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Abstract 

The hypothesis of the absolute reference system, unlike the existing physics 
theories, is not based on the concept of relativity (that is, it is not based on a 
relativistic description like Galileo’s relativity or Einstein’s theory of relativi-
ty). The absolute reference system is the framework of material in which any 
activity in the universe has begun. Also, each inertial reference system is ac-
companied by a peculiar electromagnetic wave due to the structure of matter. 
The physics of the absolute system of reference is based on three basic prin-
ciples. The first of these principles is that the electromagnetic field quantita-
tive estimates are made in the inertial reference system of the source of the 
electromagnetic field. The second principle is that the basic constituent of 
matter is “bound photons”, which make up the internal structure of the ele-
mentary particles. The third principle is that the framework of material of an 
inertial system undergoes a contraction of length which is a real physical 
contraction and a corresponding real change in “time flow”, not due to the 
geometry of space-time, but is due to the internal operation of the mi-
cro-structure of matter. These principles have the effect of changing the rela-
tivistic physical magnitudes, such as velocity, momentum and kinetic energy, 
into physical magnitudes described as absolute. This theory is consistent with 
experimental data so far and provides satisfactory answers to physics prob-
lems such as dark matter, particle physics experiments to confirm the dy-
namics, interpretation of experimental results of measurement of neutrinos 
velocity that are incompatible with the relativity, and magnetic induction ex-
periments which are not explained by the classical electromagnetic theory. 
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1. Introduction 

The introduced hypothesis in the present study is the existence of an absolute 
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reference system (something like the known as the “aether reference system”, 
which was considered at the beginning of the 20th century as an incorrect as-
sumption after the Michelson-Morley experiment, ref. [1], chapter 2). We will 
see in the next section that (based on the relevant conditions set out in the same 
section) it is not possible, according to this hypothesis to locate the absolute ref-
erence system by implementing this experiment. Also at the present work, is 
considered as a basic criterion of correctness of a theory the agreement between 
the theoretical results and all the experimental data so far. 

We will examine physical phenomena and experiments carried out in an iner-
tial system of reference1 (possibly in a laboratory in the land reference system), 
based on the introduced hypothesis of the absolute reference system. This con-
sideration gives a confirmation of the theoretical results relative to the corres-
ponding experimental data, as will be seen below2. 

2. Electromagnetism 

The present consideration of electromagnetic equations, is based on the exis-
tence of an absolute reference system. Based on Faraday’s induction law3, we will 
see how the equations of Maxwell’s electromagnetic theory are formulated. The 
system of units, used in this section, is the international (MKSA), as opposed to 
the reference literature where the system used is Gaussian. 

The theoretical analysis in this chapter concerns the study of electromagnetic 
phenomena, which are observed in an inertial reference system, the frame of 
reference of electromagnetic interactions, based on the hypothesis of the abso-
lute reference system. The space-time position ( ), tr  refers to the position r  
of an elementary surface moving at a velocity of d dt=u r  relative to the iner-
tial reference system of the physical arrangement which causes the electric 
and/or magnetic field at the time t, where the velocity u  and time t are meas-
ured with the clock and the physical measure of length of the inertial reference 
system of the experimental setup. This assumption leads to a universality in the 
formulation of these equations. The resulting expressions for the electric and 
magnetic fields are independent of the observer reference system, since they de-
pend only on the reference system of the source of electromagnetic field. 

2.1. The Electric Field 

We first consider a space in which there is a non-homogeneous magnetic field 
( ), tB r , which is created by a physical arrangement in the inertial reference sys-

tem of the laboratory. This magnetic field, generally, is changing in time. The 

 

 

1As an inertial reference system, we consider a reference system with an adapted Cartesian coordi-
nate system, which is moving at constant speed with respect to the absolute reference system, but 
which includes a physical body and is also characterized by the corresponding “contraction coeffi-
cient” of length and time, as shown in the theoretical analysis set out in the following sections. 
2About experimental confirmation of particle dynamics from the point of view of the hypothesis of 
absolute reference system see reference [2], Sections 1.3, 2.4 and 3.9. 
3Reference [3], paragraph 6.1, Faraday’s Law of Induction. 
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elementary magnetic flux d magΦ , passing through an elementary surface ds  
moving with a velocity u , measured with the measuring instruments of the la-
boratory, is: 

( ) ˆd , dmag t sΦ = ⋅B r n                      (2.1) 

where n̂  is the unit normal vector. 
The instantaneous rate of change of the elementary magnetic flux through the 

elementary surface ds , which is obtained using the clock of the inertial refer-
ence system of the laboratory, is: 

( ) ( )d ,d ˆd d
d dmag

t
s

t t
Φ = ⋅

B r
n                    (2.2) 

provided that n̂  is independent of space and time, due to its fixed orientation, 
if there is no rotation. In such a rotation we will refer in the subsection 2.7. 

The total instantaneous rate of change of the magnetic flux, through a surface 
S (which moves with a velocity u , without deforming or rotating), at a moment 
t, always according to the laboratory clock, will be: 

( ) ( )d d ,d ˆd d
d d d

mag
magS S

t
s

t t t
Φ

= Φ = ⋅∫ ∫
B r

n                 (2.3) 

We assume that the surface S is surrounded by the closed curve C. The in-
duced electromotive force along the closed C curve is: 

d C
C C

W
E

e
= ∫                           (2.4) 

where d CW  is the elementary work of moving the charged particle at a distance 
d . The calculated electromotive force, at the given moment t, in the inertial ref-
erence system of the laboratory and according to the clock of the same reference 
system, along the C curve, is given by the following relation: 

( ) ( )d d ,
ˆ, d d

d d
mag

C C S

t
E t s

t t
Φ

= ⋅ = − = − ⋅∫ ∫
B r

E r n



                (2.5) 

where ( ), tE r  the electric field as a function of time and position. Using the 
Stokes theorem we get a generalized relation for the electric and the magnetic 
field: 

d
dt

∇× = −
BE                           (2.6) 

Since d dt=u r  we get: 

( ) ( ) ( ) ( )d , ,
,

d
t t

t
t t

∂
= ⋅∇ +

∂
B r B r

u B r                  (2.7) 

moreover:  

( ) ( ) ( )∇× × = − ⋅∇ + ∇ ⋅u B u B u B                  (2.8) 

Undoubtedly on any randomly closed surface S, at a given moment t, the total 
magnetic flux that permeates this surface is zero (that is, ( ) ˆ, d 0

S
t s⋅ =∫ B r n



), 
therefore 0∇⋅ =B  and this is consistent with the known expression:  
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= ∇×B A                             (2.9) 

The resulting differential equation takes the form of: 

( )
t

∂
∇× = ∇× × −

∂
BE u B                     (2.10) 

According to the last two relations, the expression for the electric field is: 

t
φ ∂

= −∇ − + ×
∂
AE u B                      (2.11) 

The quantity φ  is a scalar electric potential, which can also be derived from 
any existing distribution of electric charge in the space, corresponding to a vo-
lume charge density ρ , at a particular spacetime position ( ), tr . 

2.2. The Magnetic Field 

We assume here the existence of a non-homogeneous and time-varying electric 
field ( ), tE r , produced by a physical arrangement in the inertial reference sys-
tem of the laboratory. The elementary electrical flow d elecΦ , passing through an 
elementary surface ds  moving at a velocity u , measured with the measuring 
instruments of the laboratory, is: 

( ) ˆd , delec t sΦ = ⋅D r n                     (2.12) 

where n̂  the unit normal vector, 0=D E , and 0  the vacuum dielectric con-
stant. The instantaneous rate of change of the elementary electric flux through 
the elementary surface ds  is: 

( ) ( )d ,d ˆd d
d delec

t
s

t t
Φ = ⋅

D r
n                   (2.13) 

and therefore in analogy to the calculation of the electromotive force previously 
defined in the preceding section, we define the magnetomotive force d⋅∫H 



 as 
the instantaneous rate of change of the electric flux, according to the following 
relation: 

0
d d ˆd d

d d
elec

C S
s

t t
Φ

⋅ = = ⋅∫ ∫



EH n                 (2.14) 

From this relation, and also the known expressions 0µ=B H  and 
2

0 0 1 cµ = , we get the following generalized relation for magnetic and electric 
field: 

2

1 d
dtc

∇× =
EB                         (2.15) 

while for the total derivative of electric field: 

( ) ( )d
dt t

∂
= ∇ ⋅ −∇× × +

∂
E Eu E u E                 (2.16) 

Taking into account the relations 0ρ∇ ⋅ =E   and ρ=j u  ( ρ  is the 
charge density per unit volume, j  is the current density), we get the differen-
tial equation: 
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( )0 2 2

1 1
tc c

µ ∂
∇× = − ∇× × +

∂
EB j u E                 (2.17) 

The dot product of ∇  and each member of last equation, give us the equa-
tion of continuity: 

0
t
ρ∂

∇ ⋅ + =
∂

j                           (2.18) 

2.3. Correlation with Maxwell Equations 

As can be seen from the Equations (2.6) and (2.15) the electric field can be at-
tributed as a rate of change of the magnetic field and vice versa. But there is 
something that differentiates this image. The expression (2.11) for the electric 
field includes the term φ−∇ , which is attributed to the existence of electric 
charge. A corresponding term does not exist in the expression (2.17), except for 
the term 0µ j , which is attributable to electric charge movement and there is no 
magnetic monopole (that is, there is no a net “magnetic charge”). Therefore, the 
primary field is electric, while the magnetic field is generated by the changing 
electric field, or by the motion relative to the source of the electric field. 

Also, from the Equations (2.6) and (2.15), the following differential equations 
for the electric and magnetic field arise: 

( )
2

2 2

1 d 0
dc t

∇× ∇× + =
EE                   (2.19) 

( )
2

2 2

1 d = 0
dc t

∇× ∇× +
BB                   (2.20) 

In a random but stable position r , that is d d 0t =r , if there is no electric 
charge in that position, which means 0∇⋅ =E , the last two relations result in 
the following wave equations4: 

2
2

2 2

1 0
c t

∂
∇ − =

∂
EE                        (2.21) 

2
2

2 2

1 0
c t

∂
∇ − =

∂
BB                        (2.22) 

A more elegant form for the expressions of electric and magnetic field arises 
by defining two quantities of electric and magnetic field ME  and MB  which 
are the Maxwell’s classical expressions for the electric and the magnetic field5, 
according to the following equations: 

M t
φ ∂

= −∇ −
∂
AE                        (2.23) 

0 2

1
M tc

µ ∂
∇× = +

∂
EB j                      (2.24) 

 

 

4The corresponding equations for a medium which is homogeneous are in reference [4], paragraph 
1.2, THE WAVE EQUATION AND THE VELOCITY OF LITE (Equation (7)). 
5Ref. [3], paragraph 6.3, Maxwell’s Displacement Current, Maxwell Equations and paragraph 6.4, 
Vector and Scalar Potentials. 
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Using the last two equations, we get the following expressions: 

M= + ×E E u B                       (2.25) 

2

1
M c

= − ×B B u E                      (2.26) 

Considering that the symbol   refers to component of electric or magnetic 
field which is parallel to the velocity u , while the symbol ⊥  refers to compo-
nent which is perpendicular to the velocity u , and that ( ) 1 22 21 cγ

−
= − u , the 

following expressions for the electric and magnetic field are taken: 

M=E E
 

                        (2.27) 

( )2
M Mγ⊥ ⊥= + ×E E u B                   (2.28) 

M=B B
 

                       (2.29) 

2
2

1
M Mc

γ⊥ ⊥
 = − × 
 

B B u E                   (2.30) 

It is clear that the electromagnetic field expressions E , B  and ME , MB  
differ because the expressions of E , B  depend on the velocity u , i.e. they in-

clude the kinematic terms M×u B , 2

1
Mc

− ×u E , and the factor 2γ , while the  

expressions of ME , MB  are not dependent on the velocity u  and are the 
corresponding expressions for a charged particle that is being in the inertial sys-
tem of the source of the electromagnetic field, that is 0=u . 

2.4. Electromagnetic Field and Photons 

For an elementary photonic electromagnetic wave the solution of the Equation 
(2.21) for the electric field of a photon is in the form:  

( )
0ei t

ph ph
ω⋅ −= k rE E                        (2.31) 

where k  is the wave vector and 0phE  the amplitude vector of the photon 
electric field. If we consider that Z axis of a Cartesian coordinate system is in the 
direction of the vector k , then the electric field can divided into two compo-
nents, namely the x component and the y component:  

( )
0 ei kz t

ph x ph x
ω δ− +=E E  

( )
0 ei kz t

ph y ph y
ω−=E E  

where the amplitudes and the relative phase δ  between the two components 
are initially arbitrarily defined. For example if 0δ =  the polarization is linear, 
while if π 2δ =  and 0 0ph x ph y=E E  the polarization is circular (see [5], chap-
ter 3, paragraph 3.6.2 The electromagnetic Field and Photons). 

In a Coulomb field derived from an elementary charged particle, the motion 
of the photons that are force carriers of electrostatic interactions must be iden-
tical for all photons. We define as quantities with index i the quantities which 
correspond to a photonic wavelength iλ . Also, we consider that the radial 
component of the speed of photonic quanta, with respect to a Cartesian coordi-
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nate system whose axis of origin is at the center of mass of the above-mentioned 
elementary particle, is d du r t= , and their emission rate, for a wavelength iλ , 
is constant and equal to: 

d
d d

i
i

N
R

t
=

Ω
                        (2.32) 

where d iN  is the number of photons of wavelength iλ , in a differential solid 
angle dΩ , in a differential time period dt . We define the constant quantity iη  
equal to ( )d d di iN r R uΩ = . The density of the photonic quanta, for a particu-
lar wavelength iλ , in a differential volume dV  is: 

2 2

d d
d d d

i i i
i

N N
V r r r

η
ρ = = =

Ω
                   (2.33) 

We now assume that in a fixed small volume Vδ , for a particular wavelength 

iλ , there are iNδ  photons that are force carriers of electrostatic interactions. 
The wave vector, for each photonic quantum, is equal to ik , and the corres-
ponding photonic quantum mass is equal to 

iphm . 
Because of the spherical symmetry, the total electric field is in the radial direc-

tion. We define the quantity 0riphE  as the radial component of the amplitude 
vector of the photon electric field. The sum of all elementary electric fields in 
volume Vδ , for a particular wavelength 2πi ikλ = , is given by the equation: 

( ) ( )
0 0

1
e e

i
i i j i i

i ri r

N
i t i t

s ph i ph
j

E E N E
δ

ω δ ω δδ⋅ − + ⋅ − +

=

= =∑ k r k r             (2.34) 

where ( )1e ei jN ii
ij Nδ δδ δ

=
= ∑



 . 
Therefore, the electric field iE  at one point, for a particular wavelength iλ , 

will be given by the relation: 
( )

0 e i i
ri

i t
i i phE A E ω δρ ⋅ − += k r                     (2.35) 

where A is a constant quantity. The real part of the electric field iE  is 

( ), 0 cos
rii r i ph i iE A E tρ ω δ= ⋅ − +k r                 (2.36) 

The effective value ,i efE  of the electric field iE , that comes from the 
time-mean-value of the quantity 2

,i rE , is given by the equation: 

, 0
1
2 rii ef i phE A Eρ=                        (2.37) 

We assume that a photonic quantum occupies a volume equal to 
iphv . 

Therefore, the density   of the transmitted kinetic energy6 of the photonic 
quantum is equal to ( ) ( )2

2
i i ir ph phk m v , where 

ir
k  is the radial component of 

ik . According to the known relation ( ) 2
0 01 2

riphE=   we get 

0
0

i
ri

i i

r
ph

ph ph

k
E

m v
=




                       (2.38) 

where 0  is the dielectric constant of the vacuum. Since the magnitude of the 

 

 

6On photonic momentum and energy we will refer in detail in Section 4. 
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radial component of the wave vector is 
ir ik r= ⋅k r , the total electric field for a 

particular wavelength 2πi ikλ =  is given by the equation: 

( )
3 e i ii ti

i iE g
r

ω δ⋅ − +⋅
= k rk r

                   (2.39) 

where ig  is a constant quantity, and is given by the relation: 

02
i i

i
i

ph ph

A
g

m v
η

=



                      (2.40) 

The total electric field is: 

i
i

E E= ∑                            (2.41) 

To see under what conditions this last expression of the total electric field is a 

solution of the Equation (2.21), we have to calculate the quantity 
2

2
2 2

1 i
i

E
E

c t
∂

∇ −
∂

. 

For a particular wavelength 2π kλ =  the corresponding electric field is:  

( )
3 ei tE g

r
ω δ

λ
⋅ − +⋅

= k rk r
                      (2.42) 

and the resulting relations are:  

( ) ( )
2 2

2 2
5 3

6 2 ei ti ikE g k E
r r

ω δ
λ λ

⋅ − +
 ⋅
 ∇ = − + −
 
 

k rk r
 

2 2

2 2 2

1 E
E

c t c
λ

λ
ω∂

− =
∂

 

Therefore since 2 2 2k cω=  and according to relation 2.21 we get the equality 
( ) ( )2 23 kr⋅ =k r . So, by defining r v= +k k k  and r rk = k , v vk = k , where 

rk  is the radial component of k  and vk  is the perpendicular to the radial 
component, the vk  is related to rk  as follows: 

2v rk k=                            (2.43) 

The interpretation of this result is that the motion of a photonic quantum, 
that is a force carrier, in the Coulomb field is a synthesis of two motions, one of 
which is radial and one perpendicular to it. Therefore, since the component of 
photon momentum, which is perpendicular to the radial component of motion, 
is equal to vk , there is a corresponding angular momentum. Because of the 
spherical symmetry, the vector of resultant angular momentum is parallel to the 
direction of radial component of motion. Therefore the motion of the photonic 
quantum is a helical motion with its axis parallel to the radial component of mo-
tion, with momentum equal to k , and velocity equal to the speed of light in 
the vacuum c. Also, the angular frequency ω  is divided into two angular fre-
quencies, one that corresponds to the radial motion equal to rω , and another 
that corresponds to the circular motion equal to vω . The frequency that corres-
ponds to the circular motion leads to a stationary wave. 

We define as u the radial component of the velocity and as v the vertical 
component. So, according to the above, taking into account the relations 
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c = +u v , 2 2 2
r vk k k= + , r rk u ω= , v vk v ω= , the following relations will apply:  

33
2r vk k k= =  

2v rω ω=                            (2.44) 

33
2

c u v= =  

This whole picture is no other than that of a bound photon, which is referred 
to as the smallest elementary particle7 and constitutes the smallest structural 
element of matter. The bound photon has a velocity of u  and contributes to 
the radial component of the electric field, which is the Coulomb field. This ele-
mentary particle is also the force carrier of electromagnetic interactions. 

2.4.1. Contraction of Length and Time 
Let us examine an example, where we assume that the previous mentioned 
bound photon is a part of a particle, and that the orbit of the particle has the 
shape of a closed orbit in space, with respect to a coordinate system YZX  in 
the absolute reference system. Also we assume that, in a second case, in addition 
to the previous orbit, the particle appears to be moving with respect to the abso-
lute reference system, with an extra constant velocity u  parallel to the X  axis. 
The moving particle in the second case, defines an inertial system of reference to 
which is fitted a coordinate system ′ ′ ′X Y Z . 

We will calculate the total passage time of the photon through the closed orbit 
in the first case and the corresponding total time when it has acquired an extra 
velocity u  with respect to the absolute reference system. We consider that the 
geometric shape and dimensions of the closed orbit in the second case contracts 
in the direction of the velocity u  with respect to that of the absolute reference 
system, according to the Lorentz’s contraction. A differential segment 0d  of 
the closed orbit of the bound photon (in the first case) in the absolute reference 
system ( YZX ) and a corresponding differential segment d  (in the second case) 
in the inertial reference system ( ′ ′ ′X Y Z ) will be correlated as follows: 

( )2 2 2 2 2
0d d sin cosθ γ θ= + 

                (2.45) 

were ( ) 1 22 21 u cγ
−

= − . The corresponding differential length d ′


 of the path 
of the bound photon, in the second case, as shown in the absolute reference sys-
tem, will be: 

d d dτ′ = + u 
                        (2.46) 

where dτ  is the differential time of the moving of the photon along the diffe-
rential distance d ′


, measured by a clock in the absolute reference system. Ac-

cording to the relation (2.46) we will have: 
2 2 2 2d d d 2 d d cosu uτ τ θ′ = + +                   (2.47) 

 

 

7Concerning the structure of the bound photons, an extensive reference is made to the subsection 
4.1. 

https://doi.org/10.4236/jamp.2019.73033


K. Patrinos 
 

 

DOI: 10.4236/jamp.2019.73033 440 Journal of Applied Mathematics and Physics 

 

Since the photon has been moved at a distance d ′


, in the time interval dτ , 
and the measurement is done in the absolute reference system, according to the 
relation d d cτ ′=   the last equation takes the form: 

2 2 2 2d d cos d sin cosu
c

γ θ γ θ γ θ′ = + +               (2.48) 

In these circumstances, the closed integral of the first term of the second 
member of the previous equation will be 2 d cos 0u

c
γ θ =∫ 



, so the calculated 
time is: 

2 2 2d sin cosT
c
γ θ γ θ= +∫                   (2.49) 

The corresponding calculated time, in the absolute reference system (in the 
first case), is: 

0 0
1 dT
c

= ∫                         (2.50) 

From the last relation and relation (2.49), the total time for moving of the 
bound photon through the closed orbit in the second case, is: 

0dT
c
γ

= ∫                        (2.51) 

The resulting correlation between the estimated total times is: 

0T Tγ=                         (2.52) 

According to hypothesis of absolute reference system all particles have 
bound-photons as structural components and they exhibit wave behavior. The 
contraction of length is accompanied by this wave behavior. As can be seen from 
the preceding example of calculating the total time for moving of the bound 
photon through a closed orbit, if we transfer this image to the structural ele-
ments of the particles, then the physical contraction of length and time will en-
tirely occur in the inertial reference system. 

But there is one substance, the aether, which has the property of an elastic 
medium which is distributed in the universe. Matter and energy owe their exis-
tence to this elastic behavior of this substance. In particular, photons, electro-
magnetic waves and fields are oscillations which propagate in this substance, and 
its elasticity is the cause of photon capture within the particle space, such as an 
elastic membrane oscillating at various points in coordination. Therefore, since 
the particles are composed of bound photons, they are included in this oscillat-
ing elastic medium. 

However, the contraction of length is not perceived by an observer of an iner-
tial frame of reference, due to the corresponding contraction of the natural 
measure of length. Considering as the unit of time the calculated time of the 
closed trajectory of the previous example, since the clock of the inertial system 
will operate at a corresponding slower rate, the speed of a bound photon in the 
vacuum is again measured equal to the known value c. 
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This result is also used in the next subsection where the Doppler effect is be-
ing considered. Also, the movement of the “bound photons”, which are struc-
tural elements of the particles, is a synthesis of the transporting movements (due 
to the move of the particles), and internal motions (in the inner particle space). 
These internal motions are considered as closed trajectories in the correspond-
ing inertial frame of reference. 

It is obvious that such a closed trajectory of a photon is inconceivable in 
modern physics, but such a kind of trajectory is not at all observable (since the 
only observable photons are the “free photons”, which are propagated in a 
straight line). 

Since the rate of operation of time gauges in the inertial reference system of 
our example is γ  times slower, this will result in a slowing of energy exchanges 
of the particles with the environment, resulting in longer life spans of these par-
ticles. The contraction rule will also apply to a photon emitted by a source in the 
inertial reference system, but also to a field. Also, a clock in the absolute refer-
ence system will show γ  times more time than a clock on the inertial frame of 
reference, provided that the two clocks were initially synchronized and we then 
correlate their indications at any time8. 

Therefore, according to all the above, the actual contraction, in which the 
contraction factor is γ , relates not only to matter but also to the fields. The im-
age of the dynamic lines of an electric field of an elementary electric charge lo-
cated in the inertial frame of reference, for an observer in the absolute reference 
system, will be an image that resulting from contraction. However, for the ob-
server in this inertial system, the image of the electric field remains unchanged, 
as if it has not been contracted, since the physical measure of length is con-
tracted, according to the same contraction factor γ . The locations and distances 
that are estimated during observation of a physical phenomenon are determined 
with the physical measure of length of his inertial system, so no contraction is 
observed. Under these conditions, all physical phenomena apply to any inertial 
frame of reference, without taking into account or perceiving physical contrac-
tion in these inertial systems. 

Therefore, all inertial frames of reference are equivalent in terms of all physi-
cal phenomena. For example, the Michelson-Morley experiment9 will give the 
same results to any inertial reference system, thus excluding the possibility of 
measuring Earth’s speed with respect to the absolute reference system, using this 
method. 

The equivalence of all reference systems here is not due to space-time trans-
formations, such as the Lorentz or Galileo transformations, but to the structure 

 

 

8The relativity of simultaneity, and the special theory of relativity in the whole, is not taken into ac-
count here, since our initial assumption is based on the existence of an absolute reference system. 
We accept here that two simultaneous events in a reference system will be simultaneous in any other 
reference system. 
9Ref. [1], chapter 2 Perplexities in the propagation of light, PRELUDE TO THE 
MICHELSON-MORLEY EXPERIMENT and chapter 3 Einstein and the Lorentz-Einstein 
transformations, PREAMBLE: THE CONTRACTION HYPOTHESIS. 
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of matter and to purely physical causes as are described in this section and in the 
following sections. 

2.4.2. The Charge and the Force Carrier of Electromagnetic Interactions 
The scope of this subsection is the quantification of charge of a particle and the 
study of microstructure and operation of the force carrier. According to the rela-
tions 2.37 and 2.38 the effective electric field, for a particular wavelength iλ , is 

, 2
02

i

i i

i r
i ef

ph ph

kAE
r m v

η
=




                  (2.53) 

Therefore, the Coulomb field is given by the relation: 

2 2
0 04π 2

i

i i

i r

i ph ph

kq A
r r m v

η
= ∑ 

                (2.54) 

and the charge q of the above mentioned particle is 

04π
2i

i i

i r
i ph ph

q A n k
m v

= ∑
                 (2.55) 

Since 
ir ik u k c=  and i iR uη = , the following relation is derived for the 

electric charge: 

04π
2

i i

i i
i ph ph

Aq R k
c m v

= ∑
                 (2.56) 

If d
itotN  is the total number of emitted photonic quanta that come from the 

charge q in time dt , then the emission rate iR  can be given by the equation: 

dd
d d 4πd

itoti
i

NN
R

t t
= =

Ω
                     (2.57) 

Therefore, the charge is given by the equation: 

0
d

d 2
i

i i

tot
i

i ph ph

NAq k
c t m v

= ∑
                 (2.58) 

According to the last equation, the electric charge of the elementary particle is 
independent of the inertial reference system to which it belongs and is at rest 
with respect to it. 

However, a charged particle belonging to an inertial system of reference mov-
ing at a velocity of v  with respect to the inertial reference system of the labor-
atory, will have electric charge less than that measured in the reference system to 
which it belongs. This is due to the fact that the emission rate of the photonic 
quanta, that comes from a charged particle moving at a velocity of v  with re-
spect to the laboratory, when it is measured with the clock of the laboratory, is 
less than the corresponding rate of emission that comes from the charge that is 
at rest in the laboratory. In particular a differential time interval dt  measured 
by the clock of the laboratory, in accordance with the clock of the moving 
charged particle is equal to d dt t γ=v v , where ( ) 1 22 21 cγ

−
= −v v . The number 

of photonic quanta emitted by the moving charged particle is denoted by 
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,d
itotN v , while the number of photonic quanta emitted by the charged particle 

which is at rest in the laboratory is denoted by d
itotN . If the rate that comes 

from charged particle moving at a velocity of v  with respect to the laboratory, 
which is measured with the clock of the laboratory, is denoted by iR

v
 and the 

rate that comes from the charge that is at rest in the laboratory, which is also 
measured with the laboratory clock, is denoted by iR , using the relation 2.57 the 
following relation is obtained: 

,

,

d
d 14πd

d d
4πd

i

i

i i

tot

i tot

toti tot

N
R Nt

NR N
t

γ
= = =v

v

v

v

                 (2.59) 

since ,d d
4πd 4πd

i itot tot
i

N N
R

t t
= =v

v

. Therefore, we obtain the following relation for the 

electric charge: 

1q
q γ
=v

v

                        (2.60) 

where qv  is the charge moving at a velocity of v  with respect to the laborato-
ry, and q is the charge that is at rest in the laboratory. Therefore, a supposed 
electric field E  in the laboratory reference system exerts a force on the charge 
qv , given by the equation: 

qq
γ

= =v
v

F E E                     (2.61) 

Now, for a photonic quantum which is a force carrier, we will denote the radi-
al angular momentum by rL . Also, we will denote the radial momentum by rp . 
Based on the above, the vectors rL  and rp  are given by the equations 

r v v= ×L r k  and r r=p k , and their magnitudes are r v vL r k=   and 

r rp k=   respectively. If the sign of quantity ( )r r r rL p⋅L p  is positive, then 
the photonic quantum comes from a positive charge, and if it is negative, then it 
comes from a negative charge, that is, the rotational motion of the photonic 
quantum is clockwise in the field of a positive charge and anticlockwise in the 
field of a negative charge. 

Two charged particles interact through the exchange of the aforementioned 
photonic quanta. A photonic quantum derived from a positive charge can be 
absorbed by another positively charged particle, with simultaneous momentum 
transfer equal to rk . Therefore the force in this case is repulsive. The same 
photonic quantum can be initially absorbed by a negatively charged particle, but 
immediately afterwards it is emitted together with a released photon of the same 
wavelength, in the direction of motion of the original photonic quantum. In this 
case, the initially transmitted momentum due to absorption is equal to rk , but 
an opposite momentum equal to 2 rk−  , due to the emission, must be added. 
Therefore the total momentum is negative, equal to rk− , and the force in this 
case is attractive, but the absolute value of this force is equal to the absolute value 
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of the aforementioned repulsive force. 

2.5. Charge in the Electromagnetic Field 

We will examine now, as an example, the Lagrangian function of a charged par-
ticle moving within an electromagnetic field, at a velocity that is far less than the 
velocity of light in the vacuum. In this case the Lagrangian function is, in its 
general form, ( ) ( ) ( )2, , 1 2 , ,T V t m V t= − = −r r r r r   , where d dt=r r  is the 
velocity of the charged particle relative to the reference laboratory system (that is, 
in this case, relative to the inertial reference system of the source of the electro-
magnetic field), T and V is the kinetic and dynamic energy of the charged par-
ticle respectively, and t is the time measured by the clock of the laboratory ref-
erence system. The Lagrangian equation is:  

d 0
d

Vm V
t
∂

− +∇ =
∂

r
r





                    (2.62) 

On the basis of the relationship (2.6) the electric field is d dtφ= −∇ −E A , 
where A  is the potential of magnetic field, and therefore the force exerted on 
the charged particle is: 

d
d

m e e e
t

φ= = = − ∇ −
AF r E                   (2.63) 

where e is the charge of the particle. In order to be the last two relations in 
agreement, the equation V e∂ ∂ = −r A  must be valid. The resulting for the dy-
namic energy relation is: 

( ),V e f t= − ⋅ +r A r                       (2.64) 

where ( ),f tr  is a scalar quantity, which depends on location and time, but not 
on the velocity r . By replacing this expression of dynamic energy in the La-
grange equation, and using the identities: 

( ) ( ) ( )⋅∇ = ∇ ⋅ − × ∇×r A r A r A    

d
dt t

∂
= ⋅∇ +

∂
r  

is obtained the following equation: 

( ),m f t e e
t

∂
= −∇ + × −

∂
Ar r r B                  (2.65) 

Also because of the relations tφ= −∇ + × − ∂ ∂E r B A  and (2.63), the scalar 
quantity ( ),f tr  can be considered equal to eφ . Therefore, dynamic energy is 
defined as: 

V e eφ= − ⋅r A                         (2.66) 

while the Lagrangian takes the form: 

21
2

L m e eφ= − + ⋅r r A                       (2.67) 

We will then examine a special case of moving a charged particle perpendicu-
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lar to the dynamic lines of a magnetic field. In this case the Maxwell expres-
sions for magnetic field and magnetic potential are determined according to 
the subsection 2.3 by the equations 2

Mγ=B B  and 2
Mγ=A A , where 

( ) 1 22 21 cγ
−

= − u , d dτ=u r , d dt=r r  and , tτ  are the times according to 
the clocks of the laboratory and of the frame of the charged particle respectively. 
So d dtτ γ= . Also the charge e is replaced by e γ . We suppose that there is no 
electrical potential (that is 0φ∇ = ). The term of the time changing of magnetic 
potential is expressed as follows: 

2d d
d d

M Me e
t t

γ
γ γ

− = −
A A

 

so, because:  

( )d d
d d M

V e
t t
∂

= −
∂

A
r

 

the dynamic energy becomes MV e= − ⋅r A . By replacing this term of dynamic 
energy in the Lagrangian, we get the following equation of motion: 

( )d
d

M M
M Mm e e e e

t t
∂

= − + ∇ ⋅ = × −
∂

A Ar r A r B    

and the Lagrange’s equation is: 

2 2 21 1
2 2M Mm e m eγ γ= + ⋅ = + ⋅r r A u u A                  (2.68) 

2.6. Radiating Power 

Based on the previous electromagnetic field equations, we will calculate the elec-
tromagnetic power radiated through a closed surface. 

Dot-multiplying each member of the vector Equations (2.6) and (2.15) by the 
vectors B  and E  respectively, will give us the equation: 

( ) ( )2 2
0 0

1 d 0
2 d

H E
t
µ∇ ⋅ × + + =E H                  (2.69) 

where we have taken into account the equality 0µ=B H . 
We now assume that a V volume is involved in the movement at a speed u and 

enclosed by the closed surface S. A volume integral over V of the members of the 
last equation, using the Gauss theorem and the relation d dt t= ⋅∇ + ∂ ∂u , will 
give us the equation: 

( ) ( ) ( ) ( )2 2 2 2
0 0 0 0

1 1ˆd d d 0
2 2S V V

S H E V H E V
t

µ µ∂
× ⋅ + ⋅∇ + + + =

∂∫ ∫ ∫E H n u


   

After some algebraic calculations in the second term of the first member of 
this equation, we get the following equation: 

( ) ( )( )

( )( ) ( )
0

2 2
0 0 0

ˆ d d

1d d 0
2

S V V

V V

dS V V

V H E V
t

µ

µ

× ⋅ + ⋅ − ⋅ ∇× ×

∂
− ⋅ ∇× × + + =

∂

∫ ∫ ∫

∫ ∫

E H n j E H u H

E u E



 
       (2.70) 

This result differs from that derived from Maxwell’s classical (unmodified) 
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equations (that is the Poynting’s theorem10), which can be formulated as follows: 

( ) ( )2 2
0 0

1ˆd d d 0
2S V V

S V H E V
t

µ∂
× ⋅ + ⋅ + + =

∂∫ ∫ ∫E H n j E


        (2.71) 

The difference in relations 2.70 and 2.71 are two additional terms, namely the 
third and the fourth term of the first member of the Equation (2.70). These 
terms are due to the movement of the charged particle at a speed of u  in the 
electromagnetic field within the said volume V. 

But this difference overturns the known collapse image of the classical atom, 
according to the Equation (2.71), where an electron moving around the nucleus 
cannot follow a constant energy periodic path, but the energy loss due to radia-
tion (due to the acceleration of the electron11), will result in a helical path to the 
nucleus, leading to a fall of electron to him. This overturn is because all energy 
which is lost through the surface S, is regained due to the existence of the two 
additional terms of the Equation (2.70). 

This can be easily understood using a simple example. Suppose an electron 
tends to move cyclic around the kernel. Then the terms d

V
V⋅∫ j E  and  

( )2 2
0 0

1 d
2 V

H E V
t

µ∂
+

∂ ∫   of the Equation (2.70) are zeroed, since the j  is 

perpendicular to E  and is nonexistent a change of electromagnetic energy 
within the said volume V. Therefore: 

( ) ( )( ) ( )( )0 0ˆd d d 0
S V V

S V Vµ× ⋅ − ⋅ ∇× × − ⋅ ∇× × =∫ ∫ ∫E H n H u H E u E


  (2.72) 

Under these conditions, the electron continues to move into the proton’s 
Coulomb electric field along a circular path around it. 

2.7. Rotating Charged Particle 

In order to compute the electric field and the force exerted on an elementary 
charged particle, due to its transporting motion, and also because of the spin, 
within a magnetic field, we consider a differential surface ds , perpendicular to 
the instantaneous direction of motion, which performs a transportation move-
ment and at the same time performs rotational motion about the Z axis of a 
Cartesian coordinate system XYZ, inside the magnetic field. We also consider 
that the unit vector n̂  is perpendicular to the previous differential surface ds , 
and is rotated about the Z axis, and therefore is time dependent. 

According to these conditions, the rate of change of magnetic flux through the 
elementary surface ds  will be: 

( )( ) ( )( )d d ˆd , , d
d d

t t s
t t

Φ = ⋅r B r n                (2.73) 

We define, in the inertial reference system of the Cartesian system coordinate 
XYZ, the following matrices: 

 

 

10Ref. [3], paragraph 6.8, Poynting’s Theorem and Conservation of Energy and Momentum for a 
system of Charged Particles and Electromagnetic Fields. 
11Ref. [3], paragraph 14.2, Total Power Radiated by an Accelerated Charge-Larmor’s Formula 
and Its Relativistic Generalization, Equation (14.22). 
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( )
x

y

z

B
B B

B

 
 =  
 
 

 

( )

ˆ

ˆ

ˆ

 
 
 =
 
 
 

i

e j

k
 

( )
x

y

z

n
n n

n

 
 =  
 
 

 

and because 0zn = , we get the following equations: 

ˆ ˆ ˆ ˆ ˆˆ ,x y x y zn n B B B= + = + +n i j B i j k  

where , ,x y zB B B  are the Cartesian components of the magnetic field and 
ˆ ˆ ˆ, ,i j k  are the time-independent unit vectors, whereas the elements of the ma-

trix (n) are the time-dependent cartesian components of the rotated unit vector 
n̂ . 

In the rotating coordinate system X Y Z′ ′ ′  of the unit vector n̂ , with the axes 
Z and Z ′  coinciding, the planes XY and X Y′ ′  to be parallel, and the origins O 
and O′  be identically, we define respectively: 

( )

ˆ

ˆ

ˆ

 ′
 

′ ′ =
 
 ′ 

i

e j

k

 

( )
x

y

z

n
n n

n

′ 
 ′ ′=  
 ′ 

 

and since 0zn′ =  the following equation is obtained: 
ˆ ˆˆ x yn n′ ′ ′ ′ ′= +n i j  

where the unit vectors ˆ ˆ,′ ′i j  of the matrix ( )′e  depend on time, while the 
components of the matrix ( )n′  are independent of time. 

The relation between the rotating and non-rotating Cartesian unit vectors is: 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

     ′ ′ ′ ′⋅ ⋅ ⋅
     

′ ′ ′ ′     = ⋅ ⋅ ⋅ ⋅
     
     ′ ′ ′ ′⋅ ⋅ ⋅     

i i i i j i k i

j j i j j j k j

k k i k j k k k

 

and therefore the time-dependent rotation matrix is: 
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
R

 ′ ′ ′⋅ ⋅ ⋅
 

′ ′ ′ = ⋅ ⋅ ⋅
 
 ′ ′ ′⋅ ⋅ ⋅ 

i i i j i k

j i j j j k

k i k j k k

 

Taking all these into account, the following equations are obtained: 
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( ) ( )
( ) ( )Tˆ

n R n

B R n

′=

′⋅ =B n
 

The rate of change of differential magnetic flux is: 

( ) ( ) ˆd d d dˆ ˆd d d d
d d d d

s s s
t t t t

Φ = ⋅ = ⋅ + ⋅
B nB n n B                 (2.74) 

The term 
d ˆd
d

s
t
⋅

B n  is the rate of flow change due to the transportation mov-

ing. The last term, which is due to the spin of charged particle q, is obtained by 
the relation: 

( ) ( )Tˆd dd d
d d

Rs B n s
t t

′⋅ =
nB                 (2.75) 

Because of this spin of the charged particle q about the axis of rotation Z of 
the XYZ coordinate system, the rotation matrix R is: 

cos sin 0
sin cos 0

0 0 1
R

θ θ
θ θ

− 
 =  
 
 

 

where θ  the angle of rotation. The time-derivative of the spin matrix is calcu-
lated as: 

0 1 0 cos sin 0
d 1 0 0 sin cos 0
d

0 0 0 0 0 1

R
t

θ θ
θ θ θ

− −   
   = ⋅   
   
   

  

The term of change of the differential magnetic flux due to the spin of the 
charged particle q, will be: 

( ) ( ) ( )T
0 1 0

d d 1 0 0 d
d

0 0 0 0

x

x y z y

n
RB n s B B B n s
t

θ
−   

   ′ = ⋅ ⋅   
   
   

  

and by inserting the unit matrix ( ) ( )Tˆ ˆI = ⋅e e  in the previous relation, the term 
due to the spin becomes: 

( ) ( ) ( ) ( )T

ˆ
d ˆ ˆ ˆ ˆd 0 d
d ˆ 0

x

y x y

n
RB n s B B n s
t

θ

      ′  = − ⋅ ⋅ ⋅         

i

j i j k

k

  

so: 

( ) ( )ˆd ˆ ˆ ˆˆ ˆd d d
d y xs B B s s

t
θ θ⋅ = − ⋅ = − × ⋅

nB i j n k B n                  (2.76) 

Including the term of the transportation move, since the angular velocity due 
to the spin is ω θ= k , with the help of the Stokes theorem, the following equa-
tion is obtained: 

( ) ( ) ( )
d ,

, ,
d

t
t t

t
ω∇× = − + ×

B r
E r B r                 (2.77) 
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According to the previously described, regarding the calculation of the electric 
field, in the 2.1 section, the last equation becomes: 

( )
t

ω∂
∇× = ∇× × − + ×

∂
BE u B B                 (2.78) 

Since, as we will see in the next section, the rotating charged particle interacts 
with the magnetic field as a magnetic dipole, in the final state, that is in equili-
brium, the vectors of the angular velocity and the magnetic field will be parallelized. 
Therefore the final relation for the electric field is given by the Equation (2.11). 

2.8. Gyromagnetic Ratio 

We will calculate in this section the dynamic energy and the gyromagnetic ratio 
of a charged particle, spinning into a magnetic field B . This magnetic field is 
independent of time. The force that causes the torque of the magnetic dipole re-
sulting from the rotation of a differential portion of the charged particle, that is 
the rotation of a differential charge which is equal to dq



, will come from the 
term ×u B  of the electric field. We assume that dq



 is a differential part of 
the charge, measured with the laboratory instruments. If dq  is the corres-
ponding value measured in the momentarily inertial reference system of the dif-
ferential part of the charged particle, then d dq q γ=



, where  
( ) 1 22 21 cγ

−
= − u . Since ω= ×u r  and the differential force is  

( ) ( ) ( )( )d d dq qω ω ω= × × = ⋅ − ⋅F r B r B r B
 

, the differential torsion moment 
will be: 

( )d d dq ω= × = − × ⋅M r F r r B


                (2.79) 

Therefore, for a differential part of the charged particle to be in equilibrium, 
the differential torque must be zeroed and this occurs when the position vector 
r  of the differential portion of the charged particle is perpendicular to the 
magnetic field B , so the r  will be at the plane of the circular path of the cor-
responding differential mass dm , so that the vectors of angular velocity and 
magnetic field to be parallel. In this case, we select the magnetic field to be pa-
rallel to the Z axis of a Cartesian coordinate system, so it to be equal to ˆB=B k , 
and also ( ) oB f z B= , where oB  is a constant magnetic field value. The posi-
tion vector r  will then be at the XY level, i.e. ˆ ˆˆrr x y= = +r u i j . Also the term 
×u B  is equal to ( )ω ⋅r B , and the corresponding differential of the force is: 

( )ˆ ˆ ˆd d dr rq r q rBω ω= ⋅ =F k B u u
 

                (2.80) 

This force quantity plays the role of centripetal force. Since the velocity u  is 
perpendicular to the magnetic field, we can verify the latter relationship by cal-
culating this differential quantity of the force with the help of the relation 2.68, 
from which is obtained the dynamic energy of a charged particle in a magnetic 
field (subsection 2.5). For this particular magnetic field we will first prove the 
relation: 

1
2

= ×A B r                          (2.81) 
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where A  the magnetic vector potential. We will use the identity  
( ) ( ) ( ) ( ) ( )∇× × = ⋅∇ − ∇ ⋅ − ⋅∇ + ∇ ⋅B r r B r B B r B r . The terms of the second 

member of this identity are:  

( ) ( ) ˆ 0ox y f z B
x y

 ∂ ∂
⋅∇ = + = ∂ ∂ 

r B k
 

( ) 0− ∇ ⋅ =r B  

( ) ( )ˆ ˆ 0B x y
z
∂

− ⋅∇ = − + =
∂

B r i j  

( ) 2∇⋅ =B r B  

So the magnetic potential12 is ( ) 2 2∇× × = = ∇×B r B A , that is  

( )1
2

= ×A B r . 

In this case, the term of differential dynamic energy of the rotating differential 
part of charged particle, within the magnetic field MB , will be: 

( ) ( )1 1 dd d d
2 2 dM M

qq m
m

γ γ= − ⋅ × = − ⋅ ×u B r B r u         (2.82) 

The differential angular momentum of the rotating differential mass dm  is 
d dmγ= ×L r u , so the term of the differential dynamic energy becomes: 

1 dd d
2 d M

q
m

= − ⋅B L                     (2.83) 

Since the position vector r  is perpendicular to angular velocity ω , we ob-
tain the equation ( ) ( ) ( ) 2rω ω ω ω× × = ⋅ − ⋅ =r r r r r r . The previous relation 
becomes: 

21d d
2 Mq r Bγ ω= −                     (2.84) 

In the subsection 2.5 is referenced that , tτ  are the times according to the 
clocks of the laboratory and of the frame of the charged particle respectively. So 
d dtτ γ= . Now we denote by θ  the angle resulting from the relation 

d dω θ τ= . Also we denote by θ  the time derivative d dtθ . So θ γω= , and 
the differential term of the force resulting from this differential dynamic energy 
will be: 

( )d
ˆ ˆd d dr M rq rB

r
θ

∂
= −∇ = − =

∂
F u u


              (2.85) 

and by making the substitutions 2
MB B γ= , d dq qγ=



, and θ γω=  we really 
get the relation 2.80. 

We will then calculate the dynamic energy of the rotating charged particle of 
charge q and mass m, within the above-mentioned magnetic field MB . We de-
note the charge density as ( )qρ r , and the mass density as ( )mρ r . This calcu-

 

 

12For a homogeneous magnetic field B  (that is, with a fixed value B ) the same relation arises, 
because the terms of the second member of the above mentioned identity are: 

( ) 0⋅∇ =r B , ( ) 0− ∇ ⋅ =r B , ( )− ⋅∇ = −B r B , ( ) 3∇ ⋅ =B r B , that is ( ) 2∇× × =B r B . 
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lation is done integrating the equation 2.84 over the volume V. If the volume V 
is considered to be too small (in the case of an elementary particle it tends to be 
almost a point), the magnetic field MB  can be considered to be approximately 
constant within this volume. Under these conditions, this dynamic energy will 
be: 

21 d
2 M qV

B r Vω γρ= − ∫  

We now define a numerical constant equal to: 

( )

2

2

d

d
qV

q

V

r V
g

q V r V

γρ

γ
= ∫

∫
 

so, the dynamic energy can be written as: 

2d
2

q M

V

g q B
r V

V
ω

γ= − ∫  

We define a new numerical constant: 

( ) ( )

2

2 2

d

d d
mV

m

V V

r V Lg
m V r V m V r V

γρ ω
γ γ

= =∫
∫ ∫

 

where L is the angular momentum. In this case, the equality  
( ) ( )2d mV

r V L g m Vγ ω=∫  arises and therefore the dynamic energy becomes: 

1
2

q
M

m

g q B L
g m

= −                       (2.86) 

The numerical constant q mg g g=  is the well known gyromagnetic factor 
and the quantity ( )2g q m  is the calculated gyromagnetic ratio. Given that the 
quantity ( )2g q mµ = L  is the magnetic dipole moment, the calculated dy-
namic energy is expressed by the relation: 

Mµ= − ⋅B                         (2.87) 

This calculation of the dynamic energy due to the spinning of a charged par-
ticle within a magnetic field is more simple for an elementary particle such as the 
electron, since the charge density and mass density can in this case be roughly 
constant inside the space that occupies the particle, with the result that the gy-
romagnetic factor is approximately equal to the unit. For the proton, due to the 
inhomogeneous mass (much larger than the electron mass) and the inhomoge-
neous charge, since it consists of three smaller charged particles (quarks), it is 
expected to have a gyromagnetic factor not equal to unit. 

According to the subsection 3.5 for relatively low rotational speeds, compared 
to the speed of light in the vacuum (that is ( ) 1cωρ  ), the rotational kinetic 
energy is approximately equal to ( )1 2kinE Lω= , where ω  is the angular ve-
locity and L is the angular momentum of the rotating particle. For a rotating 
electron, according to the hypothesis of the absolute reference system, kinetic 
energy is equal to ( )1 2 ω . Therefore, in a homogeneous magnetic field, the 
angular momentum eigenvalues are equal to ± , depending on the direction of 
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the angular velocity, resulting from the spin orientation in the magnetic field, ie 
for example spin up or spin down, and the corresponding quantum number is 
equal to 1, that is an integer, as in the orbital angular momentum, instead of the 
quantum number of 1/2 of modern physics. Assuming that upX  is the wave 
function of the clockwise rotation of the electron, and downX  the wave func-
tion of the counterclockwise rotation of the electron, then we get up upLX X=   
and down downLX X= −  respectively. Therefore, assuming a homogeneous 
magnetic field B, in an electron beam, moving perpendicular to the magnetic 
field lines, an energy difference ∆ , due to the spin-magnetic field interaction 
(Stern-Gerlach Experiment13), is added, and is obtained by the following equa-
tion: 

1
2 M

e

ge B
m

∆ = ±                       (2.88) 

The measured experimental value of g, since the spin quantum number asso-
ciated with the spin angular momentum is taken as equal to 1 2s = , according 
to the National Institute of Standards and Technology U.S. Department of 
Commerce is equal to 132.00231930436182 2.6 10−± × . Therefore, the corres-
ponding experimental value of g, according to the hypothesis of the absolute 
reference system, will be approximately equal to half of that value, that is ap-
proximately equal to 1.00115965218091, since, in this case, the spin quantum 
number associated with the spin angular momentum is equal to 1s = . 

The quantity:  

2B
e

e
m

µ =
                           (2.89) 

is the Bohr magneton, that is equal to ( ) 249.284764620 57 10 J TBµ
−= − × . 

Therefore the previous energy difference is: 

B Mg Bµ∆ = ±                         (2.90) 

3. Dynamics 

A basic consideration in this section, according to the hypothesis of the absolute 
reference system, is that the mass remains unchanged in any reference system, 
inertial or non-inertial. This means that, unlike the theory of relativity, the mass 
does not depend on the kinetic state of the body in the reference system in which 
it is observed. Also, physical quantities estimates, such as power and energy, dif-
fer from corresponding estimates based on modern physics. 

3.1. Momentum and Force 

We will begin with measurements in the inertial reference system of a laboratory. 
A particle is in the r  position of a XYZ coordinate system, while at the same 
time a force F acts on it due to the existence of a field. We assume that initially 

 

 

13Gerlach, W.; Stern, O. (1922). “Der experimentelle Nachweis der Richtungsquantelung im Mag-
netfeld”. Zeitschrift fur Physik. 9: 349-352. 
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the particle was stationary in the inertial reference system of the laboratory and 
that it reached position r  under the influence of force F over a period of time 
τ . Let us also assume that the same particle, located at the position r , moves at 
a velocity d dτ=u r . According to Newtonian dynamics, the momentum of the 
particle is: 

d
da m m
τ

= =
rp u                        (3.1) 

In a differential time dτ , the velocity of the particle will be changed by an 
amount du . If m is the mass of the particle, then the calculated force in the in-
ertial reference system of the laboratory is: 

d d
d da m
τ τ

=
rF                        (3.2) 

But this way of calculation is not a correct way of calculating the momentum 
and the force of the particle, if we want to be consistent with the hypothesis of 
the absolute reference system. In calculating the force exerted on the particle by 
the existence of the aforementioned field, the time of the momentarily inertial 
reference system of the particle and not the time of the inertial reference system 
of the laboratory must be taken into account. This is comprehended when ex-
amining the force exerted by the interactions (in particular the frequencies of the 
interaction photons) in the relation (4.5), in the Section 4. 

According to the above, the correlation of the differential times corresponding 
to the above-mentioned differential velocity du , will be d dtτ γ= , where dτ  
is the differential time according to the clock of the inertial (or absolute) refer-
ence system and dt  is the corresponding differential time according to the 
clock of the reference system of the particle (which is considered as momentarily 
inertial). More generally, the quantitative estimation of physical quantities, such 
as the momentum and energy of a particle as well as the force exerted thereon, is 
made by using the physical measure of length of the inertial (or absolute) refer-
ence system in which the field exists, and with the clock of the reference system 
of the particle. Under these conditions, the instantaneous momentum of the 
particle, measured with the clock of its reference system and the physical meas-
ure of length of the inertial (or absolute) reference system, is: 

d d
d d

m m m
t

γ γ
τ

= = =
r rp u                      (3.3) 

while the force exerted on the particle will be: 

d d d d
d d d d

m m
t t

γ γ
τ τ
 = =  
 

r rF                     (3.4) 

where ( ) 1 22 21 u cγ
−

= − . 
If we want to evaluate the force by using the clock and the physical meter of 

length of the inertial system of the laboratory, so that we are consistent with Ga-
lileo’s relativity, according to which the physical magnitude measurements are 
made by the length measure and the clock of the inertial system the observer’s 
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reference, we should define the differential change of momentum as d dγ=p p


. 
According to the corresponding definition of force it will be d dτ=F p



, and 
for a particle initially stationary in the laboratory, which acquires speed u  un-
der the influence of force F , the momentum will be defined as 

( )
0

d d dγ= ∫
u

p p u u


, instead of being defined as mγ=p u , as would be accord-
ing to the hypothesis of the absolute reference system. But the hypothesis of the 
absolute reference system is different from Galileo’s relativity, and generally dif-
fers from any relativistic description of natural laws, and therefore we will not 
deal with such descriptions here. 

Considering that   refers to components of physical quantities parallel to the 
velocity u , while ⊥  perpendicular, we can express the force as a sum of a pa-
rallel and a vertical component, as follows: 

2 2
4 2

2 2

d d
d d

m mγ γ
τ τ ⊥

   
= +   

   

r rF


                 (3.5) 

An example that can help in understanding the last relation is to assume that a 
charged particle enters at a velocity u  within a magnetic field produced by a 
natural magnet stationary in the inertial reference system of the laboratory. If q 
is the charge, then the force exerted on the particle, based on the relations 2.27, 
2.28 and 2.61, will be: 

( )M M M
qq q γ
γ⊥′= = + × +F E E u B E



                (3.6) 

If there is no electric field in the same position of the inertial reference system 
of the laboratory, that is 0M =E , then: 

( )
2

2
2

d
d Mm qγ γ
τ

= = ×
rF u B                 (3.7) 

The equation of motion of the particle in the inertial reference system of the 
laboratory is: 

( )
2

2

d
d Mm qγ
τ

= ×
r u B                    (3.8) 

Having measured the charge e with the Millikan method, measuring the mass 
of the charged particle can be achieved using the previous relation 3.8. The cor-
rectness of this relation has been tested with fairly good accuracy in the Rogers 
experiment (cf. [6]).  

Another example is the Coulomb interaction of two charged particles, where 

1q  and 2q  are the magnitudes of the two charges. According to the equation 
2.61, if we denote by 1p , 2p  the momentums of the two particles, and 1dt , 

2dt , dt


 as their differential times in the reference systems of the two particles 
and the laboratory respectively, provided that the particle movements are in one 
dimension and originate only from the interaction between them, then the equa-
tions of motion are: 

1 2 1 2
2

1 2 1 2

d d
d d el
p p q qk
t t rγ γ
= =  
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where 1 1 1 1p m uγ= , 2 2 2 2p m uγ= , ( ) 1 22 2
1 11 u cγ

−
= − , ( ) 1 22 2

2 21 u cγ
−

= − , and 
the two charged particles are separated by a distance r. Therefore, since 

1 1 2 2d d dt t tγ γ= =


, the interaction forces of the two particles are equal and are 
expressed with the relations: 

1 1 2 2 1 2
2

1 2

d d
d d el

p p q qF k
t t r

γ γ
γ γ

= = =
 

 

3.2. Angular Momentum 

The calculated angular momentum of an elementary mass in position r  of an 
inertial reference system, with respect to a Cartesian coordinate system, will be: 

= ×L r p                            (3.9) 

where p  is the momentum of the particle. The total angular momentum of a 
plurality of N particles is calculated: 

1 1

N N

i i i
i i= =

= ×∑ ∑L r p                        (3.10) 

3.3. Energy and Calculation of the Work Done by a Force 

Let us now deal with the work done by a force that is exerted on a particle. We 
assume that the particle is initially immobile in the inertial reference system of 
the laboratory and that by the action of the force F , whose origin source is also 
immobile in the inertial reference system of the laboratory, it has acquired a ve-
locity d dτ=u r , measured with the clock of the inertial reference system of the 
laboratory. The work done by the force is: 

0
d

u
E = ⋅∫ F r                         (3.11) 

Based on the above, the work done by the force is calculated: 

2 2 21 1
2 2

E m c mcγ= −                     (3.12) 

The two terms of the second member of the last equation are the kinetic ener-
gies of the particle. At the initial time (where 0τ =  and 0=u ) the kinetic  

energy is equal to 21
2

mc , while at the final time τ  is equal to 2 21
2

m cγ . These  

kinetic energies, however, are not those described by Newtonian mechanics, nor 
by modern physics14, but they are internal kinetic energies of the particle having 
to do with the internal movements of the structural components of the particle. 
According to the previous section, these structural components are “bound 
photons”. 

Also, if the velocity of the particle in the inertial reference system of the labor-
atory is u , then the same velocity measured with the clock of its reference sys-
tem is γ u , so the corresponding total kinetic energy will be  

 

 

14Ref. [1], chapter 1 Departures from Newtonian dynamics, ENERGY, MOMENTUM, AND 
MASS.  
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( ) ( )2 221 1 1
2 2 2kinE mc m m cγ γ= + =u . We will come back to this way of calculat-

ing kinetic energy in the next section. 
From the last relation (3.12), the resulting work done by the force, which is 

equal to the “transport kinetic energy” of the particle, is: 

2 21
2

E m uγ=                          (3.13) 

The corresponding work done by the force calculated with the clock of the in-
ertial reference system of the laboratory (i.e. according to Newtonian physics) is: 

2
0

1d
2

u
a aE mu= ⋅ =∫ F r                     (3.14) 

The latter relation is expected since the velocity of the particle, measured with 
the clock of the inertial reference system of the laboratory, is γ  times lower 
than the instantaneous velocity measured with the clock of reference system of 
the particle and the natural measure length of the inertial reference system of the 
laboratory. However, this way of calculating the kinetic energy of the particle is 
incorrect according to the hypothesis of the absolute reference system, because, 
as we have already mentioned earlier and referred to in Section 4, the only cor-
rect method of calculating the energy is done on counting the time with a clock 
of the reference system of the particle. 

A particle, initially immobilized in the inertial reference system of the labora-
tory, that has acquired a velocity d dt γ= =r r u , measured with the clock of the 
reference system of the particle, under the influence of a field whose origin 
source is also at rest in the inertial reference system of the laboratory, has dy-
namic energy ( )U r . The equation of motion of the particle results from the 
Lagrange equation: 

d 0
dt

∂ ∂
− =

∂ ∂r r

 
                       (3.15) 

where ( ) ( )T U= −r r  is the Lagrange function for the particle under the 
given conditions, ( )T r  is the kinetic energy, which is ( ) 2 21 2T m uγ= . Since 
the force derived from this field is ( ) d dU U= −∇ = −F r r 15, the last equation 
can be written: 

d
dt

∂
=

∂
F

r


                       (3.16) 

Based on the relation ( )T mγ γ∂ ∂ = ∂ ∂ =r u u , the resulting force is: 

d d
d d

mγ γ
τ τ
 =  
 

rF                     (3.17) 

which is the same as that of the relation (3.4) for the force, as expected. Since the 
total kinetic energy (including internal kinetic energy) of the particle, as above, 
is ( ) 2 21 2 m cγ , a more general Lagrange function is ( ) ( )2 21 2tot m c Uγ= − r . 
This Lagrange function differs from the previous one by a constant (since 

 

 

15See reference [7], CHAPTER 1, Section 1-1, MECHANICS OF A PARTICLE, Equations (1-16). 

https://doi.org/10.4236/jamp.2019.73033


K. Patrinos 
 

 

DOI: 10.4236/jamp.2019.73033 457 Journal of Applied Mathematics and Physics 

 

( ) 21 2tot mc= +  ), so the Lagrange equation does not differ from the previous 
one. Therefore, following the same methodology as before, the resulting expres-
sion for the force is again the same as that of the relation (3.4). 

3.4. Correlation of Expressions for the Energy 

As mentioned in the previous subsection, the total kinetic energy of a body at 
rest, with a mass m, and at a velocity u  with respect to the inertial reference 
system of the laboratory (and thus with a contraction coefficient 

( ) 1 22 21 cγ
−

= − u ), is calculated: 
2

2 2 2 2 2 21 1 1 1
2 2 2 2 2absE m c m mc mc

m
γ γ= = + = +

pu          (3.18) 

where mγ=p u  the momentum of that body. Multiplying the second and last 
member of the previous equation with the quantity 22mc  gives the equation: 

( )22 2 2 2 4m c c m cγ = +p                     (3.19) 

Since the total relativistic energy relE  of an inertial body is equal to the 
quantity 2m cγ , and the rest mass of the body does not differ in the theory of 
relativity and in the hypothesis of the absolute reference system, the latter rela-
tion is that which is given and from special theory of relativity. That is, this rela-
tion applies to both these considerations. Finally, the correlation between ex-
pressions for the total energy of a body at rest gives: 

2

22
rel

abs
E

E
mc

=                         (3.20) 

According to the last equation, the relativistic energy is16: 

2 2 2 2 42rel absE mc E c m c= ± = ± +p              (3.21) 

so, negative energy values also appear. As mentioned earlier, in order to give an 
explanation of this, Dirac17 formulated the theory that the vacuum is not the ab-
solute nothing, but it is an infinite sea of negative energy of electrons, protons, 
neutrinos, neutrons and all other particles with spin 1/2. 

This paradoxical result of existence of negative energies is invalidated when 
the energy is expressed according to the hypothesis of the absolute reference 
system, since the quantity absE  is proportional to the square of relativistic 
energy relE , while the vacuum of Dirac, of the infinite sea of negative energy, is 
replaced by aether as a means of propagating electromagnetic radiation. 

From a physical point of view, it is much easier for someone to accept that the 
assumed vacuum is occupied by the aether as a means of propagation of elec-
tromagnetic radiation, rather than accepting that it is a sea of particles with neg-

 

 

16Relative references can easily be found by the reader in all relativistic quantum mechanics books, 
for example in the book “RELATIVISTIC QUANTUM THEORY”, L. D. LANDAU & E. M. 
LIFSHITZ, $11, Particles and antiparticles, p.33. 
17The reader can see the relevant reference [8], chapter 2 Single-Particle relativistic wave equations, pa-
ragraph 2.4 Prediction of antiparticles and reference [9], Fourteenth Lecture, INTERPRETATIONS 
OF NEGATIVE ENERGY STATES. 
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ative energies. This theory, which is predicted by the solution of the Dirac equa-
tion, leads us to a mathematical description of the universe, apparently different 
from the corresponding classical physical description that existed until the end 
of the nineteenth century. 

An additional observation is that when the amount relE  is maintained, that 
is the energy in the relativistic form, then the quantity absE , that is the energy 
according to the hypothesis of the absolute reference system is also preserved, 
and vice versa. Therefore, the use of relation 3.19, in some problems of quantum 
electrodynamics, is not in any divergence of views, relative to the corresponding 
calculations from the point of view of the hypothesis of the absolute reference 
system, except that the energy in the relativistic description, is proportional to 
the square root of the corresponding energy of the hypothesis of the absolute 
reference system. 

However, with respect to the wave equation used instead of the Schrodinger 
equation, in the corresponding equation18 the only difference is the fixed factor  
1
2

 in the energy operator, that is instead of i
t
∂
∂
  it is 

2
i

t
∂
∂



. 

3.5. The Kinetic Energy of a Rotating Body 

According to the definition of angular momentum, a body with a density ( )D r , 
which rotates at a fairly high angular velocity ω  and occupies volume V, will 
have an angular momentum equal to: 

2d
V

L D Vργ ωρ= ∫                      (3.22) 

where ρ  is the distance of the differential mass d dm D V=  from the axis of 
rotation and ( )( ) 1 221ργ ωρ

−
= − . The kinetic energy of this rotating body is: 

2 2 21 d
2kin V

E D Vργ ω ρ= ∫                    (3.23) 

It is obvious that even in the case of constant angular velocity the classical re-

lation 1
2kinE Lω=  is not applies. Instead, the inequality 1

2kinE Lω>  applies  

and will of course converge to equality at low angular speeds ( ( ) 1cωρ  ), in 
which case 2 1ρ ργ γ  . 

4. Introduction to Particle Mechanics 

We will use as a basic relation for the energy of the “free photon” in the labora-
tory reference system:  

phE hν=                             (4.1) 

 

 

18As mentioned in the book “RELATIVISTIC QUANTUM THEORY”, L. D. LANDAU & E. M. 
LIFSHITZ, $10, The wave equation for particles with spin zero, p.31, 2 2 0p m− = , Equation 
(10.5) (O. Klein, V. A. Fock, 1926). The explicit form of this equation is 

2
2

2
m

t
µ

µ ψ ψ ψ
 ∂

−∂ ∂ ≡ − + ∆ = ∂ 
, Equation (10.6). 
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where ν  is the frequency of the photon and h is the Planck constant. Also the 
same photon will have a linear momentum php  equal to:  

ph
hp
c
ν

=                           (4.2) 

which is measured experimentally, with fairly good accuracy (about 2%) by Ger-
lach and Golsen in 1923, as radiation pressure. This phenomenon comes from 
the transfer of kinetic energy from these photon energy packets to the target. 
The mechanical analogue of this pressure is that in which small masses equal to 

2h cν  moving at velocity c create upon their experimental target the measured 
radiation pressure. Taking this into account and according to the hypothesis of 
the absolute reference system, the transmitted kinetic energy from a photon of 
energy phE hν= , will be equal to:  

21 1
2 2phT m c hισ ν= =                       (4.3) 

where 2m h cισ ν= . Therefore, when a free photon of low energy, is absorbed 
by a particle (e.g., an electron), an amount of kinetic energy equal to ( )1 2 hν  is 
transferred thereto. In this case, when absorbed a number of N photons from a 
particle, the totally transferred kinetic energy will be:  

1

1 1
2 2

N

i q
i

T h hν ν
=

= =∑                       (4.4) 

where iν  the frequency of the photon i and therefore the amount 1
N

q iiν ν
=

= ∑  
is the sum of the frequencies of all the absorbed photons by the particle. 

This whole hypothesis, regarding the transport of kinetic energy from 
low-energy photons, demonstrates the fact that the force exerted on the particle 
should be measured by the clock of the particle reference system. This results 
from the relation:  

1
2phT F x hδ ν= =                       (4.5) 

where xδ  is a differential displacement due to the force F and the transfer of 
kinetic energy of a photon ( )1 2phT hν= . It seems that the amount of F xδ  
that is the elemental work of force F is equal to ( )1 2 hν , but the frequency ν  
should certainly be measured with the reference system clock of the particle on 
which this force exerted. 

We will also take into account our initial assumption that elementary particles 
constitute from photons. As mentioned in the previous section, the internal 
energy of a particle immobile relative to the laboratory reference system (using 
the measure of length and the clock of the laboratory) will be equal to ( ) 21 2 mc . 
This is the kinetic energy of all the bound photons that constitute the whole par-
ticle mass. If the sum of the frequencies of these photons is equal to σν  then the 
kinetic energy for a free particle is equal to ( ) ( )21 2 1 2mc h σν= . The resulting 
relation of mass-energy equivalence will be:  

2mc h σν=                            (4.6) 
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In this section we will deal only with elemental (photonic) electromagnetic 
plane-waves and not those, for example, which exhibit spherical symmetry, such 
as those in a Coulomb field, which are discussed in the subsection 2.4.  

Let us assume now that a photon absorbed by the particle has a high energy 

phE hν= , that is, the frequency ν  is included in the frequency spectrum of the 
“bound photons” forming the particulate mass. Then this absorption will result 
to increasing the kinetic energy of the particle and in addition creating a bound 
photon, with the energy given by the original free photon. The action-reaction 
principle, coupled with the relation 4.5, results in an even distribution of energy 
between the retardation of the original photon, equivalent to generating ele-
mentary mass, and increasing the velocity of the particle. In particular, the ki-
netic energy (equal to ( )1 4 hν ) that will come from the half energy of the pho-
ton will be transferred to the particle (aggregate), while the other half is available 
to form an extra elementary mass of “bound photon”, resulting from the equiva-
lence relation ( ) ( )21 2 1 4phm c hν= , equal to:  

22ph
hm
c
ν

=                          (4.7) 

Therefore, the frequency of the bound photon is half of the frequency of the 
initial photon absorbed by the particle and its internal kinetic energy is equal to 
( ) ( )21 2 1 4phm c hν= , measured with the clock of the frame of reference of the 
particle. Indeed, under these circumstances, the momentum transferred will be:  

2ph ph
hp m c

c
ν

= =                       (4.8) 

And the transferred kinetic energy will be:  
2

21 1
2 2 4

ph
ph

ph

p
m c h

m
ν= =                   (4.9) 

which is the expected. The view of the existence of mass in an elemental pho-
tonic wave is the key to the explanation of the wave-particle duality, that is, 
every particle may be partly described in terms not only of particles, but also of 
waves. 

If the velocity of a particle relative to the inertial frame of reference of the la-
boratory is equal to u  (due, for example, to a linear accelerator of the labora-
tory), then the total kinetic energy of a photon bounded to it will be 

( ) ( ) 2 21 2 1 2ph ph phE h m cν γ′= =  (where ( ) 1 22 21 u cγ
−

= − ). This relation is de-
rived from the corresponding relations mentioned in subsection 3.3. The mass of 
the photon in this case is determined by the relation ( )2 2

ph phm h cν γ′= , that is, 
it is proportional to the amount 2

phν γ′ . The mass of the “bound photon”, 
when this is stationary in the laboratory reference system, it is calculated as 

2
ph phm h cν= . However, this mass remains constant and therefore the equality 

2
ph phν ν γ′=  applies. The difference in frequency is due to the extra frequency 

added due to the increase in the kinetic energy of the “bound photon” while the 
measurement of this frequency is based on the time measurement according to 
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the clock of the particle frame of reference. As mentioned before this is the cor-
rect way to measure the energy of the elements constituting the particle, that is, 
of the bound photons. This change in kinetic energy, according to the above, is 
expressed in the following relation: 

( ) ( )2 2 21 1 11
2 2 2ph ph ph ph phE h h m uν ν ν γ γ′∆ = − = − =          (4.10) 

The frequency equal to the difference ph phν ν′ −  corresponds to an additional 
elementary photonic wave, which is accompanied by corresponding contraction 
of the path length of the particular bound photon. This contraction is done ac-
cording to the corresponding contraction factor γ , in the direction of particle 
motion relative to the inertial reference system of the laboratory. This is the 
cause of the contraction of the whole matter of an inertial system, according to 
the contraction factor γ , in that direction, since we have assumed that the 
structure of all elementary particles, as well as of the electromagnetic interac-
tions, is photonic. 

Let us consider that lν  is the frequency of this elementary photonic wave, 
measured by clock of the inertial reference system of the laboratory, and k is the 
corresponding wavenumber. The wavelength—and any length—is measured by 
the physical length meter of the lab reference system. Since the frequency of the 
examined photonic wave, with the clock of the frame of reference of the particle, 
is γ  times higher than the frequency of the same photonic wave measured in 
the laboratory reference system, the corresponding kinetic energy will be:  

2 2
,

1 1
2 2ph kin l phE h m uγν γ= =                  (4.11) 

The momentum php  of the photonic particle, in the direction of the velocity 
u, according to the relation ( ) ( )2 2 2

, 1 2 2ph kin ph ph phE m u p mγ= = , will be:  

,2 ph kin l
ph

E h
p

u u
ν

γ
= =                      (4.12) 

and therefore, since in the laboratory reference system the quantity l uν  is 
equal to ( )2πk , the momentum is given by the relation:  

ph php k m uγ= =                        (4.13) 

Summarizing we can say that the mass of a body is the sum of the masses of 
all the bound photons from which it is composed, and is independent of the ref-
erence system of the body. 

4.1. The Structure of the Smallest Elementary Particle 

As a first example, we will look at the assumption of a primordial particle acce-
lerated to the absolute reference system. According to the mentioned in the sub-
section 2.4, the trajectory of the bound photon is a closed circular path in the 
particle reference system. There is an elemental electromagnetic wave that in-
troduces a new frequency in this photon, which accompanies the transfer 
movement of the bound photon relative to the absolute reference system. 
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If ,ph uν  is the frequency of this elementary wave accompanying the transfer 
movement of the bound photon, measured with the clock of the reference sys-
tem of the particle, the transfer kinetic energy of the bound photon according to 
the precedings and Section 3 will be equal to ( ) ( ) 2 2

,1 2 1 2ph u phh m uν γ= , where 

( ) 1 22 21 u cγ
−

= −  the contraction factor and u the speed measured with the 
physical length meter and the clock of the absolute system. Therefore, the total 
kinetic energy of the bound photon is:  

2 2 2 2 2
, ,

1 1 1
2 2 2ph kin tot ph ph phE m c m u m cγ γ= + =             (4.14) 

It appears from the analysis so far that the bound photons have two different 
kinds of frequencies, that is, the one kind of frequencies caused by their transfer 
motion, denoted here by ,ph uν , and the other kind of frequencies of the closed 
trajectories, denoted here by ,ph cν , which can be called mass frequencies, since 
these are proportional to the mass according to the relation 2

,ph ph cm h cν= . 
Now that we have a clearer picture of what is considered as microstructure of 

the smallest elementary particles, which are the bound photons, we can deeper 
into studying the contraction of length and time. 

Let us assume that a particle moves at a constant velocity u with respect to an 
inertial reference system and that it acquired that velocity from a force internal 
to the frame of material defining the particular inertial system. The speed u is 
measured with the clock and the physical length meter of the inertial system. We 
also assume that this material frame of the inertial system moves at a constant 
velocity v with respect to the absolute reference system. The velocity v is meas-
ured by the physical length meter and the clock of the absolute reference system, 
and it comes from the action of an internal force in the absolute reference sys-
tem. 

An additional basic principle of the hypothesis of the absolute reference sys-
tem is that the way of correlation between the values of physical magnitudes in 
the absolute reference system and in an inertial system of reference does not dif-
fer from the corresponding correlation way in two inertial systems. 

We will calculate now the closed orbit times of a bound photon of the 
above-mentioned particle in three different reference systems. 

If the times of the closed orbits of the above-mentioned bound photon in the 
reference system of the particle, in the above-mentioned inertial frame of refer-
ence, and in the absolute reference system respectively are uT , vT  and 0T , the 
taken equations are u u vT Tγ=  and 0v vT Tγ= , where ( ) 1 22 21u u cγ

−
= −  and 

( ) 1 22 21v v cγ
−

= − . The correlation of the times uT  and 0T  is given by the re-
lation: 

0u v uT Tγ γ=                        (4.15) 

This result differentiates the concept of the inertial reference system as com-
pared to the corresponding relativistic concept, which is related to the concept of 
relative movement. In the present case, according to the previous relation, the 
total contraction factor is equal to v uγ γ  and therefore does not come from the 
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relative velocity, of our example, with respect to the absolute reference system 
but comes from the product of the two contraction factors. This mainly means 
that the differentiation between two inertial systems of reference is not based on 
their relative velocity with respect to the absolute reference system but on the 
total contraction factor. For example, two identical inertial particles that are rel-
atively immobile to each other are differentiated from each other if they are cha-
racterized by different total contraction factors. 

Substituting the previous correlation of inertial reference systems to a plurali-
ty n of inertial systems, the total contraction factor is equal to the quantity 

1 2 3 nγ γ γ γ , whereby an inertial particle of the last inertial system will corres-
pond to a total contraction factor equal to 1 2 3 nγ γ γ γ γ . The kinetic energy of 
the inertial mass of one of the bound photons that make up the entire mass of 
the particle is equal to:  

2
,

1 1
2 2ph c phh m cν =                        (4.16) 

while kinetic energy, due to its transfer motion, is equal to:  

2 2 2 2 2 2
, 1 2 3 0

1 1
2 2ph u ph nh m uν γ γ γ γ γ=                  (4.17) 

where ( ) 1 22 21 u cγ
−

= −  is the partial contraction-factor of the inertial particle, 

0u  its velocity measured with the physical measure of length of the last (with 
index n) inertial system, but with the clock of the absolute reference system, and 

,ph uν  is the frequency due to its transfer motion, measured with the clock of the 
frame of reference of the particle. We also assume that u is the velocity due to 
the particle’s transferring movement, measured with the measuring instruments 
of the last (with index n) inertial system, equal to:  

1 2 3 0nu uγ γ γ γ=                       (4.18) 

Therefore, the transport kinetic energy is equal to:  

2 2
,

1 1
2 2ph u phh m uν γ=  

Total kinetic energy is equal to:  

( ) 2 2
, , , ,

1 1
2 2ph kin tot ph c ph u phE h m cν ν γ= + =               (4.19) 

If the above particle consists of a number of N bound photons, and m is its 
mass, then:  

1
i

N

ph
i

m m
=

= ∑                        (4.20) 

while total frequencies and energies are:  

,
1

i

N

c ph c
i

ν ν
=

= ∑                        (4.21) 

,
1

i

N

u ph u
i

ν ν
=

= ∑                        (4.22) 
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2 2

1

1 1
2 2i

N

ph
i

m c mc
=

=∑                        (4.23) 

2 2 2 2

1

1 1
2 2i

N

ph
i

m u m uγ γ
=

=∑                      (4.24) 

( ) 2 2
,

1 1
2 2kin tot c uE h m cν ν γ= + =                 (4.25) 

However, this total kinetic transport energy refers to the energy estimate in 
the last inertial system (with index n). The “universal transport kinetic energy” 
of the previous particle is the sum of all the kinetic transport energies, with re-
spect to all inertial reference frames, including the absolute reference system, 
that is, the sum of: 

2 2 2 2
.

1

1 1
2 2

n

univ i i
i

E m u m uγ γ
=

= +∑                 (4.26) 

where iu  is the velocity measured by the length measure and clock of the iner-
tial reference system which is denoted by an index 1i − . If 1 0i − = , then the 
velocity measurement is done with the length and time measuring instruments  

of the absolute reference system. The quantity 2 2
1

1
2

n
i iim uγ

=∑  is the basic kinetic  

energy, that comes from the motion of the particle with respect to the n-th iner-
tial system. If M is the total mass of the material frame of the n-th inertial refer-
ence system, then its basic kinetic energy is: 

2 2
. . .,

1

1
2

n

in sys bas n i i
i

E M uγ
=

= ∑  

If we denote by iν  the frequency due to the corresponding term of kinetic  

transport energy, then according to the relation 2 21 1
2 2i i ih m uν γ=  the universal 

kinetic energy of the above particle is equal to: 

.
1

1 1
2 2

n

univ i u
i

E h hν ν
=

= +∑                      (4.27) 

while the amount 1
n

ii ν=∑  is the sum of frequencies that are corresponds to the 
basic kinetic transport energy of the particle. We define as “basic frequency” bν  
this sum, that is 1

n
b iiν ν

=
= ∑ , bypassing the fact that it is a sum of different (or 

not) frequencies. 
Ultra-high energy cosmic particles such as those of the Auger phenomenon 

could indeed be due to the fact that they come from inertial systems with ul-
tra-high basic kinetic energy particles, thus yielding the energy difference be-
tween them and the Earth’s particles, due to interactions between them. 

According to the introduction of the Section 4, the free photons exert radia-

tion pressure on a fixed target corresponding to energy 21 1
2 2

m c hισ ν=  and to  

the equivalent mass of the free photons mισ . In the last inertial system (which is 
the n-th inertial system) we mentioned earlier, in addition to the speed c of the 
light relative to a light source of the same system, we should also take into ac-
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count the radiation pressure of the intermediate inertial systems (with indices 
1,2, , n

) if the target of the light beam is, for example, in the absolute reference 
system. These kinetic energies and the corresponding frequencies are similar to 
those of the above-mentioned particle, that is, the basic energy, for a free photon 
emitted by a light source in the n-th inertial system, is: 

2 2
2 2

2
1 1

1 1
2 2ph

n n
i i

b i i ph
i i

u
E m u h

cισ
γ

γ ν
= =

= =∑ ∑                 (4.28) 

and its basic frequency is expressed by the term ( )2 2 2
1

n
ph i ii u cν γ

=∑ , where phν  
is its frequency in the same inertial reference system. In the inertial system 
which is denoted by the index i, for example, the corresponding frequency is 

( )2 2 2
iph ph i iu cν ν γ= , but the frequencies, denoted by the indices 1,2, ,i n=  , 

are not perceived by a natural observer of the reference system denoted by the 
index n, because the inertial frame material is moving along with the free pho-
tons with the same total contraction factor 1 2 3 nγ γ γ γ , and therefore cannot be 
the target of these individual photonic motions. 

4.2. Doppler Effect 

A complex problem, predominantly geometric, should be examined in this sec-
tion, in order to study the Doppler effect. For this purpose we should use the 
ones mentioned in this chapter. In summary, it should be recalled in principle 
that the velocity of light in the vacuum is equal to the constant c when the light 
source is (and is observed) in the absolute reference system. Also, as we will see 
in the chapter on particle mechanics, apart from the physical contraction of the 
photonic tracks, it appears that the speed of the “free photons” has the same 
value c, when it is measured by the physical length meter and the clock of the 
inertial frame of reference of the light source, while when it is measured with the 
physical measure of length and the clock of the absolute reference system the 
velocity of the same photons in vacuum is being different from this constant c. 

A more general case involving the Doppler effect is one in which an electro-
magnetic signal emitted periodically (a pulse transmitted per time unit), from 
some part of a galaxy, and is directed to Earth, where it is received. We will de-
termine the relation of the two frequencies of the emission and taking of the 
signal, based on the hypothesis of absolute reference system. A relative reference 
is [1], chapter 5, Relativistic Kinematics, MORE ABOUT DOPPLER 
EFFECTS. The velocity of the source of the emitted electromagnetic signal to 
the absolute system is assumed to be equal to gu , while Earth’s velocity is uΓ . 
We assume that the trajectory of the source (of the galaxy) with respect to the 
absolute reference system is AB, while the Earth’s trajectory is CD (Figure 1). 

The points A, B, C, D are not at the same level, but we consider the straight 
lines AC and BD parallel because of the large distance. Along these straight lines 
two consecutive electromagnetic signals are moving. The velocity of the elec-
tromagnetic signal with the physical measure of length and the clock of the ab-
solute reference system, since the light velocity in the reference system of the  
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Figure 1. Broadcasting and receiving electromagnetic signals from a long distance in the 
point of view of absolute reference system. The trajectory of the source in the absolute 
reference system is the AB line, while the Earth’s trajectory is the CD line. Two 
consecutive electromagnetic signals move along the lines AC and BD. 
 
source is equal to the constant value c, and taking into account the time and 
length contractions, will be: 

( )22 2 2 2sin cosg g g gc c c uχ γ χ γ= + +             (4.29) 

where χ  the angle formed by the direction of the electromagnetic signal, 
emitted by the source from point A to the reference system of the galaxy, with 
the line A?, i.e. without physical contraction in the direction of motion of the 
galaxy. Also gu  is the velocity of the galaxy in the absolute reference system, 
when it is measured with the physical length-measure and the clock of the abso-
lute reference system. Considering this velocity as much greater than the respec-
tive velocities of the individual movements inside the galaxy, the contraction 
factor will be ( ) 1 22 21g gu cγ

−
= − . 

Defining the times τΓ  and gτ  as the time differences between the pulses 
from the Earth and the pulses from the source of electromagnetic signals respec-
tively, as these times are measured with the clock of the absolute reference sys-
tem, the following equation is taken: 

( )
( )cos cos

g g g

g g g g

AC c BD c

u u c

τ τ

τ τ φ τ θ

Γ

Γ Γ

= − −

= − −
               (4.30) 

where θ  is the acute angle formed by the AC and CD lines of the shape and φ  
is the acute angle formed by the AB and AC lines in the absolute reference sys-
tem. If tΓ  and gt  denote the time differences of the pulses with the clocks of 
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the inertial reference systems of the Earth’s and of the source of electromagnetic 
signals respectively, then the correlations between these and the previous time 
differences are t τ γΓ Γ Γ=  and g g gt τ γ= , where ( ) 1 22 21 u cγ

−

Γ Γ= −  and uΓ  
the Earth’s velocity with respect to the absolute reference system (with the phys-
ical measure of length and the clock of the absolute system). As mentioned be-
fore the velocity of the Earth inside our galaxy’s frame of reference is considered 
as negligible, compared to our galaxy’s velocity with respect to the absolute ref-
erence system. The measured frequencies of the pulses, in the Earth’s reference 
system and in the galaxy’s reference system respectively, are 1 tνΓ Γ=  and 

1g gtν = . 
Finally, the correlation of the time differences and the frequencies of emission 

and reception of the electromagnetic signal, results in the relations: 

cos
cos

g g
g

g

c u
c u

φ
τ τ

θΓ
Γ

−
=

−
 

( )
( )

cos

cos
g

g
g g g

c u

c u

θ γ
ν ν

φ γ
Γ Γ

Γ

−
=

−
                  (4.31) 

This latter relation, which correlates the frequency of emission and reception 
of electromagnetic pulses (or the emission and reception of an electromagnetic 
wave in general) is clearly different from that of the special theory of relativity. 
An important remark is that the shift of the spectral lines towards the red or to-
wards the violet depends on whether the quantity cosu θΓ  is greater or less 
than the quantity cosgu φ , but also on the ratio gγ γΓ . The differentiation 
from the relativistic perception is that in this relation two velocities (the velocity 
of the galaxy and the velocity of the earth with respect to the absolute reference 
system) are taken into consideration, while in the corresponding relativistic rela-
tion for the Doppler effect, it is taken into account only the relative velocity of 
the galaxy with respect to the earth. So, the results from the use of the relativistic 
Doppler effect has to be reviewed on the basis of what has been described here, if 
we want to agree with the hypothesis of the absolute reference system. 

The difference in estimated masses, derived from the use of two different me-
thods such as those of Newtonian theory of gravity and brilliance of stars in 
conjunction with the corresponding shift to the red spectrum of galaxies, can 
only be explained by introducing the assumption of dark matter or by the mod-
ification of the universal law of gravitation. This assumption of the modificated 
Newtonian theory of gravity is introduced by Moti Milgrom from 1983 and is 
also supported by Jacob Bekenstein since 2004. According to the hypothesis of 
the absolute reference system, using the relation 4.31 this contradiction can be 
resolved. Therefore, neither the assumption of dark matter nor any other mod-
ification of the universal law of gravitation is needed to explain these celestial 
phenomena. 

According to the observations of the rotation curves of spiral galaxies, stars 
with larger galactic orbits do not follow as expected in Kepler’s third law. Ac-
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cording to Kepler’s third law, these stars should have smaller orbital velocities 
than those closest to the galactic center. What has been observed is that instead 
of being reduced to large rays, the orbital velocities remain constant. This find-
ing has led to conclusions such as the existence of a dark matter composed of 
hypothetical particles, which do not emit or reflect enough electromagnetic rad-
iation to be readily detectable, and supposed to cover the deficiency of the mass 
in order for these observations to be consistent with the Newton’s theory of 
gravity. 

All these findings, however, relate to the assessment of the speeds and, by ex-
tension, the masses based on the Doppler relativistic phenomenon. From the 
point of view of the absolute reference system, the relation for the displacement 
of the spectral lines and the corresponding change in the frequency of light 
coming from the stars that follow these galactic paths is the 4.31. The velocities 
that dominate the absolute reference system are not the individual stellar veloci-
ties in the inner space of the galaxies, but the velocities of the galaxies in the ab-
solute reference system, because the stellar velocities (inside the galactic space) 
are much smaller than the velocities of the galaxies. 

In the absolute reference system the circular galactic orbits of the stars, in 
conjunction with the movement of the galaxy, are helical, but the 
above-mentioned great difference in velocities makes these orbits almost straight 
lines and identical to the orbit of the galaxy. From this analysis we can conclude 
that the observed spectral stability of light coming from stars with different ga-
lactic paths is consistent with the hypothesis of the absolute reference system, 
and in this case the dark matter assumption does not need in order to justify 
these observations. 

Another subject to be discussed is to solve cosmological problems according 
to newer observations and the corresponding explain of these problems with a 
newer physical theory19, according to which the constant of the velocity of the 
light in the vacuum is not exactly constant. According to this theory the velocity 
of the light in vacuum has a value that depends on the time of the evolving un-
iverse, so the velocity of light coming from the early universe is much greater. 
From the point of view of the hypothesis of the absolute system of reference, it is 
obvious that the velocity of light coming from earlier phases of the evolutionary 
process of the universe is much greater, despite the fact that this velocity is equal 
to the known constant c when this velocity is measured in the reference system 
of the source of light. For example, the aforementioned velocity of light coming 
from the galaxy of our example, when it is measured in the Earth’s reference 
system (with the Earth’s physical measures of length and time), will have a value 
equal to: 

( )22 2 2 2sin cosg gc c c uγ χ γ χΓ Γ Γ Γ Γ Γ= + ±              (4.32) 

 

 

19A time varying speed of light as a solution to cosmological puzzles, Andreas Albrecht and Joao 
Magueijo, Theoretical Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, 
London, SW7 2BZ, UK. 
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where χΓ  is the angle formed by the direction of the electromagnetic signal 
emitted by the point A of the source of electromagnetic wave with the Earth’s 
trajectory, with respect to the absolute reference system, whereas the double sign 
± is used according to Earth’s velocity direction. 

In 1919 Hubble discovered that all external galaxies are moving away from 
us20. In calculating the speeds and distances of distant galaxies, initially, the rela-
tivistic Doppler effect had not been taken into account, and these velocities were 
calculated simply by using the function c λ λ∆ . 

However, we will have to revise the results from the use of the relativistic 
Doppler effect according to what has been said so far, if we want to see the cor-
responding results from the point of view of the absolute reference system. In 
the Table 1 are listed the distances and velocities relative to the Earth of specific 
galaxies, based on a 1958 revised distance scale. 

If the emitted pulses of the aforementioned example are emitted from an 
Earth satellite, then the phenomenon can be examined in the Earth reference 
system, so, the speed gc  is replaced to the constant c, the velocity uΓ  is equal 
with zero, the angle φ  is formed by the direction of the pulse and the satellite 
velocity in the earth reference system, the velocity gu  substitutes the satellite 
velocity in the Earth’s reference system and finally the two relations 4.31 result 
in the relations which are provided by the special theory of relativity. 

4.3. The Fizeau Experiment 

When entering a monochromatic light beam in a transparent container con-
taining water in motion relative to the container and the whole experimental de-
vice, the initial velocity of the beam tends to initially vary due to the fluid 
movement, and then due to the refraction effect of the beam, which already has a 
differentiated speed, in the water. 

Addressing the issue in this way is due to the concept of the inertial system 
according to the hypothesis of the absolute reference system. The experimental 
arrangement of Fizeau is in the land reference system, while the moving fluid, in 
this case water, is in an inertial reference system moving at a velocity v in rela-
tion to the Earth reference system. According to the absolute reference system 
hypothesis, each inertial reference system (together with the frame material) has 
an objective being, and it is not determined exclusively by the observer which is 
stationary (or not) with respect to that reference system, as provided by the cor-
responding relativistic description. 

The source of the light beam, as well as the beam, are included in the same in-
ertial reference frame. This means that the beam is part of the inertial system of 
the experimental array because of its “basic frequency”, according to the relative 
definitions in the subsection 4.1. The moving water is in another inertial system 
moving at the velocity v with respect to the inertial beam source and therefore 
causes a variation of the initial velocity of the light beam that is equal to v/n,  

 

 

20Ref. [1], chapter 5, Relativistic Kinematics, The red shift of distant galaxies. 
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Table 1. Distances and velocities of distant galaxies relative to the Earth, based on a 1958 
revised distance scale. 

Galaxies Velocity ( 410 km sec× ) Distance (light years) 

Virgo 0.12 80.4 10×  

Ursa Major 1.40 85.0 10×  

Corona Borealis 2.14 87.0 10×  

Boötes 3.90 91.3 10×  

Hydra 6.10 92.0 10×  

 
where n is the refractive index of the water. Therefore, since the initial velocity 
of the beam in the air is approximately equal to the velocity of the light in the 
vacuum, for an observer in the inertial reference system of the moving water the 
final velocity of the beam will be equal to ( )c v n n± , depending on its direc-
tion in relation to the direction of water movement, including the refraction ef-
fect when its velocity has already changed. 

When the beam moves in the same direction as water, for an observer in the 
inertial system of the experimental device, the velocity of the beam within the 
moving water is: 

( ) 2

11u c v n n v c n v
n

 = − + = + − 
 

                (4.33) 

When the water and beam directions are opposite: 

( ) 2

11u c v n n v c n v
n

 = + − = − − 
 

                (4.34) 

The factor 21 1f n= −  is the known drag coefficient of Fresnel. 

4.4. Speed of Light of a Moving Source 

When the light passes into a medium, a continual process of absorption of the 
incident light and its reemission as secondary radiation by the medium takes 
place, and due to this effect the speed of the original source cannot be detected. 
This phenomenon is known as extinction21 and for visible light, in order to ac-
complish, a thickness of about 10−5 cm of glass or 0.1 mm of air at atmospheric 
pressure is almost sufficient. 

 

 

21Experimental Evidence for the Second Postulate of Special Relativity, J. G. Fox, Carnegie In-
stitute of Technology, Pittsburgh, Pennsylvania, Citation: American Journal of Physics 30, 297 
(1962), page 297, II. THE EXTINCTION THEOREM, … From the Thomson cross section for the 
scattering of light by an electron σ  and the number of scattering electrons per unit volume n, one 
can estimate roughly the distance l in which the incident beam is attenuated. One must take into ac-
count the fact that the scattering electrons are oscillating in definite phase relations with one anoth-
er. Many oscillate in phase and hence radiate in phase and absorb energy from the incident beam 
faster by a factor equal to the square of the number in phase. This may be taken to be roughly the 
square of the number of electrons in a length 2πλ  ( λ  = the wavelength) and is about 105 for 

condensed materials. Thus we obtain ( )51 10l nσ
. with 25 26 10 cmσ −×

 and 23 310 cmn , 

we obtain 410 cml −


. This is indeed a thin surface layer … 
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But according to the hypothesis of the absolute reference system, there is one 
more deeper cause that can cause an extinction effect and loss of the ability to 
determine the motion of the light source. According to the ones described in the 
subsection 4.1, the photons emitted have a “basic energy” and a corresponding 
“base frequency” derived from the reference system of the moving light source. 
Due to the scattering of the photons with the electrons of the optical medium 
from which they pass, the basic frequency and basic energy of the beam are 
equated with those of the electrons of the optical medium, yielding or gaining 
energy. This results in the photon beam moving at a velocity c/n with respect to 
the optical medium, where we denote by n the refractive index of the optical 
medium, and by c the velocity of light in the vacuum. 

Such experiments22, with high-frequency electromagnetic γ  radiation de-
rived from moving sources, were made to verify the second axiom of the special 
theory of relativity, of the stability of the light velocity, independent of the light 
source movement and the observer. 

Also, according to the hypothesis of the absolute reference system, the beam 
originating from a rotating light source propagates at a speed determined not by 
the instantaneous velocity of the source but by the inertial system to which the 
light source is rotated. This is a basic requirement of the absolute system hypo-
thesis and is described in detail in the section of electromagnetism. Therefore, 
experimental results23 and observations24 derived from rotatable electromagnetic 
radiation sources are in agreement with the hypothesis of the absolute reference 
system, although those experiments were performed to confirm the second 

 

 

22Alvaeger F.J.M. Farley, J. Kjellman and I Wallin, Physics Letters 12, 260 (1964). Arkiv foer Fysik, 
Vol 31, pg 145 (1965). (Measured the speed of gamma rays from the decay of fast 0π  (0.99975 c) to 
be c with a resolution of 400 parts per million.) Sadeh, Phys. Rev. Lett. 10 no. 7 (1963), pg 271. 
(Measured the speed of the gammas emitted from e e+ −  annihilation (with center of mass v/c 0.5) 
to be c within 10%.) Filippas and Fox, Phys. Rev. 135 no. 4B (1964), pg B1071. (Measured the speed 
of gamma rays from the decay of fast 0π  (0.2 c) in an experiment specifically designed to avoid ex-
tinction effects.) 
23Kantor, W., J. Opt. Soc. Amer., 52, 9, 978 (1962). James, J. F., and Sternberg, R. S., Nature, 197, 
1192 (1963). Babcock and Bergmann, Journal Opt. Soc. Amer. Vol. 54, pg 147 (1964).(This repeat of 
Kantor’s experiment in vacuum shows no significant variation in the speed of light affected by mov-
ing glass plates. Optical Extinction is not a problem. k < 0.02.) Rotz, F. B., Phys. Lett., 7, 4, 252 
(1963). Beckmann, P., Dept. of Elect. Eng., Univ. of Colorado, Reprint (1964). Waddoups, R. O., 
Edwards, W. F., and Merrill, J. J., J. Opt. Soc. Amer., 55, 2, 142 (1965). Vysin, V., Phys. Lett., 8, 36 
(1964). Datzeff, A. B., C.R. Acad. Sci., Paris, 17, 2, 121 (1964). Beckmann and Mandics, “Test of the 
Constancy of the Velocity of Electromagnetic Radiation in High Vacuum”, Radio Science, 69D, no. 
4, pg 623 (1965). (A direct experiment with coherent light reflected from a moving mirror was per-
formed in vacuum better than 10−6 torr.) 
24Comstock, Phys. Rev. 10 (1910), pg 267. DeSitter, Koninklijke Akademie van Wetenschappen, vol 
15, part 2, pg 1297-1298 (1913). DeSitter, Koninklijke Akademie van Wetenschappen, vol 16, part 1, 
pg 395-396 (1913). DeSitter, Physik. Zeitschr. 14, 429, (1913) DeSitter, Physik. Zeitschr. 14, 1267, 
(1913) Zurhellen, Astr. Nachr. 198 (1914), pg 1. (Observations of binary stars. 610k −< . These are 
all subject to criticism due to Optical Extinction.) K. Brecher, “Is the Speed of Light Independent of 
the Velocity of the Source?”, Phys. Rev. Lett. 39 1051-1054, 1236(E) (1977). (Uses observations of 
binary pulsars to put a limit on the source-velocity dependence of the speed of light. 92 10k −< × . 
Optical Extinction is not a problem here, because the high-energy X-rays used have an extinction 
length considerably longer than the distance to the sources.)  
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axiom of the special theory of relativity, about the stability of light velocity, such 
as the above experiments, that are referring to moving sources of γ  radiation. 

4.5. Terrestrial Sources According to the Hypothesis of the  
Absolute Reference System 

The apparent velocity of light emitted by a source located in the inertial refer-
ence system of a laboratory, moving in parallel and in the same direction as the 
light beam at a velocity v with respect to the inertial system of observation is 
u l t= , where u is the velocity measured by the inertial observation system and l, 
t is the length and the time measured by the physical measure of length and the 
clock of the same system. We assume that the measurements are made in the 
absolute vacuum, so that this velocity, when it is measured in the reference sys-
tem of the source, to be equal to the velocity of the light in the vacuum, that is, to 
be equal to ( )2c l vt tγ= − , where ( ) 1 22 21 v cγ

−
= − . Therefore the velocity u 

is: 
2u c vγ= +                           (4.35) 

In the speed range v from 0 to c, the velocity u has a maximum value of 5c/4 
when the corresponding velocity value v is c/2. Experimental confirmation of 
this phenomenon is not simple. The simplest case would probably be the one of 
a particle in the place of the light source. For example, if from a particle, running 
at the laboratory at a speed close to half the speed of light in the vacuum, is 
emitted a photon that moves in the absolute vacuum at a velocity, measured by 
the physical measure of length and the clock of the frame of reference of the par-
ticle, very close to the speed of light in the vacuum, the velocity u could be 
measured equal to the amount 4c c+ . 

When the reference system of the light source, and the light beam move in the 
opposite direction, the velocity u is calculated with the relation:  

2u c vγ= −                         (4.36) 

In this case, the velocity u is zeroed when ( )5 1 2 0.618v c c= −  . 

4.5.1. Experimental Confirmation 
Since the creation of the absolute vacuum is practically impossible, the best way 
to implement such an experiment is through the production of neutrinos in a 
particle reaction, since these particles move at long distances without interac-
tions. 

The neutrinos produced are derived from protons accelerated in the European 
Center of Nuclear Research (CERN) accelerator (synchrotron), at speeds that are 
very close to the speed of light in the vacuum. Therefore, protons moving at such 
high velocities define an inertial reference system in which then the produced 
pions/kaons decay into muons and neutrinos, but only the neutrinos are finally 
allowed to pass through the muon detectors, while the hadrons also stop on a 
specific target. 

The determination of proton velocity is based on the energy calibration ac-
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cording to the special theory of relativity. This is because both in terms of special 
theory of relativity and the view of the absolute reference system, the proton 
motion equation perpendicular to the dynamic lines of a homogeneous magnetic 
field, in the Gaussian system of units, is:  

d
d

em
t c

γ = ×
v v B  

where m and e are the known values for the proton mass and charge respectively. 
Also v  is the protons velocity within the magnetic field B , and  

( ) 1 22 21 cγ
−

= − v . 

If we assume that v is the velocity of the protons and u the velocity of the neu-
trinos then according to the previous relation 2u c vγ= +  arises:  

2

2

u c v v
c c c
−

= −                        (4.37) 

The determination of the velocity v of the protons will therefore be made ac-
cording to the kinetic energy relation of the special theory of relativity 

( ) 21E m cγ= − , where ( ) 1 22 21 v cγ
−

= − . 
The first terrestrial measurement of absolute transit time was carried out by 

the MINOS25 research team in 2007 at Fermilab. To create neutrinos (the 
so-called NuMI beam) they used the Fermilab Main Injector, with which 120 
GeV energy protons were directed to a graphite target. The produced mesons 
were decayed into muons—neutrinos 93% and muons—antineutrinos 6%, in a 
675 meters long tunnel. The path time was determined by comparing arrival 
times at the nearby and distant MINOS detectors, that is, a 734 km path. The 
clocks of both stations were synchronized by the GPS and large optical fibers 
were used to transmit the signal. 

Since the energy of the accelerated protons is 120 GeV, the ratio ( )u c c−  is 
calculated using the relation (4.37). The result of the calculation is:  

53.05 10u c
c

−−
×  

which is in agreement with the corresponding experimental result. 
Indeed, was measured an early neutrino arrival of approximately 126 ns. Thus, 

the relative speed difference was ( ) ( ) 55.1 2.9 10u c c −− = ± ×  (68% confidence 
limit). The main source of error in the experiment was the uncertainty in optical 
fiber delays. The statistical significance of this result was less than 1.8σ , thus it 
was not significant since 5σ  is required to be accepted as a scientific discovery. 

At the end of 2011 and early 2012, two new experiments were done, in order 
to be measured the velocity of neutrinos. The first one to be mentioned is that of 
the OPERA detector26, while the second is what was done by the ICARUS re-

 

 

25Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam, P. 
Adamson, C. Andreopoulos, K. E. Arms, … (The MINOS Collaboration) 
26Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, T. Adam, 
N. Agafonova, A. Aleksandrov, …, 12 Jul. 2012.  
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search team27. These experiments have contradictory results, when they ex-
amined from the point of view of the special theory of relativity, but viewed from 
the point of view of the hypothesis of the absolute reference system are in 
agreement. 

The OPERA neutrino detector at LNGS is composed of two identical Super 
Modules, each consisting of an instrumented target section with a mass of about 
625 tons followed by a magnetic muon spectrometre. Extensive information on 
the OPERA experiment is given in the reference “OPERA Collaboration, R. Ac-
quafredda et al., JINST 4 (2009) P04018”. The CNGS beam is produced by acce-
lerating protons to 400 GeV/c with the CERN Super Proton Synchrotron (SPS). 
Therefore the ratio ( )u c c−  is calculated:  

62.7 10u c
c

−−
= ×  

which is in total agreement with the corresponding experimental result, that is 
equal to ( ) ( ) ( )( )3.4 6

3.32.7 3.1 . . 10u c c stat sys+ −
−

− = ± × . 
The ICARUS experiment was carried out with the help of the Large Hadron 

Collider (LHC), since in the corresponding publication is stated: “The CNGS 
proton beam structure for the 2012 neutrino time of flight run is shown in Fig-
ure 1. It was based on LHC-like proton extractions, with a single extraction per 
SPS super-cycle (13.2 s), 4 batches per extraction separated by 300 ns, and 16 
proton bunches per batch separated by 100 ns; each bunch had a narrow width 
of 4 ns FWHM (1.8 ns rms).” 

At the end of 2011, the LHC had an operating break that would allow for a 
proton beam energy increase of 3.5 TeV to 4 TeV per beam. Therefore, the pro-
ton energy used in ICARUS is, during the period of implementation of the expe-
riment, in the order of 3.5 TeV. In this case the ratio ( )u c c−  is calculated:  

70.36 10u c
c

−−
= ×  

which is also in agreement with the corresponding experimental result, that is 
equal to ( ) ( ) ( )( ) 70.4 2.8 . 9.8 . 10u c c stat sys −− = ± ± × . 

5. Conclusions 

The hypothesis of the absolute reference system can be characterized as a “uni-
fied theory”, since it is capable of interpreting the macrocosm and the micro-
cosm. To sum up, the study so far, based on the hypothesis of the absolute ref-
erence system, concludes with the following conclusions: 

1) Starting from the Faraday principle for the magnetic field, and extending 
this principle to the electric field, we get the Maxwell equations, with the coexis-
tence of two additional kinetic terms like those of the special theory of relativity. 
These modified Maxwell equations give the solution to open issues of electro-
magnetism. 

 

 

27Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS 
beam, M. Antonello, B. Baiboussinov, P. Benetti, …, 26 Sep. 2012.  
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2) Due to the Doppler phenomenon modification according to the principles 
of the absolute reference system, there is no reason for the presence of dark 
matter. 

3) In the study of neutrinos, derived from protons accelerated in a synchro-
tron, the theoretical calculation of neutrinos velocity based on the hypothesis of 
the absolute reference system is in agreement with the experimental results of 
neutrinos velocity measurements. These experimental results are in contrast to 
the special theory of relativity. 
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