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Abstract 
The paper deals with calculation of the centrally symmetric and vortex forces 
for the momentum of a particle in the distortion tensor field from the action 
minimum, by analogy with the calculation of forces for a charge in an elec-
tromagnetic field. It is demonstrated that: 1) The compensating interaction 
tensor corresponds to the distortion tensor in a solid. 2) The centrally sym-
metric force of the distortion tensor acts on the momentum as a charge, and 
is analogous to the Coulomb force. In a gas, it results in change in the mo-
mentum value of the molecules exponentially to some extent. The action of 
this force explains the high-temperature plasma in the gas. 3) The vortex 
force of the distortion tensor is equivalent to the Peach-Koehler force in a 
solid. It acts on the momentum flow, similar to the Lorentz magnetic force, 
and explains the vortex motions in space, in the form of “black holes”, and in 
the atmosphere, in the form of cyclones and anticyclones.  
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1. Introduction 

This paper deals with calculation of the forces acting on the momentum iр  in 
the field of the distortion tensor ijA , by analogy with the calculation of the 
forces acting on a charge in an electromagnetic field [1]. In order to carry out 
such calculations, one must first prove that the momentum behaves like a charge 
in the tensor interaction field ijA .  
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What kind of momentum is it and what is the tensor interaction field? In [2], 
a minimal interaction was obtained, where the charge is the wave vector iκ , and 
the compensating field is the distortion tensor ijA . It is known that the wave 
vector is proportional to the quantum momentum, so one may put the task of 
calculating the forces acting on a quantum momentum in the field of the distor-
tion tensor, in analogy with the well-known task of field theory for electrody-
namics [1]. But first, let’s see what the distortion tensor is and where the minim-
al interaction comes from. 

The distortion tensor ijA  was introduced into the continuum theory of dis-
locations as a tensor, the antisymmetric derivative of which defines the disloca-
tion density field [3]: 

ij jkn in ke A Xρ = − ∂ ∂                         (1) 

and the contour integral is defined by the Burgers vector: di ij j
L

A XΒ = − ∫ . The 

distortion tensor ijA  is a generalization of the strain tensor and describes plas-
tic deformations. 

On the other hand, in [2] it was proved that the distortion tensor ijA  is a 
compensating field for the Landau order parameter (OP) kψ  , which describes 
the A phase of helimagnetics Fe0.5Co0.5Si, MnSi, FeGe in a magnetic field [4] [5] 
[6]. 

The necessity of introducing a compensating interaction tensor ijA  for the 
OP induced by the subgroup of elementary translations 

( )ˆ expq iq i qa i k aψ δ ψ=k k  into the inhomogeneous Landau potential was dictated 
by the local representation of the ( )i i jk k X=  OP, when describing 
helimagnetics in a magnetic field; here iqδ  is the Kronecker symbol. Since for 
the dependence ( )i i jk k X=  the derivative jXψ∂ ∂k  is not an eigenfunction 
for the operator of elementary translations:  

( ) ( )
ˆ e eq q q q q qik a ik a

q
j j j j

k a
a i

X X X X
ψ ψ

ψ ψ
 ∂∂ ∂∂  = = +

∂ ∂ ∂ ∂  

k k
k k . 

In order to set up an invariant potential or Lagrangian, it is necessary to ex-
tend the derivative: 

j n nj
nj

D i A
X

ψ κ ψ
 ∂

= −  ∂ 
∑k k                   (2) 

by means of compensating tensor field ijA , which is transformed as:  

( ) ( )ˆq i ij i ij iq i q ja A A k a Xκ κ δ= + ∂ ∂                (3) 

The extended derivative (2) is an eigenfunction of the ˆqa  translation opera-
tor. In this case, the interaction charge is the coefficient before the compensating 
field ijA  in the extended derivative. The compensating field ijA  is tensor, 
since the interaction charge iκ  is vector, and its components are related to the 
corresponding components of the translation subgroup.  

A similar situation of a local representation ( )i i jk k X=  for a OP takes place 
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in the de Gennes model [7] [8]. De Gennes described the phase transition of 
nematic-SmA (smectic-A) and deformation in SmA by OP ψ k . The vector k  
in SmA is equal to 2π d=k n , where n  is the normal vector, and d is the dis-
tance between layers in smectic. De Gennes believed that in case of deformations 
in SmA: ( )i i jn n X= , hence: ( )i i jk k X= . 

The extended derivative (2) defines the minimum interaction between the 
compensating interaction tensor ijA  and the OP components ψ k . According 
to the field theory [9], this means that the field ijA  is an independent physical 
variable analogous to the electromagnetic potential jA , and manifests itself in 
the form of observable antisymmetric derivatives (1) everywhere, and not only 
in a solid. 

The compensating field ( )ijA X  is transformed as a second-rank tensor in 
the space of macroscopic coordinates { }iX , where X  characterizes the ma-
croscopic small volume of a continuous medium in the Lifshitz formalism [10]. 
Therefore, the coordinates here and thereafter will be capitalized. 

It is known that the electromagnetic potential jA  is transformed as a vector 
field. The compensating Yang-Mills fields also represent a vector in space { }iX , 
and it is already transformed in the space of internal gauge symmetries. Tensor 
compensating fields ijA  have never been previously studied in field theory. As 
noted in the introduction [9], the numerous attempts to associate the compen-
sating gauge fields to the space-time symmetry have not been successful. 

The tensor compensating field of interaction ijA  appeared naturally in the 
Landau theory in the course of formation of the invariants from OP derivatives 
with local translational properties ( )i i jk k X=  [11]. It is induced by a subgroup 
of translations, therefore it is tensorial. The essence of paper [11] lied in the fact 
that the symmetry group is global, and the representation of the translation sub-
group is local, which describes the physical state in the form of OP or wave func-
tion. This makes it possible not to introduce the local abstract gauge groups into 
the theory in order to obtain a minimal interaction, but to use local representa-
tions of the usual translation subgroup. We show, that in the solid, the compen-
sating field ( )ijA X  (2.3) is equivalent to the distortion tensor (1). 

The dependence on the scalar product coordinate ( )i q jk a X∂ ∂  in (3) can be 
defined both by local representation of the OP: ( )i i jk k X= , and local symme-
try in the low-symmetric deformed state: ( )i i jа а X= . The case of a local re-
presentation ( )i i jk k X=  and a global subgroup of translations were consi-
dered in [2]. This is important in describing the phase transition. But in a 
low-symmetric state, in case of structural phase transition, here is the situation 
when the lattice constant depends on the coordinate. Therefore, let us consider 
the case of a low-symmetric state with local translational symmetry, when 

( )i i jа а X=  and ik const= .  
On the other hand, it follows from the definition of the displacement vector 
( ) 0= −u X X X  that ( )( ) ( ) ( )0 0ˆi i ia = + − −u X X a X X a X . When  

( )i i jа а X= , the translation transformation to the lattice constant is not inva-
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riant under inhomogeneous deformations: ( )ˆi i j i j i ja u X u X a X∂ ∂ = ∂ ∂ + ∂ ∂ . 
Here it is taken into account that ( )0 0i ja X∂ ∂ =X  in the undeformed state. 

Since the distortion tensor ijA  is a generalization of i ju X∂ ∂ , then in cases 
of translations to the lattice constant it is also transformed as i ju X∂ ∂ :  

( )ˆq ij ij iq q ja A A a Xδ= + ∂ ∂                      (4) 

Whence it follows that the compensating field in (2) is the distortion tensor, if 
the charge iκ  in (2, 3) is the wave vector: i ikκ = . Let us prove this. 

As a result of the minimal interaction (2), the strain tensor ij ijL Aσ = −∂ ∂  
conjugate to distortion tensor ijA  is proportional to the linear combination in 
the field ijA : ( ) 22 2j i ijAϕ κ ψ∇ − k , where ϕ  is the OP phase, since the distor-
tion tensor ijA  enters the Lagrangian L or the Landau nonequilibrium poten-
tial only in invariant combinations (2): *

j jD Dψ ψ−k k . 
When the strain tensor рjσ  is identically zero, for example, outside the sam-

ple, then the following relation must be satisfied: d dj j i ij j
L L

X A Xϕ κ∇ =∫ ∫ 

, since 

the fields are not equal to zero in field theory. The integral at the left is quan-
tized: 

d 2πj j
L

X zϕ∇ =∫  

where z Z∈  is an integer, since in the course of encirclement the phase of OP 
or wave function can change in multiples of 2π . The integral at the right, ac-
cording to (1), is the dislocation density flow or Burgers vector: d

L

i ij j
S

SρΒ = ∫ , 

and according to the Stokes theorem (1): di ij j i i
L

A Xκ κ= − Β∫ . Whence we re-

ceive the minimum value of the Burgers vector: min 2πi iκΒ = . 

This proof is equivalent to proof of magnetic flux quantization d
LS

Φ = ∫ B S   

in Abrikosov vortices in superconductivity [12], which follows from the ex-
tended Ginzburg-Landau derivative, where the compensating field is the elec-
tromagnetic potential jA . As is known, the Burgers vector is proportional to 
the lattice constant 2πi ia k=  or the wavelength of the structural OP, for ex-
ample in SmA [7]. Whence it follows that the charge in (2) is the wave vector 

i ikκ = . 
This conclusion also demonstrates that the dislocation density ijρ  does not 

always correspond to the discrete dislocations in a solid, but only when there is a 
minimum interaction (2). The field ijρ  (1) in a continuous medium, where 
there is no minimum interaction (2), is the observable intensity of the compen-
sating tensor field рjA , analogous to the magnetic field j jkn n kB e A X= ∂ ∂  [13] 
[14]. 

The name of dislocation density arose in determining dislocations in a conti-
nuous medium (1). It must be recognized that this is an unfortunate name for 
the force intensity of the tensor interaction field ijA  (2), since in general it is 
not connected with the location of atoms in the lattice. The Burgers vector relate 
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to the dislocation of atoms in the lattice—the dislocation density flux in the 
presence of the minimal interaction (2). The vortex invariant intensity of the 
tensor interaction field (1) may exist in itself in any medium, like a magnetic 
field. Therefore, from this point on, by ijρ  (1) we will mean the invariant vor-
tex intensity of the compensating tensor interaction field ijA  (2, 3), which is 
related to the dislocation density only in a solid. 

Note the fact that sometimes in the reference literature, the distortion tensor 
is the derivative of the displacement vector with respect to the coordinate: 

ij i jW u X= ∂ ∂ . Such a definition has nothing to do with the definition of the 
distortion tensor (1), since 0jkn in ke W X∂ ∂ = . In this paper we are talking about 
the distortion tensor (1), which is defined as an unobservable compensating in-
teraction field (2, 3). It is unobservable because it is invariant for elementary 
translations (4), in contrast to the invariant antisymmetric derivative (1). 

In [13] [14], a Lagrangian for the 4-tensor of distortion was formed iυ , ijA : 

2

1
2i i ij ij ij ij ij ijL p A

c
γυ σ ε ε ρ ρ = − + − 
 

                (5) 

and a system of state equations similar to the Maxwell equations is obtained 
[14]: 

2
ij

i
j

p
Xc
εγ ∂

= −
∂

                         (6) 

2
ip ij

ij jkp
k

e
X Tc
ρ εγσ γ
∂ ∂

= −
∂ ∂

                     (7) 

where 

ij i j ijX A Tε υ= −∂ ∂ + ∂ ∂                     (8) 

the centrally symmetric intensity of 4-tensor of the distortion iυ , ijA , and ijρ  
(1) is the vortex intensity. Here iυ  is the speed, or the fourth component of the 
distortion tensor, ip  is the momentum, ijσ  is the strain tensor, γ  is the di-
mension factor, and c is the sound speed.  

By differentiating the state Equations (6) and (7), we obtain the continuity 
equation: 

ij j iX p Tσ∂ ∂ = ∂ ∂                       (9) 

which is a differential expression for the law of conservation of momentum. 
Thus, it is little wonder that the wave vector iκ  is a charge in (2). If we pass 

on to the dynamic model and write the Lagrangian for the model with an ex-
tended derivative (2), then the continuity equations in such a model will 
represent the differential law of conservation of momentum(9). Since the distor-
tion tensor ijA  is conjugate to the strain tensor ijσ , and the speed iυ  is con-
jugate to the momentum ip  (5). After multiplying the extended derivative (2) 
by the Planck constant  , it becomes obvious that the interaction charge is a 
quantum momentum i ipκ = , which was foreseeable, since the law of conser-
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vation of momentum is associated with translation symmetry (9). 
For the first time, the assumption that the distortion tensor ijA  and the den-

sity of dislocations ijρ  (1) are interaction fields was made by Kadić and Edelen 
[13]. They constructed a so-called gauge theory of dislocations from the analogy 
with electrodynamics. However, the Kadić-Edelen theory did not contain a mi-
nimal interaction, since the linear translationally invariant combination with the 
displacement vector derivative (4): j i i j ijD u u X A′= ∂ ∂ +  is not an extended de-
rivative and does not contain a charge of interaction (2). The Kadić-Edelen dis-
tortion tensor ijA′  is equal to the usual distortion tensor ijA  with a minus 
sign: ij ijA A′ = − . Please note that the change in the signature does not impact the 
Kadić-Edelen state Equation (6.7), but only the definitions of their intensities 
(1.8), which are given here in accordance with [3]. 

On the other hand, an extended derivative was constructed in [2] and interac-
tion (2) is given from the translational invariance of the inhomogeneous Landau 
potential. Consequently, the compensating field of the distortion tensor ijA  is 
indeed an independent interaction field, analogous to the electromagnetic po-
tential jA . But it does not complement the derivative of the displacement vec-
tor, as Kadić-Edelen thought in [13], but generalizes it according to the defini-
tions (1) [3] and (2) [2]. 

Moreover, by means of the minimal interaction (2), it was possible to show 
that the anti-symmetric derivative of the tensor field ijρ  (1) is really connected 
with discrete dislocations in a solid, since the minimal interaction (2) results in 
the quantization of the Burgers vector. In the Kadić-Edelen theory, it is impossi-
ble to connect the dislocation density field ijρ  with dislocations in a solid, 
since there is no minimal interaction therein and there is no interaction 
charge-wave vector iκ  (2). 

For the first time, Kröner [15] noted the analogy between the continuum 
theory of stationary dislocations and magnetostatics. Since in static 0ij jXσ∂ ∂ = , 
the strain tensor could be represented as anti-symmetric derivative of the tensor 
potential ijΛ , which was called the Kröner potential: ij jkn in ke Xσ = ∂Λ ∂ . 
Based on logical considerations, Kröner believed that the current density ij  is 
similar to the dislocation density ijρ , and the magnetic induction jB  is ana-
logous to the strain tensor ijσ . However, the fields jB  and ijρ  are vortex 
fields and are determined in connection with the gradient invariance, and the 
vortex expressions for ij , ijσ  are a consequence of magnetostatics and statio-
nary equilibrium. In dynamics, the current density ij  and the strain tensor 

ijσ  are not vortex fields. Therefore, in the general case, the vortex density of 
dislocations ijρ  cannot be analogous to the current density ij , nor in the sta-
tionary particular case. 

In the initial interpretation of physical fields in [11], it was erroneously as-
sumed that the dislocation density field ijρ  cannot be an interaction field ana-
logous to the magnetic field jB , since there are no dislocations in the air. An 
erroneous analogy in the interpretation of physical values [11] [16], based on the 
ideas of Kröner and Kosevich [15] [17], did not make it possible earlier to obtain 
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the results presented here based on the minimal interaction (2), obtained in 1990 
from translational symmetry. 

In [2], as illustrated by the two-dimensional model, it was proved that the 
distortion tensor ijA  is a compensating interaction field (2), and the wave vec-
tor iκ  is the charge of such interaction. 

In the dynamic model, the continuity equations associated with the transla-
tional invariance of the Lagrangian in case elementary translations are a diffe-
rential representation of the law of conservation of momentum (9). Whence it 
follows, that the momentum is the charge of the minimal interaction induced by 
the subgroup of translations. 

Herein before, it was proved by direct calculations that the distortion tensor 

ijA  in a solid is a compensating field for the local representation of the transla-
tion subgroup and that the quantum momentum i ipκ =  is a charge in the 
extended derivative (2). 

Kröner and Kadić-Edelen built their theories based on analogy with magne-
tostatics and electrodynamics, respectively, and therefore nothing could be 
proved from analogy. The interaction (2) was obtained from translational sym-
metry, which is connected with the law of conservation of momentum. A quan-
tum momentum or a wave vector is the charge of the interaction (2) and deter-
mines the physical fields. Therefore, the model (2) has no and cannot have any 
dualism in the definition of physical values. The symmetry group defines the in-
teraction and this group is a subgroup of translations. The quantum momentum 
is the charge of the interaction (2), and is a result, it determines the interaction 
fields (6, 7) and their intensities (1, 8). Thus, the local representation of the 
translation sub-group ( )i i jk k X=  fixes the physical model and the minimal 
interaction (2). 

In this paper, the compensating field ijA  (2, 3) will be called the tensor inte-
raction field, since there is no tensor interaction field in gauge field theory [9], 
and it has never been previously investigated. The antisymmetric derivative of 
the interaction tensor (1), which is the density of dislocations in a solid, will be 
called the vortex intensity of the interaction tensor. The vortex intensity ijρ  (1) 
corresponds to the magnetic field in electrodynamics j jkn n kB e A X= ∂ ∂ . In the 
general case, it is not connected with dislocations and is not always quantized. 
For example, ijρ  is not quantized in a continuous medium, which has no 
minimum interaction (2). In this case, the continuous medium can be either a 
solid, or a gas or a liquid. 

As in the Kadić-Edelen theory, we complete a definition of the tensor ijA  
and introduce the fourth component of the compensating tensor field ijA  in 
the form of a velocity field iυ , which is conjugate to momentum ip  as a 
charge: i ip L υ= ∂ ∂  (5). The velocity field is converted as:  

( ) ( )ˆq i i i i iq i qa k a Тκ υ κ υ δ= + ∂ ∂ , and compensates for  

0 n n k
n

D i
Т

ψ κ υ ψ∂ = − ∂ 
∑ 

k  time derivatives of the OP. In a solid, the field iυ  
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is a generalization of the derivative iu T∂ ∂ . 

The purpose of this paper is to calculate the forces acting on the momentum 
in the field of the 4-tensor of interaction iυ , ijA . We will find these forces from 
the minimum action, by analogy with the calculation of the Coulomb and Lo-
rentz forces for electric charge in an electromagnetic field. For this purpose, it is 
sufficient to know that the 4-tensor iυ , ijA  is an independent interaction field 
and that its charge is a quantum momentum or wave vector i ipκ =   (2). 

2. Calculation of the Forces Acting on the Momentum in the  
Distortion Tensor Field from the Action Minimum 

The action describing the charge motion in an electromagnetic field ϕ , jA , 

[1], has the form: ( )d d
b

el j ja

eS A X T
c

ϕ= − − +
′ ∫ , where e is the electric charge,  

с′  is the velocity of light. Taking into account the space-time signature, the ac-
tion for the wave vector pκ  (2) in the field of the 4-tensor iυ , ijA  interac-
tion, has the form: 

( )d d
b

st i ij j ia
S A X Tκ υ= − +∫                     (10) 

Here   is the dimension factor. It is evident, that this is Planck’s constant, 
since the action has the physical dimension the same as Planck’s constant. The 
fact that the coefficient   is the Planck’s constant follows from the continuity 
equations, which for the model (2) have the form of a differential representation 
of the law of conservation of momentum (9), therefore we can write it as 

i ipκ = . However, we leave this factor in (10) and verify after calculations that 
the factor   is really Planck’s constant. 

The Lagrangian of action (10) has the form: 

st i ij j i iL A vκ κ υ= − −                        (11) 

where d dj jv X T= . Generalized momentum d d jL v  [1], for Lagrangian 

0 stL L L= + , taking into account 4-tensor iυ , ijA  (11), will be: 

d d j j i ijL v P Aκ= −                          (12) 

here jP  is common momentum, equal to 0d d j jL v P=  [1]. 

According to (11, 12), from Euler-Lagrange equations d
d j j

L L
T v X

∂ ∂
=

∂ ∂
 for 

particle in interaction tensor field we receive:  

( )d d
d d

j ij i
i i ij j i

j j

P A
A v

T T X X
υ

κ κ κ
∂∂

− = − −
∂ ∂

  
            (13) 

From where, differentiating by parts the second summand in left part (13): 
d
d

ij ij ij
k

k

A A A
v

T T X
∂ ∂

= +
∂ ∂

 and transforming the first summand in the right part by 

the well-known formula from differential geometry:  

( ) ij iq
ij j j jmn npq m

j j p

A A
A v v e e v

X X X
∂ ∂∂

= +
∂ ∂ ∂
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(here we considered that jv  and jX  are independent variables [1]), we re-
ceive: 

d
d

j ij iqi
i i i jmn npq m

j p

P A A
e e v

T T X X
υ

κ κ κ
∂ ∂∂

− = − −
∂ ∂ ∂

  
 

Then the expression for the force acting on a particle with a charge iκ  is as 
follows: 

ij iqi
j i i i jmn npq m

j p

A A
f e e v

X T X
υ

κ κ κ
∂ ∂∂

= − + −
∂ ∂ ∂

  
           (14) 

This force is the sum of two forces: the centrally symmetric and vortex forces 
of the tensor interaction field. Substituting i ipκ = , we obtain: 

ij iqi
j i i i jmn npq m

j p

A A
f p p p e e v

X T X
υ ∂ ∂∂

= − + −
∂ ∂ ∂

             (15) 

The centrally symmetric force is the expression: 

( )j i ij i i j ijf p p X A Tε υ= = −∂ ∂ + ∂ ∂                (16) 

where ijε  is the centrally symmetric intensity of the tensor interaction field (8), 
it is analogous to the electric intensity. 

In the stationary case, the force (16) has the form of j i i jf p Xυ= − ∂ ∂ . In a 
continuous medium with a density ρ , when i ip ρυ= , the resulting force re-
sults in squared velocity gradient with a minus sign in the Euler equations of 
hydrodynamics, and squared velocity in the Bernoulli equation [18]. This testi-
fies to the correctness of made calculations with the coefficient   in (10). 

The vortex force of the tensor interaction field in (14, 15), taking into account 
expression (1), has the form of: 

j jmn i m inf e p v ρ=                       (17) 

It should be noted, that the centrally symmetric and vortex forces (16, 17) 
could be written at once by analogy with electrodynamics, if we know the inva-
riant intensities of the tensor interaction field ijρ  and ijε  (1, 8), and that the 
charge is the momentum (9). The forces (16, 17) are analogous to the Coulomb 
force ( )j j j jf eE e X A Tϕ= = −∂ ∂ − ∂ ∂  and Lorentz force j jmn m nf e ev B= . 
The difference in signs before the second member of the force (16) and the 
second member of the Coulomb force is associated with the space-time signa-
ture. 

Please note that the electromagnetic interaction can be obtained by analogy 
with (2, 3) from the invariance of the Lagrangian with respect to time transla-
tions, when the wave function or the OP is a local representation of the time 
translation subgroup [16]. In case of such definition, there is no need to post-
ulate a local gauge group in the Lagrangian. Moreover, in this case there is no 
need to postulate in field theory that the electromagnetic potential changes sign 
in case of time inversion. The change in the sign of the magnetic field and the 
electromagnetic potential in case of time inversion follows from the construction 
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of extended derivative for the local representation of time translations [16]. 
Consequently, the electromagnetic potential ϕ , jA  may be considered as a 
time component of the 4-tensor of space-time distortion. 

3. The Vortex Force of the Tensor Interaction Field Aij, the  
Peach-Koehler Force 

We show that the vortex force (17) is the Peach-Koehler force in a solid [3] [19]. 
The Peach-Koehler force is a force that acts on a dislocation in a solid. For a 
continuous dislocation distribution, it has the form [13] [14]: 

j jnm in imf e ρ σ=                         (18) 

According to the continuity Equation (9), the momentum flux i mp v  in (17), 
in fact, is the strain tensor with the minus sign: i m imp v σ= − . Then the vortex 
force (17) acting on the momentum in the interaction tensor field ijA  can be 
written in the form: j jmn im inf e σ ρ= − . Using the properties of the an-
ti-symmetric Levi-Civita tensor, we find that the vortex force of the tensor ijA  
(17), which in the solid is the distortion tensor, is the Peach-Koehler force (18). 

However, Pitsch and Keller believed that the intensity acts on a dislocation in 
a solid. By direct calculations, based on the principle of least action, we proved 
that the vortex intensity inρ  of the tensor ijA  (1) acts on the momentum flux 

i m imp v σ= −  by the Peach-Koehler force (17, 18). The Peach-Koehler force acts 
on the momentum flux (17) in the same manner as the Lorentz force acts on the 
charge flow j jmn m nf e ev B= . 

Expressions for forces (17) and (18) are the same, but the meaning is poles 
apart. It is not stress field act on the dislocation density (18), as Pitsch and Keller 
[3] [19] believed, but the dislocation density, as a force field (1), acts on the 
momentum flux as a charge flow (17), and this momentum is quantum (14). 

How does it help? For example, it is known that a large Lorentz force captures 
electrically charged particles and holds plasma with a temperature of millions of 
degrees in a tokamak. In this case, the magnetic field is induced by a high cur-
rent. That’s just like the great vortex force (17) in space will capture the mo-
mentas of particles and will not let them go back, that explains the phenomenon 
of “black holes”. 

Indeed, according to (7), the source of a large field inρ  is a large pressure, 
since in gas ij ij pσ δ= − . As is known, a large pressure in a gas is generated by a 
large density fluctuation in a certain volume. Consequently, in the space of large 
field inρ  there is a large mass, and, consequently, a large gravitational field. But 
gravity cannot explain the capture of photons. As is known, the photons do not 
have mass, and they also do not return from “black holes”. However, the pho-
tons have a momentum, which is also affected by inρ  through a vortex force 
(17), and this quantum momentum is i ip κ=  . As follows from the calcula-
tions (10, 14), the vortex force (17) also acts on the quantum momentum. In 
fact, the phenomenon of “black holes” is an experimental confirmation of the 
fact that the quantum momentum is a charge for the tensor interaction field iυ , 
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ijA  (10). 
It was shown above how the vortex force of the tensor field ijA  acts in space. 

The question arises how does the vortex force (17) manifest itself in the atmos-
phere? 

In order to determine the relation between the strain tensor ijσ  and the ten-
sor ijA  in a continuous medium, we use the gauge condition for the Kadić-Edelen 
4-tensor iυ , ijA  [13] [14]: 

2
ij j iA X c Tυ−∂ ∂ = ∂ ∂                       (19) 

In contrast to the Lorentz gauge condition for the electromagnetic field [1], 
the condition (19) is called pseudo-Lorentz, this is due to the space-time signa-
ture. 

Since the distortion tensor (1) was initially determined to within a gradient of 
the displacement vector: ij ij i jA A u X→ +∂ ∂ , and similarly to j j ju Tυ υ→ + ∂ ∂ , 
then the displacement vector according to (19) satisfies the wave equation: 

22 2 2 2
i j iu X c u T−∂ ∂ = ∂ ∂ . This wave equation describes the propagation of me-

chanical oscillations in a continuous medium with c speed of sound. 
It follows from (9, 19) and the relation i ip ρυ= , which characterizes a con-

tinuous medium with a density ρ , that 2
ij ijc Aσ ρ=  in a continuous medium. 

It should be noted that here the density ρ  and speed of sound c are equili-
brium parameters of a continuous medium, they do not depend on local coor-
dinates iХ , and the 4-tensor acts as local variables ( )ijA X , ( )iυ X . 

In a gas ij ij pσ δ= − , therefore in gas ij ijA рβδ= − , where 2 1cβ ρ− −=  is the 
gas compressibility. Then the vortex intensity ijρ  (1) in the gas is as follows: 

ij jki ke p Xρ β= ∂ ∂                        (20) 

We should note, that in gas the vortex intensity is not zero, as one would ex-
pect, and the components ijρ  are proportional to the components of the pres-
sure or force gradient. At the same time, the intensity (20) in the gas has no rela-
tion to dislocations. 

In order to calculate the vortex force (17) in the atmosphere, we use expres-
sions (17, 20). Since in a continuous medium the velocity of a continuous me-
dium coincides with the flow velocity i ivυ = , the force (17) is as follows: 

j jmn i m nki kf e e p Xρυυ β= ∂ ∂ . If to plug Levi-Civita contraction of a tensor 

njm nki jk mi ji mke e δ δ δ δ= −  in this expression, we obtain the expression for the 
vortex force of the tensor field of interactions in the atmosphere in the form of: 

2 2
j m m j m

j m

p pf c c
X X

υ υ υ υ− −∂ ∂
= −

∂ ∂
                (21) 

Let’s study this expression. We consider the one-dimensional case, when the 
velocity jυ  and the force jf  lie along a straight line. Then expression (21) is 
identically zero. 

We consider two-dimensional case of a plane vortex motion. Then the force 
(21) will be equal to: 
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2 2
j jf c p Xυ−= ∂ ∂                         (22) 

This follows from the fact that the second summand in (21) is identically zero, 
since the velocity and pressure gradient are perpendicular to each other in case 
of circular motion.  

Unlike the usual force mp X−∂ ∂  acting on unit volume, which balances the 
spatial fluctuations of pressure in the atmosphere, the force (22) is directed to-
wards pressure increase. Most likely, this force is responsible for the appearance 
of vortex motion in the atmosphere in the form of cyclones and anticyclones. 
Since after the appearance of fluctuations in the pressure in the atmosphere, the 
force (22) increases this fluctuation, if vortex motion appears. In cyclones, the 
force (22) is directed from the center to the edges, and in anticyclones this force 
is directed towards the center. Thus, there is an inhomogeneous distribution of 
pressure in the atmosphere in the form of circular isobars in cyclones and anti-
cyclones. 

The force (22) is an additional force that appears in the swirling motion. In 
case of horizontal stationary rectilinear motion, the pressure gradient mp X−∂ ∂  
is compensated by force i i mXρυ υ− ∂ ∂ , since the air pressure is the density of 
air energy, and it decreases in case of increase in the kinetic energy of the air 
currents (Bernoulli law). Therefore, the appearance of additional force (22), in 
case of the horizontal movement of air, results in redistribution of atmospheric 
pressure (air energy density), and vortex motion of air currents in the atmos-
phere. 

Let’s consider the three-dimensional case of air movement using the example 
of spouts and tornadoes. As is known, a tornado is a vortex movement of air in a 
horizontal plane in a column of air, which has the form of a funnel, with an ex-
pansion upwards. We calculate the vertical component of the vortex force 3f . 
According to (21), the component 3f  has the form: 

2 2
3 3f c p Xυ−

⊥= ∂ ∂                        (23) 

where 2 2 2
1 2υ υ υ⊥ = + . Since in the horizontal plane: 1 1 2 2 0p X р Хυ υ∂ ∂ + ∂ ∂ = .  

Expression (23) is the lifting force acting in the tornado, since the gradient 

3p X∂ ∂  is directed upwards due to the upward expansion angle of the tornado 
funnel. It is clear from (23), that the higher the rotation speed in a tornado, the 
greater the lifting force.  

It is known that the pressure in a tornado falls to half of the atmospheric 
pressure. A simple calculation shows that the force (23) can be greater than the 
gravity force, for example, at a tornado height of one kilometer and a horizontal 
speed of 100 m/s:  

2 5 4 5 3 2
3 3 2 10 10 0.5 10 10 10mf р Х сβρυ ρ ρ− −

⊥= ∂ ∂ = × × × × × × = × .  
Here it was assumed that the pressure along the vertical changes uniformly, 

and the compressibility β  is inversely proportional to the pressure. These pa-
rameters are conditional, for example, the velocity can be smaller, and the pres-
sure gradient may be larger. An important point is that the acceleration of free 
fall is really achievable for a lifting force in a tornado. 
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If we ignore the gravity and the Peach-Koehler vertical force, the air move-
ment along the funnel is possible in any direction, both upwards and down-
wards. This movement is analogous to the movement of water in the riverbed in 
case of narrowing or widening of the channel. For a stationary one-dimensional 
motion, the forces 3p X−∂ ∂  and 3 3 3Xρυ υ− ∂ ∂  balance each other—they are 
equal and opposite-directed. 

If we take into account the vortex motion and the gravity force, then in case of 
increase in the rotation speed, the Peach-Koehler force can compensate for the 
gravity force. In addition, another force 3Xρυ υ⊥ ⊥− ∂ ∂  is added, which is di-
rected upwards, so in the narrower place of the tornado the speed of rotation is 
greater, which eventually results in greater lifting force in spouts and tornadoes. 

A expectable question arises: how does the vortex force (21) relate to Euler 
vortex force? Since in the course of description of the vortex motion in the air 
the Euler vortex force is followed. It is obvious that the viscosity and additional 
members of the Navier-Stokes equation are not relevant to air currents in the 
form of cyclones and anticyclones. The vortex force of Euler hydrodynamics is 
as follows: 

j jmn m npq q pf e e Xρ υ υ= ∂ ∂  

Let’s take the convolution of the Levi-Civita tensors and write it in the form 
of:  

jm
j m m

j m

f
X X

υυ
ρυ ρυ

∂∂
= −

∂ ∂
                   (24) 

In order to connect the vortex force (15, 17) with the Euler vortex force (24), 
we note that it follows from the gauge condition (19), which has the form of a 
continuity equation, that the tensor interaction field can be written in the form: 

2
ij i jA c vυ−= − . In a continuous elastic medium, when j jv υ= , the interaction 

tensor has the form of: 2
ij i jA c υυ−= − . If we plug 2

ij i jA c υυ−= −  in (1.17), we  

obtain a vortex force in the form of: ( ) ( )2 i ji m
j i m

j m

f с
X X

υυυυ
ρ υυ−

 ∂∂
 = −
 ∂ ∂ 

 or af-

ter differentiation: 

2 2 2jm i i
j m i m m j

j m j m

f с с
X X X X

υυ υ υ
ρ υ υ ρ υυ υ υ− −

   ∂∂ ∂ ∂
= − + −      ∂ ∂ ∂ ∂   

    (25) 

The first summand of the vortex force in (25) corresponds to the vortex 
member of the Euler hydrodynamics (24) multiplied by the dimensionless factor 

2 2с υ− . The second summand is additional, it is not taken into account in the Eu-
ler vortex force. 

Moreover, in a gas, as a result of convolution: ij ijA рβδ= − , the vortex force 
in the atmosphere has the form of (21). Therefore, the vortex force (17) in air is 
proportional to the pressure gradient, which explains the vortex movements of 
air in the atmosphere in the horizontal plane, connected with the change in 
pressure in the atmosphere (22). 
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The relative multiplier 2 2с υ−  appeared in (25) before the Euler vortex force 
in connection with the construction of the invariant Lagrangian (5) in field 
theory. The speed of sound is also clearly present in the gauge condition (19), 
from where the wave equation for mechanical oscillations in a continuous me-
dium with the speed of sound follows. As is well known, the Maxwell’s equations 
are also relativistic and contain the speed of light. The Kadić-Edelen equations 
were constructed from similar considerations and contain the speed of sound (5 
- 7). Taking into account that mechanical oscillations actually propagate with the 
speed of sound (19), there is no reason to be doubtful of the correctness of the 
theory construction. 

The relative multiplier 2 2с υ−  is absent in the Euler equations, since they are 
obtained by differentiation if the composite function by parts. According to (25), 
the vortex member of the Euler force gives a correct force only if a velocity of a 
continuous medium is equal to the speed of sound. For example, if speeds are 
lower than speed of sound by one order of magnitude, it gives a force that ex-
ceeds the real force by two orders of magnitude, and at speeds greater than 1 
km/s, it gives a force one order less than real one.  

Thus, the turbulences in gas and atmosphere are described by the force (21), 
and not by the vortex member in the Euler Equation (24), since the vortex 
member in the Euler equations does not take into account the relative velocity of 
the continuous medium in comparison with the speed of sound. This result is 
nontrivial, it is connected with the minimal interaction and the Lagrangian (2, 5, 
19). In principle, the Euler equations cannot describe turbulence, since the vor-
tex member in the Euler equation does not take into account the difference be-
tween the speed of sound and the velocity of a continuous elastic medium (25). 
It is known that turbulence increases with increasing speed and manifests itself 
at speeds commensurate with the speed of sound, which corresponds to the ex-
pression (21). 

In fact, forces (16, 17) in a continuous medium generalize the potential and 
Euler vortex forces, respectively. 

In case of substitution ij ijA рβδ= − , the centrally symmetric force (16) is as 
follows: 

j i i j jf p X p р Tυ β= − ∂ ∂ − ∂ ∂                  (26) 

The first summand in (26) corresponds to the potential member of the Euler 
equations. The second summand was not taken into account earlier when de-
scribing motions in a continuous medium. 

Let’s suppose that the pressure in the atmosphere changes uniformly. Then 
(26) has the form: j jp T p р Tβ∂ ∂ = − ∂ ∂ . This equation is easily integrated and 
its solution has the form: ( )0 0expj jp p p pβ β= − , where 0p  is the initial 
pressure, and 0jp  is the initial momentum. 

Whence it follows that in the homogeneous case, if the pressure in the at-
mosphere decreases, the wind will increase, and if the pressure increases, then 
wind will cease, and everyone knows this. 
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It should be also noted that the second summand in (26) plays a very impor-
tant role in the propagation of sound waves, since it annihilates the force (26) for 
the sound wave solutions. The potential member [18], which is responsible for 
the kinetic energy of the continuous medium, is neglected in the description of 
sound in Euler equations. It is obvious that it cannot be neglected, since the 
sound waves themselves are associated with the motion of a continuous me-
dium. The inclusion of the second summand in (26) solves this problem. 

Consequently, when describing motions in a continuous medium, it is neces-
sary to use not the Euler equations, but the forces (16, 17) obtained from the 
minimum of the action for the momentum in the tensor interaction field (10), 
which in the gas or liquid have the form of (21, 26). 

4. Explanation of High-Temperature Plasma by the Action of  
the Centrally Symmetric Force of the Tensor Interaction  
Field in a Gas 

Let’s consider the simplest case how the homogeneous constant centrally sym-
metric force j i ijf p ε=  (16) manifests itself in a gas. 

In a gas, the intensity ijε  is given by the scalar value: ij ijε δ ε= , just as the 
strain tensor in the gas is given by the scalar pressure ij ij pσ δ= − . Let’s write the 
equation of motion for a gas molecule in a certain volume, where a centrally 
symmetric intensity ij ijε δ ε=  acts on the momentum of the gas molecules. 
According to (16), this equation of motion is as follows: 

j jp t p ε∂ ∂ =                         (27) 

As is known, the solution of Equation (26) is the exponential:  

( )0 expj jp p ετ=  

where τ  is the time during which the field acts on gas molecules. According to 
this solution, in the volume where the field acts, all gas molecules will be accele-
rated exponentially. In this case, the scalar field ε  will increase only the mo-
mentum of all gas molecules, without changing the direction of their motion 
during a free path. Consequently, the field ε  in a certain volume of the gas in-
creases the kinetic energy of the gas molecules. 

If the field ε  is large, then its action in a certain volume of gas will result in 
sharp increase in the kinetic energy of all gas molecules in this volume. It is 
known that the average kinetic energy of gas molecules determines its tempera-
ture. Consequently, the action of a large field ε  will lead to the appearance of a 
high-temperature plasma in a gas. Since in case of the exponential growth of the 
kinetic energy of molecules, a moment will surely arise when the collisions of the 
molecules cease to be elastic and electromagnetic radiation will appear. 

The action of a large field ε  in a certain volume results in high-temperature 
plasma and describes an explosion. It is obvious that in case of explosion the 
temperature or average kinetic energy of the gas molecules in a certain volume 
sharply increases. As a result of a sharp increase in temperature, the gas pressure 
in such volume also sharply increases, and therefore a shock wave is formed. 
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It is believed that the explosion is associated with a chemical or nuclear reac-
tion. It should be noted that this does not contradict the conclusion just made, 
because the heat released during the reaction is the change in the average kinetic 
energy of the gas molecules. 

However, there are many phenomena of nature where there is no chemical or 
nuclear reaction, but there is an explosion and a high-temperature plasma. For 
example, an explosion is observed in case of shot of railgun, although it is known 
that there is no gunpowder in the gun [20]. 

The same phenomenon is observed when meteorites burn in the Earth’s at-
mosphere, when chondrites (stones consisting mainly of iron and silicon) burn 
and vaporize in high-temperature plasma in the snap of a finger. There are at-
tempts to justify such phenomena by friction in the atmosphere, density of 
which is a million times smaller than on Earth. 

The explosion of the Chelyabinsk meteorite is another example of an explo-
sion without a chemical or nuclear reaction. In the explosion of the Chelyabinsk 
meteorite, a gas (air) also exploded as a result of the centrally symmetric force of 
the tensor interaction field acting on the momentum of air molecules (16). At 
first, the meteorite broke into flames when the air, as a continuous medium or 
“dense layers of the atmosphere”, was destroyed at an altitude of 95 - 100 km, 
and a shell of high-temperature plasma formed around it. At a point about thirty 
kilometers above the Earth, the pressure in high-temperature plasma became 
about 2 - 3 thousand atmospheres due to the natural increase in atmospheric 
density during the fall of the meteorite. This pressure crushed the meteorite 
(chondrite) into molecules and turned it into a “stone cloud”, consisting mainly 
of molecules of compounds of iron and silicon. 

Then the “stone cloud” exploded like 500 thousand tons of trotyl with a pres-
sure of billions of atmospheres in the sky above Chelyabinsk, while the weight of 
the meteorite (chondrite) itself was only 10 thousand tons. It was not trotyl, but 
the usual chondrite stone which in terms of its composition is similar to ore. Ore 
melts in blast furnaces, but never explodes. The increase in pressure during the 
formation of a “stone cloud” to a billion atmospheres can be formally explained 
by the increase in pressure in the atmosphere due to an increase in its density 
from the air density at an altitude of 30 km to the density of the “stone cloud”. In 
fact, the process of change in the pressure during an explosion is more complex, 
but a detailed description of the explosion is beyond the scope of this paper. 

Now it becomes clear that without centrally symmetric strain ij ijε δ ε=  it is 
impossible to explain and describe a high-temperature plasma. Since sharp in-
crease in the temperature of the gas in case of an explosion in a certain volume is 
just described by an exponential increase in the kinetic energy of gas molecules 
in this volume. Such a description of a high-temperature plasma is obvious. Just 
earlier, the reason for the appearance of the field ε  (6, 7) was not clear, and it 
was unclear how it works (27). Therefore, until now the explosions are measured 
by the TNT equivalent, and not by the power characteristic—by the centrally 
symmetric intensity of the interaction tensor (8). Most likely, all explosions are 
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similar, and the mechanism of acceleration of gas molecules exponentially (27) is 
the same during explosions.  

The Equation (27) has solutions in the form of an exponential only because 
the charge for the intensity ε  is momentum (16). The fact that the momentum 

i ip κ=   is a charge was proved above by direct calculations of the extended de-
rivative (2) induced by the translation subgroup. 

How can electromagnetic phenomena be explained without knowing the exis-
tence of electrical and magnetic intensity? Without the equations of state for the 
electromagnetic field (without Maxwell equations), there would be no capaci-
tors, no transformers, no cell phones, but there would be knowledge of electro-
magnetic forces at the level of the verification of the attraction of electrified or 
magnetized items. 

It is also impossible to describe the phenomena of nature without the equa-
tions of state for the intensities of the 4-tensor interaction (6, 7). It is impossible 
to replace intensity (1, 8) and forces (16, 17) by any other forces in nature. 

We note that the writing of the action (10) became possible only after the de-
rivation of the fundamental minimal interaction with the compensating tensor 
field ijA  (2), the charge of which is a quantum momentum i ip κ=  , which 
ultimately defines this interaction. 

The connection between the theory of Landau phase transitions for OP with 
local translational properties [2] and quantum mechanics is not unexpected, 
since the localization of the transformation properties of the OP in the Landau 
theory ( )i i jk k X= , which was used in the minimal interaction construction (2, 
3), means that in a macroscopic small volume [10] with the coordinate X  the 
physical state is described by the wave function. In other words, it is possible to 
determine locally the wave vector in a macroscopic small volume with a coordi-
nate X . But this is the basic postulate of quantum mechanics, which says that 
any state can be locally represented as a wave. 

5. Conclusions  

Consequently, we have shown that the tensor interaction field: iυ , ijA , like the 
electromagnetic field, has two intensities—vortex ijρ  (1) and centrally symme-
tric ijε  (8), which act on the momentum as on charge (16, 17) and are deter-
mined from the equations of state (6, 7), analogous to the Maxwell equations. 

The vortex force (17) in a solid is the Peach-Koehler force (18). In the general 
case, it acts on the momentum flux (17), just as the Lorentz force acts on the 
flow of charged particles. 

The centrally symmetric force (16) acts on the momentum in the same way as 
the Coulomb force acts on the electric charge. The action of a large centrally 
symmetric intensity in a certain volume on the gas molecules: j jp t p ε∂ ∂ =  
(27) results in an exponential increase in the magnitude of the momentum 

( )0 expj jp p tε= , and consequently, of the kinetic energy of the gas molecules 
in this volume, which explains and describes the high-temperature plasma. Here 
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it is assumed that the field ε  I not changed significantly during the mean free 
time. 

The action of a large vortex force j jmn i m inf e p v ρ=  (17) is analogous to the 
action of a large Lorentz force in a tokamak. A large vortex force in space cap-
tures momentums. This explains the phenomenon of “black holes”, an area with 
a large gravitational field in the space. A source of high intensity ijρ  (1) in a 
gas is a large pressure in a certain volume (7). Consequently, a large density is 
observed in this volume, with a large gravitational field. But the gravitational 
field does not act on photons, since photons do not have mass. However, a large 
vortex force (17) acts on the photons, since photons have momentum, so they 
also do not return from the “black holes”. 

The vortex force of the tensor interaction field in a continuous medium gene-
ralizes the Euler vortex force in a continuous medium. In the case of horizontal 
vortex motion in the atmosphere, the vortex force (21) is proportional to the 
pressure gradient and is directed towards increase in the pressure  

2 2
j jf c p Xυ−= ∂ ∂  (22), rather than decrease in the pressure, as the force 

j jf p X= −∂ ∂  acts in the atmosphere. Therefore, the vortex force (22) is re-
sponsible for the appearance of stable regions of low and high pressure in the 
atmosphere, in cyclones and anticyclones. 

An expectable question arises when forces act (16, 17) and when quantum ef-
fects are observed, for example in a gas? since the gas is not always a 
high-temperature plasma. What are the conditions for an explosion and what is 
an explosion? 

What is the vortex intensity ijρ  in the air? 
We will answer all these questions in the next paper. It will be shown that the 

analogy between the compensating fields: the interaction tensor ijA  and the 
electromagnetic potential jA  can be traced not only for the forces (16, 17) and 
the equations of state (6, 7), but also for phase transformation or phase transi-
tions of these fields. 

In 1964, Higgs described the phase transitions when the unobservable com-
pensating fields of minimal interaction, for example (2, 3), change their symme-
try and materialize [21] [22]. He demonstrated that a spontaneous symmetry 
breaking of the compensating fields is possible, when an unobservable compen-
sating field becomes observable. 

For an electromagnetic field, the Higgs transition is a transition to the super-
conducting state with the Meissner effect [22]. Such transitions are well studied. 
In the superconducting state, the electromagnetic potential materializes; it be-
comes proportional to the current density, and the London equations [12] [22] 

2
i iA jδ= −  are performed, where ij  is the current density, and δ  is the pe-

netration depth of the magnetic field into a superconductor. In this case, the 
gradient symmetry of the Maxwell equations is violated. 

In the next paper it will be demonstrated that for a compensating tensor field 
of interaction ijA  (2), a phase transition with a violation of the gradient sym-
metry of the state Equations (6), (7) is a transition to the elastic state of a conti-
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nuous medium. In an isotropic continuous medium with ρ  density, the tensor 

ijA  materializes and becomes proportional to the strain tensor: 2
ij ijc Aσ ρ= . 

This correlation is similar to the London equation in superconductivity. 
Just like that the superconducting state holds the magnetic field, the conti-

nuous medium holds the field ijρ  (1), which is realized as linear defects (or 
“holes”), because the continuous medium “does not tolerate emptiness”. The de-
struction of a continuous elastic medium in a solid is always accompanied by the 
appearance of dislocations and cracks. Such processes are called plastic deforma-
tions and are just described by the distortion tensor ijA  (1). 

The next paper will demonstrate that the destruction of a continuous elastic 
medium is a phase transition of the destruction of the material or elastic state of 
the tensor field ijA . This phase transition is analogous to the phase transition of 
the destruction of the superconducting state of the electromagnetic field. Just as 
a critical current destroys the superconducting state, the critical pressure in the 
same manner results in penetration of the field ijρ  into the continuous me-
dium, resulting in the destruction of continuous elastic medium. In a solid, the 
cracks form as a result of such a transition, and lightning and explosions occur 
in the gas.  
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