
ditional probability under the same conditions is ( )0 | 1i i iP y x P= = − . Then, 
given a test sample ( ),i ix y , its probability is: 

( ) ( )11 ,ii yy
i i iP y P P −= −  

where 
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. Assume that each sample is independent of each 

other. Their joint distribution (i.e., likelihood function) can be expressed as: 
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The Maximum Likehood method is a good choice to estimate the parameter 

β . Because it can maximize the possibility that the observed value of each sam-
ple is equal to its true value. In other words, it can maximize the log likelihood 
function in the logistic model: 
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For convenience, we set ( )1,i iX x=  and ( )T
0 1, , , mβ β β β=  . Estimating 

the model’s parameter β  by maximum likelihood estimation is equivalent to 
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solve the following problem: 

( )ˆ arg max ,lβ β=  

It is easy to know that ( )l β  is concave and continuously differentiable, and 
therefore its local maximizer is the global maximizer. Calculate partial deriva-
tives and make it to be zero, which leads to the likelihood equations: 
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But it is difficult to get an explicit solution. It needs to be solved by some iter-

ative methods such as Newton-Raphson, EM and gradient descent algorithms. 
The estimated jβ  obtained by the likelihood equation is called the maximum 
likelihood estimate, and the corresponding conditional probability iP  is esti-
mated by iP . 

Logistic has a wide range of applications in credit scoring. The traditional Lo-
gistic method is very simple, but it is sensitive to multi-collinearity interference 
between individual credit variables. Therefore, some redundant variables are se-
lected, resulting in poor prediction results. That is why we improve this method.

 
3.2. Lasso Model 

Tishirani proposed the Lasso method which is motivated by non-negative Gar-
rote [27]. 

Let ( )T

1
ˆ ˆ ˆ, , mβ β β=  , the estimator ( )ˆˆ ,α β  of the lasso method is: 

( )
2

, 1 1

ˆˆ , arg min , s.t. ,
n m m

i j ij j
i j j

y x t
α β

α β α β β
= =
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∑ ∑ ∑  

where 0t ≥  is the regularization parameter. For all t, one has an estimator 
ˆ yα =  of α . Without loss of generality, we assume that 0y = , Above prob-

lem can be rearranged into the following form: 
2

1

ˆ arg min , s.t. .
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It can also be expressed in the form of the following penalty function: 
2

1 1

ˆ arg min .
n m m

i j ij j
i j j

y x
β

β β λ β
= =
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 
 
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
 

∑ ∑ ∑
 

The first part of the formula represents the goodness of the model fit, and the 
second part represents the penalty of the parameter. The harmonic coefficient 

[ ]0,λ ∈ +∞  is smaller. The smaller role of the penalty term plays the more va-
riables is retained; the larger lambda is, the more roles of the penalty term plays, 
and the fewer variables are retained. 
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3.2.1. Logistic-Lasso Model 
The Lasso method is mainly applied to linear models. The essence is to add a 
penalty function to the sum of squared residuals. When estimating parameters, 
the coefficients are compressed, and some coefficients are even compressed to 0 
to achieve model variable selection. But for credit default prediction, the depen-
dent variable is a binary value. In this case, the linear regression model cannot be 
used. Instead, Lasso-logistic [28] should be used. Penalized logistic regression is 
a modification of the logistic regression model. The negative log-likelihood 
function adds a non-negative penalty term to achieve good control of the coeffi-
cients. 

The conditional probability of the logistic linear regression model can be ex-
pressed as: 

( )
( ) ( )

1|
log ,

1 1|
i i

i
i i

P y x
x

P y x βη
 =  = 
− =  

 

where ( )i ix Xβη β= . 
The coefficient estimate λβ  in the Lasso-logistic regression model is given 

by the minimum value of the convex function of the following form: 

( ) ( )
1

,
m

j
j

S lλ β β λ β
=

= − + ∑
 

where 

( ) ( ) ( ){ }{ }
1

log 1 exp
n

i i i
i

l y x xβ ββ η η
=

 = − +  ∑
 

The estimator β̂  in Lasso-logistic regression model can be given as: 

( ) ( ){ }{ }
1 1

ˆ arg min log 1 exp .
n m

i i i j
i j

y x xβ β
β

β η η λ β
= =

 = − − + +∑ ∑  

3.2.2. Lasso-SVM Model 
The standard SVM model does not have feature selection capabilities. The spe-
cific approach of adding regularization to the SVM model is to use the regulari-
zation term with sparsity to replace the 2L  norm in the standard SVM. The 1L  
norm is convex functions, with Lipschitz continuum, having properties better 
than other norms. L1-SVM and its similar extensions have evolved into one of 
the most important tools for data analysis. The general form of Lasso-SVM is 
given below: 

1 1
min

m n

i i
j i

Cβ ξ
= =

+∑ ∑
 

( )T 1s.t. 1, 2, , ,i i iy X i nβ ξ≥ − =   

0.iξ ≥  

Lasso-SVM can also be written in the following form: 
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( )
1 1

min 1 .
n m

i i i
i j

y f X λ β
+

= =

 − + ∑ ∑  

where ( )1 i iy f X
+

 −   is a Hinge loss function and λ  is a regularization pa-
rameter. 

3.2.3. Group Lasso-Logistic Model 
Group lasso was introduced by Yuan and Lin (2006), allowing pre-defined cova-
riates to be grouped together and selected from the model. All variables in a par-
ticular group can be included or not included. It is very useful in many settings. 
Group lasso algorithm for logistic regression was first proposed by Kim et al., 
and then Meier et al. [29] proposed a new one which can solve high dimensional 
problems. 

Suppose there is an independent and identical distribution of observation

( ), , 1, 2, ,i ix y i n=  . ( )1 2, , ,i i i imx x x x=   which is an m-dimensional vector 
that can be divided into G groups, and the dependent variable is a binary varia-
ble { }0,1iy ∈ . The independent variable can be a continuous variable or a clas-
sified variable. Assume that the degree of freedom of the group g argument is

gdf , ( ) ( ),1 ,2 ,1, , , , , 1, 2, ,i i i i GX x x x g G= =  . ,i gx  denotes the ,i gx  group of 
variables of the observation ,i gx . Similarly, β  can be expressed as  

( )0 1 2; ; ; ; Gβ β β β , gβ  denotes the coefficients corresponding to group G g 
variables, where the labeling method is used to distinguish the jβ  fraction in 
the case of no grouping. The probability of “default” of the dependent variable 

( ) ( )1|
i ixP P y xββ = =  can be expressed by the following model: 

( )

( )
( ) T

0 ,
1

log ,
1

i

i

Gx
i i g g i

gx

P
x x X

P
β

β
β

η β β β
=

   = = + = 
−  

∑
 

where 0β  denotes intercept, gβ  is the coefficient vector corresponding to 
group g and β  is the whole coefficient vector. 

The parameter ( )β̂ λ  can be estimated by minimizing the convex function: 

( ) ( ) ( ) 2

1
,

G

g g
g

S l s dfλ β β λ β
=

= − + ∑  

where ( )l β  is a logarithmic likelihood function: 

( ) ( ) ( ){ }{ }
1

log 1 exp ,
n

i i i
i

l y x xβ ββ η η
=

= − +   ∑
 

( ) ( )1 2
g gs df df=  and ( )s ⋅  is used to rescale the parameter gβ  vector. 

3.3. The Choice of Harmonic Parameter 

In the variable selection model, the key lies in the selection of the harmonic pa-
rameter lambda. That is to say, the optimal lambda determines the prediction 
accuracy and robustness of the model. The common methods for the optimal 
lambda are AIC, BIC, Cross-validation, Generalized cross-validation. Here, we 
use K-fold cross-validation to determine the optimal lambda. 
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The main idea of K-fold cross validation is that the data are randomly divided 
into K (usually 5 or 10) identical parts. Each 1, ,k K=  , uses the data of the K 
part as the test sample, and uses the remaining K-1 parts of the data as the 
training sample to fit the model. Loop K times until all k are traversed. We de-
note the estimator by ˆ kβ − . The harmonic parameter ( )β̂ λ  corresponds to a 
classification model and the corresponding estimator ( )β̂ λ . The generalization 
error of each model corresponding to lambda is given by the mean square pre-
diction error. That means Cross-Validation Error (CVE) is estimated: 

( ) ( )2T

1

1 1 ˆ ,
k

K
k

i i
k ik

CV y X
K n

λ β −

= ∈

= −∑ ∑


 

where k  is the k-th partial cross-check sample, k k
nn
K

= = . Minimize the  

above formula to find the most appropriate harmonic parameters, and the cor-
responding model can be considered to be the model with the best performance 
based on cross-check error. 

4. Data 
4.1. Data Source 

The original data is mainly from a domestic lending institution. There are a total 
of 8000 records in this data set, including 25 fields. Among them, 23 fields de-
scribe the personal characteristics of the lender, including the basic personal 
identity information: domicile, gender, local work, education level and marital 
status. Also include personal economic ability: whether there is a CPF salary lev-
el. Data set also includes personal debt and debt repayment record: frequency of 
personal housing loan, personal commercial housing loan pen number and fre-
quency of other loan credit card account number, number, frequency of delin-
quent loans, loans overdue month loan highest monthly overdue amount, max-
imum length, loan account number of the contract amount, loan balance has 
been used lines, the average individual loan maximum contract value, the aver-
age individual loans minimum contract amount, the last six months on average 
use. Finally, the data set also gives the total number of times of individual ap-
proval query and loan number. The result, where “0” is the performance cus-
tomer and “1” is the default customer. 

4.2. Data Preprocessing 

There are missing and abnormal data in the original data, and the missing value 
filling and outlier detection are needed before analysis. The method of dealing 
with missing values in this paper is the average filling, and using the scatter plot 
to detect outliers. In the original data, such as contract amount, loan balance and 
used amount are continuous variables. In order to overcome the influence of the 
dimension, the F-score needs to be standardized and analyzed. At the same time, 
the ratio of the number of compliance users and default users in the sample data 
is about 9:2, and it is an asymmetric distribution problem, which affects the pre-
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diction accuracy of the model for default customers with relatively small data 
capacity. Therefore, the under-sampling method is adopted for compliance users. 
That means some representative data are selected from the data with more sam-
ples. In order to reduce the majority of the sample, the data balance is achieved. 
The final data set is divided into a training set and a test set, wherein the training 
set has 3002 data, including 1500 compliance data and 1502 default data, and the 
test set has 519 data including 258 compliance data and 261 default data. 

4.3. Variable Description 

The classified and encoded variables in the data are shown in Table 1. 

5. Numerical Experiment 

The full-variable logistic and stepwise logistic regression models were imple-
mented by using SPSS 22.0. The Lasso-logistic model was implemented by using 
the glmnet package in R language, the Lasso-SVM model was implemented by 
using the gcdnet package, and the Group lasso-logistic model was implemented 
by using grpreg. The code package uses the generalized coordinate descent me-
thod [30] to calculate the model under regularization and its generalized solu-
tion path. 

5.1. Parameter Lambda Selection 

Through the K-fold cross-validation, the Lasso-logistic, Lasso-SVM, and Group 
lasso-logistic models are changed with the value of lambda, and the model error 
is changed. At the top of Figure 2, the number of corresponding variables se-
lected by the model is given. The value between the two dotted lines in Figure 2 
indicates the range of positive and negative standard deviation of lambda, and 
the dotted line on the left indicates lambda when the model error is minimized. 
Tibshirani contends that lambda takes a relatively small change in the model 
prediction bias within this interval. It is generally recommended to choose 
lambda which makes the model relatively simpler, namely, a large lambda within 
a standard deviation range. It is the best value. It can also be seen from Figure 2 
that as the value of lambda changes, the degree of compression of the model va-
riable also changes. In other words, the number of variables to be filtered is af-
fected by the estimate of lambda. 

Figure 3 shows the filtering of variables in Lasso-logistic, Lasso-SVM, Group 
lasso-logistic model with the change of harmonic parameter lambda. As the val-
ue of lambda increases, the degree of the model compression increases, more va-
riables of the model are deleted, while less variables are retained, and the func-
tion of selecting important variables is enhanced. The best value of lambda is the 
log(lambda), next to the right dotted line’s value. In Lasso-logistic, lambda = 
0.01122485; in Lasso-SVM, lambda = 0.00699683; and in Group lasso-logistic, 
lambda = 0.01628534. 
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Table 1. Variable declaration. 

ID Variable Name The Values 

y default 0y =  Not default; 1y =  Default 

1x  registered area 
1,1x  = Northeast; 1,2x  = North China Plain; 

1,3x  = Central China; 1 4x ，  = Eastern China 

2x  gender 2 1x ，  = Male; 2.2x  = Female 

3x  Whether work is local 3,1x  = Local; 3.2x  = Not local 

4x  edu level 

4,1x  = Junior high school/Senior high school/others; 

4,2x  = Junior college/Junior college and below; 

4 3x ，  = Undergraduate; 

4,4x  = Master/Doctor 

5x  marital status 
5,1x  = Maid; 5,2x  = Married; 

5,3x  = Others (divorced/widowed) 

6x  Whether accumulation fund 6,1x  = Not; 6,2x  = Yes 

7x  pay grades 

7,1x  = 0 - 3500; 

7 2x ，  = 3501 - 8000; 

7,3x  = 8000 above 

8x  The number of individual housing 
loans 8x N∈  

9x  The number of individual commercial 
housing loans 9x N∈  

10x  Other loans 10x N∈  

11x  Debit card account number 11x N∈  

12x  The number of overdue loans 12x N∈  

13x  Months of overdue loans 13x N∈  

14x  The maximum amount of overdue 
loans per month [ ]14 0,x ∈ +∞  

15x  Maximum length of loan (year) 15x N∈  

16x  Total number of approval inquiries 16x N∈  

17x  Loan number 17x N∈  

18x  Loan account number 18x N∈  

19x  contract amount [ ]19 0,x ∈ +∞  

20x  loan balance [ ]20 0,x ∈ +∞  

21x  Have used limit [ ]21 0,x ∈ +∞  

22x  Average maximum contract amount  
for a single lender 

[ ]22 0,x ∈ +∞  

23x  Average minimum contract amount  
for a single lender 

[ ]23 0,x ∈ +∞  

24x  Average usage in the last 6 months [ ]24 0,x ∈ +∞  

5.2. Coefficient of the Models 

In the logistic regression model, the dependent variable is log-occurrence ratio 
logit. When the log-occurrence ratio increases, the value of P also increases  
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Figure 2. Lambda corresponds to the number of variables. 

 
accordingly, which means the probability for judging credit as 1 (i.e., default) 
increases. When the coefficient iβ  is negative, it means that the variable ix  
has a reverse restrictive effect on the default. When the coefficient iβ  is posi-
tive, the corresponding variable ix  has a positive effect on the default, and the 
greater the value of iβ , the greater the promoting effect of the corresponding 

ix  on the customer’s credit judgment as default. In full-variable logistic model, 
the variable x6 (Whether accumulation fund), x11 (Debit card account number), 
x14 (The maximum amount of overdue loans per month), x22 (Average maximum 
contract amount for a single lender), x13 (Average minimum contract amount 
for a single lender) before the coefficients were not significant, which means the 
model contains too many variables, and the model is too complicated. The above 
non-significant variables were eliminated by stepwise regression. At the same 
time, x18 (Loan account number) and x21 (Have used limit) were also eliminated. 
Finally, 13 variables were removed for both forward and backward modes. 

For Lasso-logistic model, there are 16 variables whose coefficient is com-
pressed to 0. In other words, 18 important variables are selected to enter the  
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Figure 3. Lasso coefficient solution path. 

 
model. The Lasso-SVM model eliminates 15 variables, leaving 19 variables. 
However, it can be seen that when using stepwise regression, Lasso-logistic and 
Lasso-SVM models for variable selection, the variables are excluded as classifica-
tion variables, and some dummy variables in the same group are partially re-
tained and partially eliminated, such as x4 (edu level), which makes the result 
difficult to explain, showing in Table 2. 

Using Group lasso, after variable selection, 18 variables were removed and 16 
variables were retained. In addition, Group lasso-logistic can retain or eliminate 
related dummy variables of the same group as a whole, making the dummy va-
riables have explanatory significance. We obtained from the coefficient table of 
the Group lasso model that in the regional variable (x1), the north China area is 
the high default area, and the central China area has the lowest default risk. 
There was a significant gender (x2) difference in credit risk that the default 
probability of male was generally higher than that of female. In the salary scale 
(x7), people with low incomes were more at risk of default than those with me-
dium and high incomes. In historical credit records, customers with overdue 
loans are at greater risk of default, and the number of overdue loans (x12) and 
months of overdue loans (x13) are more likely to default. More total number of 
approval inquiries (x16) affect an individual’s credit history. Variables with a  
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Table 2. Model coefficient table. 

Variate Full variables Forward Backwards Lasso-logistic Lasso-SVM Group-lasso 

X1_1 1.715 0 1.721 0 −0.555 0.025 

X1_2 1.674 0 1.695 0.010 −0.567 0.001 

X1_3 −4.562 −4.247 −4.561 −4.354 0.667 −6.520 

X1_4 −1.534 −1.681 0 −1.440 0.016 −1.637 

X2 −0.868 −0.854 −0.858 −0.630 0.209 −0.824 

X3 −0.497 −0.504 −0.502 −0.352 0.122 −0.471 

X4_1 1.408 0.341 0.501 0.105 −0.003 0.207 

X4_2 0.780 0.301 0.218 0 0 −0.007 

X4_3 0.575 0 0 −0.111 0.015 −0.195 

X4_4 0.761 0 0 0 0 −0.682 

X5_1 −0.025 −0.002 0 0 0 0.062 

X5_2 −0.179 0 −0.201 −0.037 0 −0.072 

X5_3 −0.034 0 0 0 0 0.073 

X6 0.072 0 0 0 0 0.065 

X7_1 0.306 0.393 0.311 0.355 −0.085 0.570 

X7_2 −0.893 0.205 −1.111 −0.582 0.226 −0.554 

X7_3 0.934 0 0 0 0 0.251 

X8 0.123 0.101 0.098 0 0 0 

X9 0.058 0 0 0 0 0.039 

X10 −0.265 −0.213 −0.212 −0.104 0.053 −0.194 

X11 −0.078 0 0 −0.003 0.013 −0.016 

X12 −0.100 −0.111 −0.109 −0.084 0.033 −0.108 

X13 −0.190 −0.206 −0.197 −0.064 0.050 −0.170 

X14 −0.033 0 0 0 0 −0.021 

X15 0.130 0.121 0.119 0 −0.016 0.101 

X16 0.455 0.459 0.457 0.306 −0.142 0.431 

X17 0.222 −0.218 −0.209 −0.173 0.084 −0.179 

X18 0.164 0 0 0 0 0 

X19 −0.405 0 0 −0.021 0 −0.062 

X20 0.276 0 0 0 0 0 

X21 0.136 0 0 0 0 0 

X22 0.065 0 0 0 0 0 

X23 0.041 0 0 0 0 0.035 

X24 −0.325 −0.249 −0.263 −0.178 0.067 −0.212 

Intercept 
term 

1.026 1.275 1.836 2.575 −0.382 2.980 
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coefficient 0 indicate that they have been removed from the model and have lit-
tle effect on credit rating. 

Showing in Table 2, the number of the full-variable logistic model is the larg-
est, and the complexity of the model is the largest. The forward and backward 
models excluded 13 explanatory variables, while the Lasso-logistic model ex-
cluded 16 variables, three more than the stepwise selection. The number of Las-
so-SVM excluded variables was 15, one less than the Lasso-logistic model, and 
two more than the stepwise selection. The Group lasso-logistic model had the 
strongest ability to eliminate variables, with 18 variables removed. It can also be 
concluded that in the selection of the same group of dummy variables, the 
Group lasso-logistic model retains or removes the entire group of variables, 
making the model variables have explanatory significance. 

5.3. Model Prediction Accuracy 

In the actual credit risk assessment, the misclassification of default users into 
non-defaulting users is more of a potential loss to banks or society. Therefore, 
the model is more important for to correctly classify the default users than to 
take non-defaulting users into consideration. It is easy to see in Table 3 that in 
the training set, the Lasso-SVM model predicts that the number of default users 
will be up to 80.16%, which is 4.53% higher than the full-variable model and is 
higher than the stepwise forward and backward selections 6.59% and 6.39% re-
spectively. The Lasso-logistic and Group lasso-logistic models also predicted the 
default users could reach 79.96% and 80.09% respectively; in the test set, the 
Group lasso-logistic model got the best prediction on default users, reaching 
80.62%. It is higher than the full-variable, forward and backward models 8.97%, 
14.34%, 13.57% respectively, and the Lasso-SVM model is the second most ac-
curate for the default user. The Lasso-logistic model follows. Next, look at the 
classification of non-defaulting users. Lasso-logistic is the best rate in both the 
training set and the test set. The forward selection model had the worst predic-
tion accuracy for non-defaulting users. In the overall prediction accuracy, the 
stepwise selection performed poorly in the test set. Lasso-logistic reached 77.21% 
in the training set, and Group lasso-logistic model has the highest overall predic-
tion rate in the test set, reaching 77.26%. 

6. Conclusions 

In the personal credit evaluation, the Logistic model is most widely used, and the 
newly proposed SVM method in statistical learning also has certain application 
in credit evaluation. By comparing the simulation experiment analysis, the 
whole variable, Forward selection, Backward selection, Lasso-logistic, Las-
so-SVM, and Group lasso-logistic models and empirically analyzing the personal 
credit data of a domestic lending platform, it can be concluded: 

First, the experiment found that when all the variables were included in the 
full-variable Logistic mode, the coefficients before many variables could not pass  
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Table 3. Model prediction rate. 

Model 
Training set Test set 

Good Bad Total Good Bad Total 

Full variables 71.3 75.6 73.4 67.0 71.7 69.3 

Forward selection 70.7 75.6 73.1 65.5 72.1 68.9 

Backward selection 72.3 73.8 73.1 69.3 67.1 68.2 

Lasso-logistic 74.5 80.0 77.2 74.7 79.5 77.1 

Lasso-SVM 73.7 80.2 76.9 73.6 80.2 76.8 

Group lasso 74.4 79.4 76.9 75.1 78.0 76.5 

 
the significant level test. Thus, to some extent, the complexity of the model was 
increased. The interpretability of the model was reduced. The choice and Lasso 
overcome the multicollinearity of the full-variable model, and the coefficients of 
the insignificant variables in the model are compressed. Compared with the 
stepwise regression, the Group lasso-logistic culling variable is the strongest, 
followed by Lasso-logistic, Lasso-SVM model. The algorithm model based on 
Lasso variable selection can better select important variables, and Group las-
so-logistic will retain the whole group or the entire group when the same group 
of dummy variables is selected, which will enhance the variables in the model to 
some extent. 

Second, in the training set, the Lasso-SVM model has the highest prediction 
accuracy rate for default users; in the test set, Group lasso-logistic ranks the first 
in the classification accuracy of default users. Whether in the training set or in 
the test set, the best classification accuracy of non-defaulting users is the Las-
so-logistic model. Moreover, in the training set, the overall prediction accuracy 
of the Lasso-logistic model is also the best. In the test set, the Group las-
so-logistic model has the best overall prediction accuracy. Regardless of the pre-
diction of defaulting users, the prediction of non-defaulting users and the overall 
forecasting accuracy, Lasso is better than stepwise selection. It shows that the 
credit scoring model based on Lasso variable selection has good extrapolation. 

Therefore, based on the Logistic and SVM models established by the Lasso va-
riable selection method, the explanatory variables can be selected more scientifi-
cally and have use value in personal credit risk assessment, which can well re-
duce personal credit risk. 

To sum up, it is not difficult to find that in the actual rating, we often en-
counter some relationships between variables, thus forming a grouping structure. 
The traditional variable selection method cannot process the dummy variables of 
related groups as a whole, resulting in partial retention and partial elimination of 
the variables of the whole Group. In this way, the results are difficult to be ex-
plained, and Group lasso can well solve the above problems. Therefore, the Lo-
gistic and SVM models established based on the Lasso variable selection method 
can more scientifically select explanatory variables, which have application value 
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in personal credit risk assessment and can well reduce personal credit risk.  
In future work, we will consider individual credit ratings for unbalanced da-

tasets. When we use Group lasso for intra-group variable selection, the coeffi-
cient of some individual variables within the Group may not be significant. In 
this case, the two-layer variable selection is introduced to solve such problems. 
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