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Abstract 

The possibility that quantum mechanics is founded on non-metric space has 
been previously introduced as an alternative consequence of Bell inequalities 
violation. This work develops the concept further by an analysis of the iconic 
Heisenberg gedanken experiment. No lower bound is found in the gedanken 
uncertainly relation for a non-metric spatial background. This result has the 
fundamental consequence that the quantum particle trajectory is retained in 
non-metric space and time. Assignment of measurement number-values to 
unmeasured incompatible variables is found to be mathematically incorrect. 
The current disagreement between different formulations of the empirically 
verified error-disturbance relations can be explained as a consequence of the 
structure of space. Quantum contextuality can likewise be explained geometr-
ically. An alternative analysis of the extended EPR perfect anti-correlation 
configuration is given. The consensus that local causality is the sole assump-
tion is found to be incorrect. There is also the additional assumption of orien-
tation independence. Inequalities violation does not therefore mandate rejec-
tion of local causality. Violation of the assumption of orientation indepen-
dence implies rejection of metric, non-contextual variables algebraically 
representing physical quantities.  
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1. Introduction 

Bell’s theory is widely considered to be the critical empirical testing ground on 
the foundation of quantum mechanics (QM) [1] [2]. Experimental violation of 
testable inequalities can be interpreted to require rejection of local causality as a 
fact of nature. Even the meaning of realism is being questioned [3] [4] [5] [6] [7]. 
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There are nevertheless dissident views. Although now resolved, questions per-
sisted on experimental design and possible loopholes. Also, additional assump-
tions underpinning derivation of Bell inequalities have been identified [8] [9] 
[10] [11] [12]. These focus not on the question of locality but on the mathemat-
ical characteristics of physical quantities. The investigation being developed here 
is just one such possibility. Quantum non-locality nevertheless remains the con-
sensus option. 

While experimental violation of Bell inequalities has been well established, 
only recent experiments are claimed to be loophole-free [13] [14] [15]. What 
have been termed the locality loophole and fair-sampling assumptions have been 
addressed in improved experimental design. Bell inequalities violation can now 
be said to be experimentally verified beyond reasonable doubt.  

This alternative investigation is a consequence of the assumption in Bell in-
equalities that physical quantities are represented by metric variable-type [10]. 
This seemingly innocuous assumption has its origins in classical theories where 
physical quantities are mathematically represented by such variables. Metric va-
riables have two fundamental properties: their algebraic structure is a field, and 
hence can be represented by number-values, and have measurability as a geome-
trical-mathematical property.  

Algebraic representation of classical quantities by metric variables is a result 
of the underlying geometrical architecture. Hilbert showed that combinations of 
Euclidean geometrical points obey a field algebraic structure [16]. This algebra 
of points is isomorphic with the field of natural numbers. Isomorphism allows 
points in Euclidean geometry to be mathematically represented by num-
ber-values: as they obey the same rules. To the extent that physical points in 
space and time can be represented by points in Euclidean geometry then they 
likewise can be associated with number-values.  

Basic geometrical principles also apply in defining measurability as a mathe-
matical, as distinct from an operational property. Since distance between two 
geometrical points is invariant, measurability of distance is definable within the 
axiomatic structure of Euclidean geometry [17]. Variables in a mathematical 
theory with a Euclidean geometrical architecture can then be metric. That is, as-
signment of measurement number-values for classical quantities is a conse-
quence of metric space.  

This small discourse on foundations of geometry shows that there is a nexus 
between variable-type and underlying geometry. If inequalities violation is at-
tributed to an incorrect algebraic representation of quantities alternative options 
become available—including the possibility that quantum phenomena are 
founded on a non-metric geometry. The geometrical modification being pro-
posed requires space to be non-metric described by Projective geometry while 
time remains metric [11] [18] [19]. Under special case invariance conditions 
Euclidean geometry emerges from Projective.  

For events on the space-time dual geometry the axiom of order cannot be 
consistently defined [11]. Consequently, the ensuring algebra of points is a ring 
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i.e. the multiplication operation is non-commutative. Following Hilbert’s iso-
morphic reasoning, points on the dual geometry can only be mathematically 
represented by algebraic entities which also form a ring. A direct connection 
with the mathematical formulation of QM is possible. Dirac q-numbers, which 
are subject to ring algebra and are the basis of Dirac’s quantum formulation, are 
isomorphic with points on the dual geometry. Quantum mechanics can thereby 
be understood to be based on a spatial-temporal platform.  

It is worthwhile to briefly outline the geometrical principles of quantum me-
trics in projective space [11]. While projective transformations are in general 
non-metric, isometric transformations, which are a subset, do preserve Eucli-
dean invariance. Measurability can then be defined geometrically under special 
case conditions for subsets of points subject to isometric invariance [17] [18] 
[19]. Due to the symmetry properties of QM the Schrodinger equation, and 
hence the Schrodinger wave function in position space, is subject to isometric 
invariance. The wave function is thereby embedded in a Euclidean subspace. 
Quantum metrics become a characteristic of the geometrical properties of the 
wave function. Position and momentum space are not simultaneous representa-
tions of the wave function, and so, not simultaneously isometric invariant. 
Hence, measurability is not a simultaneous property of the two physical quanti-
ties.  

Non-metric space has the consequence that physical observables are simulta-
neously in multiple contexts with differing geometrical properties, and so, dif-
fering algebraic representation. Quantum contextuality can thereby be unders-
tood geometrically. 

Suggesting that the Schrodinger equation is sourced in a non-metric space 
may seem rather exotic. Nevertheless, as an example of a Sturm-Liouville equa-
tion it can be reconstructed by the Schwarzian from a specifically defined para-
meterized curve in projective geometry. If it is supposed that space is non-metric, 
there is at least a mathematical connection between such space and the time in-
dependent Schrodinger equation. 

Obviously, the structure of classical space is being questioned. Eins-
tein-Podolsky-Rosen (EPR)testing experiments, together with the various de-
layed-choice configurations, are at present the empirical frame of reference on 
quantum foundations [20] [21] [22]. If these experiments are to be taken se-
riously, and no simpler explanations are forthcoming, some kind of departure 
from classical understanding is the obvious option in seeking alternative expla-
nations. Superluminal influences or an irreducible randomness are the current 
benchmark. 

This paper is as follows. Analysis of the Heisenberg gedanken experiments is 
presented. The assumption of metric space is fundamental to the ionic construc-
tions. Rejection of this basic assumption enables derivation of posi-
tion-momentum indeterminacy relation in a non-metric space. No lower bound 
is found. This result has implications for the ensemble error-disturbance rela-
tions. Naive counter factuality, i.e. assignment of measurement number-values 
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to unmeasured incompatible variables, is found to be invalid. An alternative 
analysis of Bell’s extended EPR perfect anti-correlation configuration is pre-
sented. The claim that local causality is the sole assumption, which defines all 
other possible assumptions, is found to be incorrect.  

2. Heisenberg Gedanken Experiments 

The iconic Heisenberg microscope is considered to be the definitive gedanken 
experiment which encapsulates the fundamental physical basis of QM. Although 
its applicability has been questioned, the celebrated construct does provide a 
conceptual framework from which to explore quantum foundations. While Bohr 
and Heisenberg where in agreement that the uncertainty relation expressed a 
fundamental characteristic of physical reality, there was disagreement on the 
origins of indeterminacy. Scholars argue that contrary to textbook misrepresen-
tations, the nuances disengagement between the Masters was never resolved. 
Heisenberg originally was of the view that intrinsic to the act of measurement 
was a discontinuous change in momentum. For Bohr however, indeterminacy 
was sourced in wave-particle complementarity. Heisenberg, at least initially, re-
calibrated to the Bohr position [23].  

Only Heisenberg’s interpretations of the gedanken experiments will be consi-
dered, and only as a point of reference. Heisenberg’s reasoning is somewhat in-
direct. Following Bohr’s earlier definition of complementarity, the empirically 
based particle picture is assumed to critique the limits of applicability of the 
wave picture. Interchanging pictures places limits on the applicability of both. 
The ensuing mathematical relation defines the now famous inverse proportio-
nality between position and momentum indeterminacies, resulting from a posi-
tive lower bound of the order of Plank’s constant. Where indeterminacies tend 
to zero the relation exhibits a singularity. From this simple mathematical rela-
tion very far reaching consequences are extrapolated.  

Firstly, the particle path as “a sequence of points in space” is rejected. Second-
ly, two fundamental aspects of a physical theory—that natural phenomena be 
explained by exact laws, and by relations between objects existing in space and 
time—are mutually exclusive, and so cannot be both fulfilled by quantum theory 
[23]. Thirdly, ensemble uncertainty relations motivated by the gedanken expe-
riments are obtained. These are the initial Kennard relation (preparation uncer-
tainty), and the more recent error-disturbance relations (measurement uncer-
tainty). Controversy exists about the appropriate formulation of the latter [24]. 
The ensemble relations are open to experimental verification. 

The term “uncertainty principle” is commonly understood to refer to both the 
gedanken and also ensemble relations. These are however fundamentally differ-
ent. As Ballentine emphatically pointed out about the Kennard relation, but also 
applicable to the other ensemble expressions, these relations use standard statis-
tical definitions as measures of dispersion i.e. standard deviations, mean square 
error etc. to obtain relations between different distributions [25]. As statistical 
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analysis they do not necessarily apply to the individual case. This is a principle of 
statistics it is not an interpretation. Imposing ensemble conclusions to the indi-
vidual case introduces an irreducible randomness, which as Ballentine again 
points out, is the source of much of quantum perplexities.  

The ensemble relations are obtained from the mathematical apparatus of 
standard QM which is not contradicted by the geometrical explanation being 
proposed. 

Irrespective of the source of indeterminacy, whether Heisenberg’s 
act-of-observation-disturbance or Bohr complementarity, the gedanken confi-
gurations all assume a metric background Euclidean space. It therefore becomes 
a possibility that the gedanken relation can also be interpreted as defining limits 
on this basic geometrical assumption. 

Position indeterminacy is defined in the gedanken experiments as the distance 
between extremities. For example, with the microscope experiment it is the dis-
tance between endpoints of an image, whereas with the interference configura-
tions it is the width of the slit. Momentum indeterminacy is likewise the differ-
ence between points, usually the initial and final values. Essentially then, Hei-
senberg defines indeterminacy as a length or range.  

For non-metric space length is not an invariant. However, metric characteris-
tics can be defined at least in generic form [19]. Briefly, the distance between two 
points P and Q denoted symbolically by (PQ), possesses the following proper-
ties: 

( ) 0PP =                            (1a) 

( ) ( )PQ QP= −                         (1b) 

( ) ( ) ( ) 0PQ QR RP+ + =                     (1c) 

where the distance between two coinciding points is zero, reversing the order 
changes the sign, and the sum of distances between three collinear points is giv-
en by relation (1c). 

For 1 2,M M  arbitrarily chosen distinct points, the projective distance be-
tween P and Q is given by: 

( ) { }1 2ln , , ,PQ k M M P Q=                    (2) 

This expression encompasses the three basic conditions, where { }1 2, , ,M M P Q  
denotes the cross ratio and k is a scaling constant. Choosing the points of refer-
ence: 0A  the origin, 1A  the point at infinity and I the identity point,  

{ }0 1, , ,A A Q I q=                        (3) 

where q is the non-homogeneous coordinate of Q. The projective distance be-
tween 1Q  and 2Q  is then:  

( ) [ ]1 2 2 1, ln lnQ Q k q q= −                    (4) 

Returning to examining the gedanken experiments on a non-metric space, 
there are three possibilities: position space is metric and momentum space 

https://doi.org/10.4236/jamp.2018.66100


F. Ruzzene 
 

 

DOI: 10.4236/jamp.2018.66100 1184 Journal of Applied Mathematics and Physics 

 

non-metric, the reverse, and both spaces are non-metric. The first two defini-
tions would be the basis architecture of the Schrodinger equation and wave 
function. However, it is the third definition which would be the geometrical 
platform to describe the quantum path where position is a function of time.  

For the Schrodinger configurations indeterminacies can be defined as: 

( )2 1x x xα∆ = −                         (5a) 

( )2 1ln lnp p pβ∆ = −                      (5b) 

Alternatively,  

( )2 1ln lnq q qα∆ = −                      (6a) 

( )2 1
m m mp p pβ∆ = −                      (6b) 

where α, β are dimensionality constants for position and momentum. Relation 
(5a) refers to position indeterminacy in metric i.e. Euclidean defined space; 
while (5b) refers to momentum indeterminacy in non-metric i.e. projective de-
fined space. Definitions are reversed in relations (6a) and (6b). Configuration 
(5a), (5b) would accommodate an error in the measurement of position with the 
resulting disturbance in momentum, using Heisenberg definitions. For this con-
figuration the product of indeterminacies would be: 

[ ]1
2

x p x p p x∆ ⊗∆ = ∆ ∆ + ∆ ∆                   (7a) 

( )( ) ( )( ){ }2 1 2 1 2 1 2 1
1 ln ln ln ln
2

x p x x p p p p x xαβ∆ ⊗∆ = − − + − −   (7b) 

where, the standard QM definition of half the sums of non-commutating prod-
ucts is used.  

These expressions should not be understood within the mindset of standard 
QM. The variables do not represent operators in Hilbert space, at least not di-
rectly. Considering for example relations (5a) and (5b), ,i ix p  represent geome-
trical points. To the extent that such abstract constructions represent position in 
space, and instantaneous momentum, these geometrical points represent physi-
cal quantities in space and time in a manner analogous to Classical Mechanics. 
In relation to quantum theory the quantities will then refer to “hidden va-
riables”, using Bell-EPR terminology. As such they are not to be confused with, 
for example, the momentum differential operator as generator of translation in 
Euclidean position space, defined from the isometric symmetry of the Schrodin-
ger equation and wave function. In relation (7), x as a c-number and p as a Dirac 
q-number commute i.e. [ ], 0x p = ; which differs from ,x p  defined in Eucli-
dean position space where the variables do not commute.  

Following some straightforward algebra gives: 

( )( ){ }2 1 2 1ln lnx p p p x xαβ∆ ⊗∆ = − −              (8) 

Significantly, the RHS of relation (8) does not have a lower bound, tending in-
stead to zero as indeterminacies tend to zero. Unlike the gedanken relation there 

https://doi.org/10.4236/jamp.2018.66100


F. Ruzzene 
 

 

DOI: 10.4236/jamp.2018.66100 1185 Journal of Applied Mathematics and Physics 

 

is no singularity. Further, while momentum is non-metric, a measurement of the 
position error can be zero. The alternative definition, i.e. (6a), (6b), leads to a 
similar conclusion but while position is non-metric, measurement of momen-
tum disturbance can be zero.  

For the third geometrical configuration the indeterminacies are: 

( )2 1ln lnq q qα∆ = −                       (9a) 

( )2 1ln lnp p pβ∆ = −                       (9b) 

Here the coordinates can more generally refer to the particle at position Q, at 
time t with momentum P; ∆q defines position indeterminacy around Q, and 
correspondingly for momentum indeterminacy. As Dirac q-numbers p, q of re-
lation (9) are non-commuting, the appropriate non-commutation relation is 
[26]:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1, 1 !k kk

kf q g p c f q g p k∞

=
= − −   ∑       (10a) 

( ) ( ) ( )
1

1 1 !
ln ln ln ln 1 where

n

n nn

n iq p p q c
nq p αβ

∞

=

− −  
− = − =  

 
∑ 

   (10b) 

Identifying the natural logarithms function in the general commutation rela-
tion for functions of operators (10a) gives relation (10b).  

The product of indeterminacies is: 

( )( ) ( ) ( )( ){ }2 1 2 1 2 1 2 1
1 ln ln ln ln ln ln ln ln
2

q p

q q p p p p q qαβ

∆ ⊗∆

= − − + − −
 (11) 

Following the same algebra as the Schrodinger configurations leads to the 
same conclusion of a non-singularity. Note that the non-commutation relation, 
which is said to be the primal mathematical source of the uncertainty relations 
in standard QM, has been explicitly used in obtaining these expressions. 

Assuming that the Heisenberg gedanken experiments are applicable (rejected 
by Ballentine), there are two possibilities for the product of indeterminacies: 
where both are metric i.e. share a common Euclidean space, the product is 
bounded by the order of Plank’s constant; where one is metric and the other 
non-metric or where both are non-metric, the product is zero.  

The validity of Heisenberg’s conclusion is not in question. Rather, the domain 
of its applicability is restricted to Euclidean space, where a causal description of 
motion is not possible. This does not however, mean an irreducible randomness 
in the single particle position. It refers instead to an incomplete description of 
motion in metric space. Ontologically, there is no required departure from clas-
sical theory in the movement of a particle in non-metric space and time. The 
difference is in its geometrical-mathematical description.  

Retaining the reality of a physical particle trajectory has been previously con-
sidered in relation to de Broglie-Bohm mechanics where both locality and cau-
sality are preserved [11].  
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While relations (5) and (6) are specifically formulated for indeterminacies, the 
underlying geometrics describe any simultaneous factual – counterfactual mea-
surement of position and momentum. Since counter factuality features in EPR 
testing experiments, it is worthwhile exploring the concept in the context of 
these relations.  

Factual position measurement is described by the metric relation (5a) where 
position can be assigned measurement number-values. Alternatively, a factual 
momentum measurement is in like manner described by the metric relation 
(6b). EPR motivated experiments involve simultaneity of the factual measure-
ment of one of the physical quantities and a counterfactual measurement (not 
actually performed) of the incompatible partner. A possibility is the factual mo-
mentum measurement (6b) combined with the counterfactual measurement of 
position. By operational definition the outcome of the latter is its factual out-
come if that measurement was actually performed.  

Counterfactual position measurement then imposes the metric properties of 
relation (5a) onto the properties of relation (6a). However, position in the 
non-metric relation (6a) does not have such properties. The two relations are 
subject to different geometries and hence have different mathematical properties 
which then require different variable-type. Measurement number-values cannot 
be assigned to position in the configuration where it is the momentum which is 
measured. That incompatible variables require different variable-types is signifi-
cant in the analysis of EPR perfect anti-correlations configuration, which fol-
lows. 

Quantum orthodoxy operationally defines measurement as an interaction 
between a classical apparatus and quantum system. Orthodoxy also introduces 
the notion of an intrusive observation as a feature of measurement. Quantum 
and classical measurability would then be radically different. For this proposal 
however, only the geometrical architecture of the classical/quantum interaction 
is relevant. A classical apparatus performs a measurement in the context of me-
tric space. Operationally, it will always register a metric outcome for the mea-
surement. This is consistent with classical theory whose mathematical basis is 
founded on a metric geometry. That is, the geometrical context of measurement, 
defined operationally, is the same as the geometrical context of the theory, de-
fined axiomatically. Furthermore, the geometrical context of measurement and 
the classical system being measured are the same. This symmetry must exist if 
the theory is to predict the measured true value.  

The geometrics of the gedanken relations are more complex since the contexts 
of measurement and quantum system can differ. However, the symmetry of 
measurement, theory and physical system remains a necessary condition for the 
predicted value to be the true value.  

Considering for example position, the same reasoning applies also to mo-
mentum, relation (5a) and (6a) can refer to the same physical points, which can 
simultaneously be in different geometrical contexts. With relation (5a), the 
points are contextually in a metric subspace of the position space wave function 
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where measurability is axiomatically definable. For relation (6a), the same points 
are in a different context of a more general non-metric space where only the ge-
nerics of measurement are axiomatically defined. Essentially, simultaneous mul-
tiple contexts are possible due to the special-case relation between Euclidean and 
Projective geometry.  

Supposing an in principle measurement of quantum position: 
1) The apparatus will register a metric value which may or may not be the true 

value.  
2) The system is simultaneously in metric and non-metric contexts.  
3) Quantum theory has two basis—position and momentum space. For posi-

tion space, the hidden variables relation (5a) predicts the registered value as the 
true value. Whereas, for momentum space the corresponding hidden variable 
relation (6a) does not predict the registered measurement value which cannot 
then be the true value. However, a measurement of momentum with this confi-
guration will register the momentum true value.  

The true value can be defined to be the metric value in the metric context of 
the system. However, this is only definitional. Both metric and non-metric con-
texts of the system are equally fundamental, differing only in their invariance 
properties. Measurement number-values, as a consequence of the particular in-
variance characteristics of metric contextuality, cannot (at least from geometrical 
reasoning) be considered more fundamental than any other algebraic represen-
tation.  

Operationally, position and momentum measurement are interchanged by a 
switch in the apparatus from the position to momentum “meter”. However, if an 
intrusive act-of-observation is not introduced, the reality of the particle position 
and momentum must pre-exist measurement. Mathematically, the same reality 
has two descriptions. Since only one of which assigns numeracy, pre-existing (to 
measurement) number-values cannot be fundamental. Furthermore, since mea-
surability is a characteristic of only one description, measurability cannot be as-
sumed to be the necessary criteria for realism.  

Obviously, in this discussion measurement number-values are not fundamen-
tal, being instead defined contextually as a consequence of geometrical inva-
riance properties. This view is contrary to instrumentalism where measurability 
is imposed philosophically as an a priori fact of nature. Although it may seem 
otherwise, Classical theory however does not require instrumentalism, since 
measurement number-values are a consequence of its foundational geometry.  

Multiple contexts do not infer an alternative quantum reality. Rather, classical 
theory describes a restricted domain where the classical system is in a single me-
tric context.  

Ensemble error-disturbance relations are motivated by Heisenberg’s intuition 
that a measurement of position disturbs the momentum by an amount bounded 
by the inverse proportionality relation [24]. Two verifiable formulations have 
been developed. These, along with other significant ensemble relations, are:  
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( ) ( )Kennard : 2q pσ σ ≥                    (12a) 

( ) ( )Heisenberg : 2q pε η ≥                 (12b) 

( ) ( ) ( ) ( ) ( ) ( )Ozawa : 2q p q p q pε η ε σ σ η+ + ≥          (12c) 

( )( )BLW : 2Q P∆ ∆ ≥                   (12d) 

The critical difference is that for the Ozawa relation the product of position 
error and momentum disturbance does not have a lower bound, contrary to the 
“Heisenberg” error-disturbance relation. This is clearly not the case with the 
Busch, Lahti and Werner (BLW) relation which reproduces the usual mathe-
matical form. Currently, there is passionate debate on the appropriateness of 
these relations. Discussion focuses on the definitions of error and disturbance 
[24]. Nevertheless, both forms are rigorously obtained from standard QM and 
both are experimentally verified.  

There is some controversy whether relation (12b) should be correctly referred 
to as “Heisenberg”. BLW asserts that Heisenberg’s motivation was to give an in-
tuitive heuristic understanding of why atomic orbits are unobserved. Neverthe-
less, Ozawa gives Heisenberg’s reasoning in obtaining the relation from the 
Kennard relation. Appleby, and then also Ozawa, have shown this relation is not 
in general valid. 

This perspective is not unsympathetic to BLW’s view. Heisenberg’s deepest 
concern was to understand and explain the departure of quantum from classical 
mechanics at the foundations, for which the γ-ray microscope is only a heuristic 
tool to explore fundamental assumptions. Heisenberg’s conclusion, as is well 
known, was to reject that an object moves from one position to another by a se-
quence of continuous points in space and time.  

With the ensemble error-disturbance relations there are conceptual difficulties 
in defining true or precise values as distinct from approximate or measured val-
ues. There are also statistical questions on appropriate definitions of measures of 
dispersions. Definitional complexities notwithstanding, a critical difference be-
tween the two verified relations is also that the different formulations have dif-
ferent underlying geometrical architecture.  

For BLW the experimental realization is in three stages. Firstly, the precise 
position and precise momentum distributions are obtained by separate mea-
surements i.e. not by joint measurement. A joint probability distribution of the 
approximate position and approximate momentum is then obtained by a joint 
commuting measurement. The marginal approximate position and marginal 
approximate momentum distributions are obtained from their joint distribution. 
Using the Wassenstein-2 measure of distance between distributions, the distance 
between the precision and approximate distributions is then obtained leading to 
the BLW relation. 

All three experimentally determined distributions are simultaneously in a 
background Euclidean space, as would be both marginal distributions. In which 
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case, the BLW relation is defined on a background Euclidean (metric) space, as 
is assumed in the Heisenberg gedanken experiment. The Kennard, and “Hei-
senberg” error-disturbance relation from which it is obtained, are likewise based 
on the same background metrics. 

Realization of the Ozawa relation is geometrically different (see Lund and 
Wiseman). Position error and momentum disturbance are measured jointly on 
the single particle. In principle, position error measurement is governed by rela-
tion (5a), permitting zero error. Correspondingly, the momentum disturbance 
measurement is governed by relation (6b), again permitting zero disturbance. 
Critically, the position/momentum measurements are made in metric/non-metric 
contexts. Since by relation (5a) and (6b) position and momentum differences 
can be individually zero that their expectation values in the Ozawa relation can 
likewise be zero is not unexpected. Appleby has also shown that for error-error 
relations the “Heisenberg” relation is specifically violated for joint measure-
ments. 

This alternative perspective raises the possibility that at issue with the er-
ror-disturbance relations is also the nature of space, separate from differences in 
error definitions. 

3. Bell-EPR Perfect Anti-Correlation Configuration 

Recent papers have again raised the persistent question of what assumptions 
underpin Bell inequalities [27]. Stephen Boughn attributes violation to a broadly 
defined classicality rather than locality. In reply, Laudisa reaffirms the consensus 
that locality, as a fact of nature, is the single primitive assumption [28].  

Zukowski and Brukner also question locality being the sole assumption, in 
particular identifying counterfactual definiteness as an addition assumption. 
Their work however remains within the framework of quantum orthodoxy con-
cluding that “individual events may have spontaneous, acasual nature”. Ob-
viously, this is contrary to Bell’s motivation for developing the inequalities.  

The following discussion follows closely the work of Norsen and more recent 
clarification of Tumulka [29] [30] [31] [32]. Firstly, it is important to stress that 
philosophically this presentation is aligned with rejecting Bohr-Heisenberg or-
thodoxy. Bell’s elegant formulation of local causality is not questioned, and un-
like the consensus, its rejection is not advocated. Furthermore, the view that Bell 
inequalities are reality-neutral in their assumptions, beyond Norsen’s metaphys-
ical realism, is accepted [31] [32]. At issue is neither locality not realism but ra-
ther the mathematical treatment of physical quantities, most particularly that of 
incompatible variables. As shown for position-momentum, incompatible va-
riables are individually different in the algebraic representation of incompatible 
observables.  

Bell’s reasoning, which is also used by Norsen, is said to be a two-stage argu-
ment. The fundamental principle of the first-stage analysis is an operational 
conjunction of locality as an assumption together with EPR perfect an-
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ti-correlations as empirically verified outcomes. That locality is the sole assump-
tion is said to be established by an extended EPR analysis which is followed by 
derivation of the inequality [29] [30]. A source of confusion may be that the lat-
ter does rely on additional assumptions which may be characterized as classical-
ity [30]. Before re-examining Bell’s first-stage argument it is necessary to clarify 
some mathematical preliminaries placing the question of underlying assump-
tions in a broader context. 

The mathematical description of the standard particle-pair experimental con-
figuration is extended to include an additional variable representing a second 
simultaneous outcome/apparatus-setting at each location. The motivation for 
this extension is to focus on the presence of incompatible variables. Doing so 
emphasizes the complication that not all variables represent actual measurement 
outcomes. Incompatible variables are crucial if Bell inequalities are to describe 
quantum experiments. Bell inequalities cannot be formulated exclusively on ob-
servable phenomena [29]. 

Accordingly, an extended joint probability is defined,  

( ), , , | , , , ,P A A B B a a b b λ′ ′ ′ ′  

where λ again refers to a complete description of the particle-pair state, with 
upper and lower case letters representing outcomes and apparatus settings re-
spectively. Basic rules of probability give: 

( )
( ) ( )
, , , | , , , ,

, | , , , , , , , | , , , ,

P A A B B a a b b

P A A B B a a b b P B B a a b b

λ

λ λ

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′=
         (13a) 

( ) ( ), | , , , | , ,P A A a a P B B b bλ λ′ ′ ′ ′=  (by locality)          (13b) 

( ) ( ) ( ) ( )| , , , | , , , | , , | , ,P A A a a P B B b b P A a a P B b bλ λ λ λ′ ′ ′ ′ ′ ′ ′ ′=  (13c) 

Introducing the assumption of orientation independence i.e. the out-
come/apparatus-setting at either location is independent of the simultaneous 
outcome/apparatus-setting at the same location gives: 

( )
( ) ( ) ( ) ( )
, , , | , , , ,

| , | , | , | ,

P A A B B a a b b

P A a P B b P A a P B b

λ

λ λ λ λ

′ ′ ′ ′

′ ′ ′ ′=
          (14) 

The joint probability of a single measurement at each location gives four 
combinations such as: 

( ) ( ) ( ), | , , | , | ,P A B a b P A a P B bλ λ λ=               (15) 

These combinations are just the standard definitions for Bell locality used in 
derivations of the inequalities.  

While the generality of Bell’s probability definitions is under serious challenge 
elsewhere, this analysis remains consistent with Bell [8] [33]. For these defini-
tions locality and orientation independence are pre-existing, independent as-
sumptions. Their violations have very different physical implications. Violation 
of locality requires superluminal influences between two different particles at 
space-separated locations, implying some kind of action-at-a-distance, inferring 
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non-locality as a fact of nature. For orientation independence, violation implies 
influences between different orientations for the same particle at the same loca-
tion. This assumption has implications for the algebraic representation of ob-
servables.  

An objection can be raised that the extended joint probability is classical; 
referring to the simultaneous measurements, at different orientation, for the 
single particle. However, the probability expression can be modified to 
( ), , , , , ,|, baP A A B B a a b b λ′ ′′ ′ ′ ′  where the variable pair ( ), aA A ′′  refers to incom-

patible variables, one actual and the other latent, only one of which is actually 
measured in keeping with quantum mechanics. Repeating the above steps leads 
to the same conclusions. The joint probability combinations, like relation (15), 
are now mixtures of measured and unmeasured i.e. actual and latent variables.  

There is a further potential objection that the latent variables are mathemati-
cal constructs with no physical reality. While this reasoning has validity within 
orthodox quantum mechanics it is not the case within Bell’s program. A resolu-
tion to this issue will be given shortly. 

The basic functional relation of Bell inequalities has two forms. There is the 
“generic” form i.e. that which specifies all potential variables involved in the in-
equality:  

[ ] [ ]{ } [ ] [ ]{ }( ), or , , , or ,a a a a b b b bf f A A A A B B B B′ ′ ′ ′′ ′ ′ ′=            (16) 

The prime and un-prime upper case letters refer to the latent and actual variables 
for incompatible pair-wise variables. This form is however non-computational by 
the restricted mathematical apparatus of Bell inequalities. The focal issue here is 
the mathematical property of each of the pair-wise variables i.e. [ ],a aA A ′′ . While 
the actual variable i.e. aA  can be metric, or at least have the mathematical 
property of measurability while its numeracy is to be determined, the mathe-
matical property of its latent partner i.e. aA ′′  is non-metric. Similar reasoning 
applies for the other location.  

The computational functional relation where all variables are simultaneously 
mathematically defined is: 

( ), , ,a a b bf f A A B B′ ′=                       (18) 

Inequalities do vary in the number of outcomes and apparatus settings which 
may differ from those specified here. However, this reasoning applies generally. 
Transformation from the generic to computational form is achieved by the in-
troduction of various conditions and assumptions. Subject to which the inferred 
mathematical properties of the latent variable are equivalent to the actual varia-
ble, such that: 

[ ] [ ] [ ], , ,a a a a a aA A A A A A′ ′ ′′ ′≡ ≡                   (19) 

While all variables are algebraically metric, the computational form is never-
theless a mixture of measured and unmeasured variables.  

At issue is the nature of the introduced conditions/assumptions. The question 
is said to be resolved by Bell’s first-stage analysis. Experimental outcomes of EPR 
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perfect anti-correlation configuration are said to define number-values, and 
most critically, all necessary additional assumptions are purported to be solely a 
consequence of local causality (or Bell Locality). However, this is not the case. 

Following Norsen, the usual joint probability for the same orientation i.e. 1n  
at two locations, subject to Bell Locality, is [29]: 

( ) ( ) ( )1 1 1 1, | , , | , | ,P A B P A P Bλ λ λ=n n n n                (20) 

The variables A, B refer to actual measurement outcomes taking values ±1. 
This outcome condition then defines the numeracy of Bell non-incompatible va-
riables, which, together with the property of measurability, means such variables 
are metric. Quantum complications of incompatibility do not apply along the 
same orientation. Applying perfect anti-correlation outcome conditions leads to 
shorthand notations for conditional probability functions [29]: 

( ) ( )1 1, 1 and , 1A Bλ λ= ± = n n                   (21) 

Outcomes are empirically observed facts with Bell Locality and the encoded 
properties of λ the only determining factors. Clearly there are no additional as-
sumptions: not realism (beyond Norsen’s metaphysical), variable type,  
non-contextuality etc. 

Norsen extends the analysis to three orientations, i.e. 1 2 3, ,n n n  as required 
by some inequalities. For the purpose of this discussion two orientations are suf-
ficient. For a specific outcome, a possible combination is: 

( ) ( ){ }
( ) ( ){ }

1 1

2 2and /

, 1 and , 1

, 1 and , 1or

A B

A B

λ λ

λ λ

= + = −

= + = −

n n

n n
            (22) 

Distinguishing between the “and/or” options is critical. The “or” option refers 
to orientation-by-orientation (called parallel by Bell) while the “and” refers to 
simultaneous orientations, which are not experimentally realizable. Quantum 
incompatibility features in the latter, bringing with it the complications of de-
fining simultaneous mathematical properties to two variables only one of which 
is actually measured. Bell inequalities involve non-parallel configurations.  

However, Bell’s first-stage operational analysis does not extend to such orien-
tations. The operational analysis does not therefore define a relation between 
different orientations simultaneously. Additional justifications are required to 
determine the mathematical properties of the variables involved. That is, addi-
tional assumptions are required to verify relation (22) for the non-parallel case. 

The corresponding extended functions for simultaneous orientations for a 
particular outcome at one location are: 

( ) ( )1 1 1 12 2, , 1 and , ,A A A A qλ λ′ ′= + =n n  for orientation 1n    (23a) 

( ) ( )2 2 2 21 1, , 1 and , ,A A A A qλ λ′ ′= + =n n  for orientation 2n   (23b) 

Their mathematical characteristics follow from the indeterminacies relations 
(5) and (6) discussed above. The un-primed upper case letters refer to the actual 
variable along a given measured orientation together with the primed upper case 
referring to the corresponding incompatible latent variable along the non-measured 
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orientation. Similar expressions follow for the second location and for different 
outcome combinations. While the actual variable along either orientation is me-
tric, the corresponding incompatible latent variable is non-metric, denoted by q. 
Conservation of spin is still maintained for the latent variables i.e. 0A Bq q+ = . 
Dirac q-numbers still obey basic rules of addition and subtraction. The obvious 
critical question is then how numeracy can assigned to the non-measured va-
riables [29] [32]. 

Applying the operational analysis of extended EPR for functions (23a) and 
(23b) along orientation 1n : suppose a measurement ( )21 1, , 1A A λ′ = +n  with 
corresponding measurement ( )21 1, , 1B B λ′ = −n  and corresponding incompati-
ble latent variable ( )1 12 , ,B B qλ′ =n . A switch in apparatus-setting at B along 

2n  will give ( )12 2 , , 1B B λ′ = ±n  with ( )1 2 2, ,B B qλ′ =n . A settings switch in-
terchanges actual/latent variables. Notice that the non-measured latent variable 

1B′  when the apparatus-setting is along 2n  has different algebraic representa-
tion (subject to different algebraic rules) to the actual measurement variable 1B  
when the apparatus-setting is along 1n . Since the non-metric variable is nu-
merically undefined it is not possible to obtain Bell inequalities for the extended 
functions.  

Returning to the question of the realism of the latent variable, if the actual is 
reality-based so must the latent. For non-orthodox quantum mechanics a change 
in apparatus -settings does not change Norsen’s metaphysical reality.  

For the Bell-Norsen functions (22), following the same EPR operational 
analysis of a measurement ( )1, 1A λ = +n  and ( )1, 1B λ = −n  along orienta-
tion 1n . For a switch in apparatus-setting at B along 2n , on an orienta-
tion-by-orientation basis it is reasoned that [32]: 

( ) ( )2 11 1latent in orientation actual in orientation 1B B′ ≡ = −n n       (24) 

However, this would only be true under the assumption (additional to locality 
causality) of orientation independence i.e. measurement along one orientation 
does not affect other orientations at the same location. An important conse-
quence is that the observables involved can be algebraically represented by me-
tric variables simultaneously which is also an assumption of non-contextuality. 
The issue however, is not the veracity of this algebraic representation, but rather 
that it is not a consequence of local causality.  

Alternatively, the mathematical equivalence of actual and latent variables can 
be established by imposing the realism criteria of pre-existing measurement 
number values. However, this would forfeit the realism neutrality of assump-
tions criteria by imposing a naive realism which Norsen argues is already re-
dundant [31]. 

Norsen following Bell, introduces a more sophisticated reasoning for the lo-
cality alone argument [29]. According to this reasoning at issue is not the quan-
tum prohibited simultaneous assignment of number values. Rather, the question 
becomes whether “a Bell Local theory predicting perfect anti-correlations posit 
this detail structure in the state description? The answer is unambiguously yes.” 
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Norsen clarifies further that “all theories respecting a certain locality condition 
(Bell Locality) must, in order to successfully reproduce a certain class of empiri-
cally well-confirmed correlations, posit that the outcomes of all possible 
spin-component measurements to be made on the particles are encoded in the 
pre-measurement state of the particles, such that the outcome in one wing of the 
experiment is determined once the state of the particle pair and the orientation 
of the nearby apparatus are specified. In rough terms, the particles must carry 
‘instructions sets’ which predetermine the outcome of spin measurements. Since 
such ‘instruction sets’ go beyond what is attributed to the states by orthodox 
quantum theory, the kind of theory we have argued for may be termed a hid-
den-variable.” There is no fundamental disagreement with this statement.  

In essence, the candidate hidden-variable theory must be subject to Bell Local-
ity and reproduce EPR perfect anti-correlations outcomes. Norsen further rea-
sons that since a hidden-variable theory of this type cannot account for the em-
pirically tested correlations of Bell-type experiments the theory is not empirically 
viable. Norsen thereby concludes that “Bell Locality cannot be maintained”. 
However, this is not the case. 

The candidate hidden-variable theory must also meet the third criteria of be-
ing a mathematical theory. Bringing the issue (central to this presentation) of 
identifying the appropriate algebraic representation of the physical quantities 
involved.  

There are now two candidate theories. That of relations (23a) and (23b) is Bell 
Local, mathematically represents physical quantities by different hidden varia-
ble-types i.e. metric and non-metric, and reproduces EPR perfect an-
ti-correlations outcomes. However, it does not define Bell inequalities. Since the 
inequalities are not empirically verified this is not an issue. The Bell-Norsen 
hidden-variable theory, that of relation (22), differs in that it represents all phys-
ical quantities by metric hidden variables, and does define the empirically invalid 
Bell inequalities.  

The critical issue is that there are two candidate Bell Local hidden-variable 
theories. Simultaneous metric variables (characteristic of only one of the candi-
date theories) is therefore not a consequence of locality but must be introduced 
as an additional assumption. 

The question arises whether Bell’s candidate theory actually reproduces EPR 
perfect anti-correlation experiments, as claimed. While by relation (22) simulta-
neous metric variables are clearly correct in predicting outcomes of measureable 
observables, they also predict values for observables which cannot be measured. 
Classically, this is not a problem. However, for the candidate hidden-variable 
theory to correctly predict quantum EPR experiments it should also predict the 
conditions under which observables are non-measurable. On first impression 
this may seem unnecessary. However, a hidden-variable theory explaining stan-
dard QM must also explain the non-classical measurability of quantum theory. 
Since Bell’s candidate hidden-variable theory fails to do so (measurability is al-
ways predicted) it fails to predict quantum experiments; both Bell-type and EPR.  
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Norsen gives a detailed analysis of the Clauser, Horne, Shimony and Holt 
(CHSH) inequality to examine the claim that the inequality is based solely on the 
assumption of locality [30]. A provisional conclusion is given that violation can 
be attributed to either locality or non-contextuality. However, Norsen reintro-
duces the Bell argument that the critical question is not directly about measure-
ment outcomes but rather about theories and predictions. In which case, it is 
reasoned that it becomes meaningful to “simultaneously talk of ( )1,A λn  and 
( )2 ,A λn ” as simply the values the theory yields for measurement outcomes. 

Hence, it would then emerge the CHSH inequality follows from locality alone.  
However, the inequality is defined from the four combinations of conditional 

probability functions of relation (15). As shown, locality and orientation inde-
pendence are pre-existing, independent assumptions. The functions ( )1,A λn  
and ( )2 ,A λn  are simultaneous metric variables only with Bell’s candidate local 
theory of relations (22). As with Bell’s first-stage analysis, violation can also be 
attributed to the wrong Bell Local theory.  

It can then be concluded that violation of Bell inequalities prohibits locally 
causalmetric hidden variable theories.  

Since quantum observables are algebraically represented by non-metric va-
riables, it is not unexpected that possible hidden variables would likewise be 
non-metric. This conclusion may thereby seem unexceptionable. However, the 
basic purpose of the inequalities is to answer EPR’s original foundational ques-
tion on the completeness of quantum theory. Violation answers EPR by affirm-
ing that a locally causal hidden variables theory is possible.  

Recently Cabello introduced a new line of investigation where local contex-
tuality is identified as a priori to quantum non-locality in explaining inequalities 
violation. An experimental configuration has been defined and subsequently 
realised [34] [35]. Empirical results are in agreement with QM while violating 
non-contextual local hidden variables inequalities. Concerns about experimental 
design have nevertheless again been expressed [36].  

Cabello inequalities associate violation with the properties of the physical 
quantities involved i.e. contextuality, rather than, primarily, the introduction of 
non-local influences. Indeed, in the mathematical expression of the inequalities 
it is the assumption of non-contextuality which leads to contradiction not that of 
locality. The term containing any potential action-at-a-distance influence is ex-
plained by local hidden variables.  

The assumption of orientation independence in Bell inequalities is also an as-
sumption of non-contextuality. Cabello inequalities violation does not contra-
dict the alternative possibility being explored here.  

Algebraic representation of physical quantities is also an issue with 
EPR-Steering and Hardy non-locality.  

In summary, inequalities violation can be attributed to Bell Locality. Alterna-
tively, it can be attributed to classicality, where observables are incorrectly 
represented by classical, non-contextual metric variables. A third possibility is 
that no significant inferences can be drawn because the inequalities are simply 
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too restricted. Bell’s theorem would then be a most rigorous theoreti-
cal-experimental and conceptual proof that quantum mechanics is not classical. 
On the other hand, there may be no need to go beyond orthodoxy accepting in-
stead the irreducible random nature of events.  

A prudent conclusion may be that it is important to keep an open mind to 
what is an open question. Bell inequalities only establish possibilities. The cele-
brated constructs are not sufficiently rigorous to be more definitive. 

4. Conclusion 

This proposal is an alternative to the mainstream on the question of quantum 
foundations. Neither quantum orthodoxy nor the consensus on inequalities vi-
olation, are advocated. No departure from traditional concepts of space, time 
and geometry is found to be necessary in explaining the foundations of QM. 
Further, the proposal is consistent with EPR-testing experiments, the conceptual 
Heisenberg gedanken experiments and gives an alternative explanation to ac-
count for the difference in ensemble error-disturbance relations. There is no 
ontological contradiction with other physical theories; a plague of orthodoxy. 
Non-classical quantum measurability is explained geometrically without the 
need to introduce an intrusive observation. Since locality can be assumed there 
is no contradiction with relativity. 
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