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Abstract 

Stochastic quadratic programming with recourse is one of the most important 
topics in the field of optimization. It is usually assumed that the probability 
distribution of random variables has complete information, but only part of 
the information can be obtained in practical situation. In this paper, we pro-
pose a stochastic quadratic programming with imperfect probability distribu-
tion based on the linear partial information (LPI) theory. A direct optimizing 
algorithm based on Nelder-Mead simplex method is proposed for solving the 
problem. Finally, a numerical example is given to demonstrate the efficiency 
of the algorithm. 
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1. Introduction 

Stochastic programming is an important method to solve decision problems in 
random environment. It was proposed by Dantzig, an American economist in 
1956 [1]. Currently, the main method to solve the stochastic programming is to 
transform the stochastic programming into its own deterministic equivalence 
class and using the existing deterministic planning method to solve it. According 
to different research problems, stochastic programming mainly consists of three 
problems: distribution problem, expected value problem, and probabilistic con-
straint programming problem. Classic stochastic programming with recourse is 
a type of expected value problem, modeling based on a two-stage deci-
sion-making method. It is a method by making decisions before and after ob-
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serving the value of a variable. With regard to the theory and methods of 
two-stage stochastic programming, a very systematic study has been conducted 
and many important solutions have been proposed [2]. In these methods, the 
dual decomposition L-shape algorithm established in the literature [3] is the 
most effective algorithm for solving two-stage stochastic programming. It is 
based on the duality theory, and the algorithm converges to the optimal solution 
by determining the feasible cutting plane and optimal cutting, and solving the 
main problem step by step. This method is essentially an external approximation 
algorithm that can effectively solve the large-scale problems that occur after the 
stochastic programming is transformed into deterministic mathematical pro-
gramming. Abaffy and Allevi present a modified version of the L-shaped method 
in [4], used to solve two-stage stochastic linear programs with fixed recourse. 
This method can apply class attributes and special structures to a polyhedron 
process to solve a certain type of large-scale problems, which greatly reduces the 
number of arithmetic operations. 

While the stochastic programming is transformed into the corresponding 
equivalence classes, it is generally a nonlinear equation. In recent years, with the 
introduction of new theories and methods for solving nonlinear equations, espe-
cially the infinite dimensional variational inequality theories and the application 
of smoothness techniques that have received widespread attention in recent 
years [5] [6] [7], a stochastic programming solution method based on nonlinear 
equation theory is proposed. Chen X. expressed the two-stage stochastic pro-
gramming as a deterministic equivalence problem in the literature [8], and 
transformed it into a nonlinear equation problem by introduced Lagrange mul-
tiplier. By using the B-differentiable properties of nonlinear functions, a Newton 
method for solving stochastic programming is proposed. Under certain condi-
tions, the global convergence and local super-linear convergence of the algo-
rithm are proved. 

In general, stochastic programming is based on the complete information 
about probability distribution, but in practical situation, due to the lack of his-
torical data and statistical theory, it is impossible to obtain complete information 
of the probability distribution, and can only get partial information in fact. In 
order to solve this problem, literature [9] and [10] based on fuzzy theory, under 
the condition that the membership function of certain parameters of the proba-
bility distribution is known, the method of determining the two-stage recourse 
function is given , two-stage and multi-stage stochastic programming problems 
are distributed and discussed. In [11], based on the linear partial information 
(LPI) theory of Kofler [12], a class of two-stage stochastic programming with 
recourse is established, and an L-shape method based on quadratic program-
ming is given. Based on the literature [8] and literature [11], this paper estab-
lishes a two-stage stochastic programming model under incomplete probability 
distribution information based on LPI theory, and presents an improved Neld-
er-Mead solution method. Experiment shows the algorithm is effective. 
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2. The Model of Stochastic Quadratic Programming with 
Imperfect Probability Distribution 

Let ( ), ,PΩ Σ  be a probability space, ( ) mh h Rω= ∈  is a stochastic vector in 
this space, n nC R ×∈  be symmetric positive semi-definite and m mH R ×∈  be 
symmetric positive definite. We consider following problem: 

( )T T

,

1min  
2

       s.t.  
             

n mx R y R
x Cx c x f y

Ax b
Tx y

∈ ∈
+ +

≤
=

                   (1) 
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Here ,n mx R y R∈ ∈  are decision variables, ,, ,r m nn r nc R A R b T RR ×× ∈∈ ∈ ∈ ,
1 1,m m mq R W R ×∈ ∈  are fixed matrices, 2mRω∈  is a random vector with support 

2mRΩ ⊆ ,  T
1 2, , , NP p p p  is the probability distributions of limited sample 

set ( )1, , Nω ωΩ =  , that is { }( )i ip prob ω ω= = . Assumed that the probability 
distribution of random variable has the following linear partial information: 
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Here ,s s Nd R B R ×∈ ∈  are fixed matrices, assumed the set of probability dis-
tributions π  is a polyhedron. Thus the two-stage function can be written as 

( ) ( )( ) ( )
1

max , max ,
N

P i iP P i
f y E g y p g y

π π
ω ω

∈ ∈
=

= = ∑              (4) 

We call Equations (1)-(3) stochastic quadratic programming with recourse 
models under LPI. 

Chen established a similar stochastic quadratic programming model in [8], 
but assumed that the probability distribution is completely known, that is the 
“Max” symbol in Equation (2) does not appear. The above model is a new sto-
chastic quadratic programming model based on LPI theory to solve the stochas-
tic programming problem with incomplete information probability distribution. 
Since ( ), ig y ω  is the convex function about y ([8]), ( )f y  is also the convex 
function about y (see [13]), and then the problems (1)-(3) essentially belong to 
the convex programming problem. Obviously the recourse function is not diffe-
rential, so the Newton method proposed in [8] is no longer applicable. In order 
to solve this problem, we design a solution based on the improved Nelder-Mead 
method. The experimental results show that the method is effective. 

3. Modified Nelder-Mead 

The Nelder-Mead method (NM) [14] was originally a direct optimization algo-
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rithm developed for solving the nonlinear programming, NM algorithm belongs 
to the modified polyhedron method in nature. It searches for the new solution 
by reflecting the extreme point with the worst function value through the cen-
troid of the remaining extreme points. Experimental shows, compared to ran-
dom search, the algorithm can find the optimal solution more efficiently. The 
NM algorithm does not require any gradient information of the function during 
the entire optimization procedures, it can handle problems for which the gra-
dient does not exist everywhere. NM allows the simplex to rescale or change its 
shape based on the local behavior of the response function. When the new-
ly-generated point has good quality, an extension step will be taken in the hope 
that a better solution can be found. On the other hand, when the new-
ly-generated solution is of poor quality, a contraction step will be taken, re-
stricting the search on a smaller region. Since NM determines its search direc-
tion only by comparing the function values, it is insensitive to small inaccuracies 
in function values. 

The classic NM method has several disadvantages in the search process. First, 
the convergence speed of the algorithm depends too much on the choice of ini-
tial polyhedron. Indeed, a too small initial simplex can lead to a local search, 
consequently the NM may convergent to a local solution. Second, NM might 
perform the shrink step frequently and in turn reduce the size of simplex to the 
greatest extent. Consequently, the algorithm can converge prematurely at a 
non-optimal solution. 

Chang [15] propose a new variant of Nelder-Mead, called Stochastic Neld-
er-Mead simplex method (SNM). This method seeks the optimal solution by 
gradually increasing the sample size during the iterative process of the algo-
rithm, which not only can effectively save the calculation time, but also can in-
crease the adaptability of the algorithm to prevent premature convergence of the 
algorithm. This article refers to the design idea of [15] and adds an adaptive 
random search process to solve problems (1)-(3) in the NM algorithm. The spe-
cific process of the algorithm is described as follows: 

Firstly, by attaching a Lagrange multiplier vector λ , convex problems (1)-(3) 
can be written as an unconstrained problem: 

( ) ( ) ( )T T T1min
2

x Px c x f y Ax bθ µ λ= + + + −              (5) 

( )T,xµ λ= , let 1 2 1, , , nµ µ µ +
  be the 1n  points of n-dimensional space of 

nR , which are not on the same plane. Let , ,h s lµ µ µ  represent the points that 
have the highest, second highest, and lowest estimates of function values, cµ  is  

the centroid of all vertices other than h , 1 .c i

i hn
µ µ

≠

= ∑  

Reflection: since hµ  is the vertex with the higher value among the vertices, 
we can expect to find a lower value at the reflection of hµ  in the opposite face 
formed by all vertices iµ  except hµ . Generate a new point rµ , by reflecting 

hµ  through cµ  according to 

( ) ( ) with 0r c c hµ µ α µ µ α= + − > . 
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If the reflected point is better than the second worst, but not better than the 
best, i.e. ( ) ( ) ( )l r sθ µ θ µ θ µ< < , then obtain a new simplex by replacing the 
worst point hµ  with the reflected point rµ . 

Expansion: if the reflected point is the best point so far, we can expect to find 
interesting values along the direction from cµ  to rµ , that is if  

( ) ( )r lθ µ θ µ< , then search direction is favorable, compute the expansion point 
using 

( ) ( )with 1e c c hµ µ β µ µ β= + − > . 

If the expanded point is better than the reflected point, that is 

( ) ( )e rθ µ θ µ< , then replace hµ  by eµ , otherwise, obtain a new simplex by 
replacing the worst point hµ  with the reflected point rµ . 

Contraction: here it is certain that ( ) ( )r sθ µ θ µ> , in this case, we can ex-
pect that a better value will be inside the simplex formed by all the vertices, then 
the simplex contracts. 

1) If ( ) ( ) ( )s r hθ µ θ µ θ µ< < , the contracted point is determined by 

( )p c r cµ µ γ µ µ= + −  with 0 1γ≤ < , if ( ) ( )p hθ µ θ µ< , the contraction is ac-
cepted, Replaced hµ  by pµ . 

2) If ( ) ( )r hθ µ θ µ≥ , the contracted point is determined by

( )p c h cµ µ γ µ µ= + − , if ( ) ( )p hθ µ θ µ< , the contraction is accepted. Replaced 
hµ  by pµ . 
Shrink: although a failed contraction is much rarer, it may happen in some 

case, In that case, generally we contract towards the lowest point in the expecta-
tion of finding a simpler landscape. Replace all points except the best point lµ
with ( )i l i lµ µ δ µ µ= + − . This article uses the following process: when con-
traction fails, using a random search process to generate new points based on 
fitness of function. Let fitness function be ( ) ( )i iF Mµ θ µ= − + , where M is a 
fully large number, calculate the probability of obtaining iµ  by 

( ) ( )1
1

ni i
iF Fµ µ+

=∑ . According to the roulette algorithm, get a new point by 
randomly searched in the neighborhood of the point corresponding to the 
probability interval. The neighborhood ( )iδ µ  of iµ  is defined as 

( ) { }{ }: min ,i i i j j iδ µ µ µ µ µ µ= − ≤ − ∀ ≠  

Algorithm termination condition: There are different criteria to determine the 
termination conditions of the NM algorithm in practice, in this paper, we use 

( ) ( )
( )

,
h l

l

θ µ θ µ
ε

θ µ

−
≤  

as our convergence criterion. 
Parameters choice: The polyhedron transform in the NM algorithm mainly 

includes four parameters, α  for reflection, β  for expansion and γ  for con-
traction, assumed they satisfy the following constraints: 

0, 1, ,0 1.α β β α γ> > > < <  
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Algorithm 
Choose 0, 1, ,0 1α β β α γ> > > < < , Convergence criterion 0ε > . 
Step 1 calculate the function values of n+1 points, rank all points and identify
, ,h s l

k k kµ µ µ , find c
kµ , the centroid of all vertices other than h

kµ , generating a new 
point r

kµ  by reflecting point h
kµ  through c

kµ  according to reflection rule
( )r c c h

k k k kµ µ α µ µ= + − ; 
Step 2 if ( ) ( )r l

k kθ µ θ µ< , then the reflection point is expanded using the ex-
pansion rule ( )e c c h

k k k kµ µ β µ µ= + − , if ( ) ( )e r
k kθ µ θ µ< , then replace h

kµ  by 
e
kµ , otherwise, let r

kµ  replaced h
kµ , return to Step 4; 

Step 3 if ( ) ( ) ( )l r s
k k kθ µ θ µ θ µ< < , then let r

kµ  replaced h
kµ , go to Step 4, 

otherwise return to Step 5; 
Step 4 if the convergence criterion is met, stop the iteration, otherwise, return 

to Step 1; 
Step 5 if ( ) ( )r s

k kθ µ θ µ≥ , then the simplex contracts. 
(i) if ( ) ( ) ( )s r h

k k kθ µ θ µ θ µ< < , the contraction point is determined by calcu-
late ( )p c r c

k k k kµ µ γ µ µ= + − , 
(ii) if ( ) ( )r h

k kθ µ θ µ≥ , the contraction point is determined by calculate

( )p c h c
k k k kµ µ γ µ µ= + − . 
In these case, if ( ) ( )p r

k kθ µ θ µ< , the contraction accepted, If contraction is 
accepted, let p

kµ  replaced h
kµ , return to Step 4; 

Step 6 when all previous Step s fail, we use adaptive random search to gener-
ate new points, then return to Step 1. 

4. Numerical Experiment 

Consider the problem (1)-(3) in which 3 3 3, ,X R H I R T H×∈ = ∈ = − , and 

2 0 0 1 2 3 6
0 1 0 , 0 1 1 , 3
0 0 1 1 0 1 4

C W q
−     

     = = − =     
     
     

 

4
3 2 1 12

3 , ,
1 2 1 8

2
c A b

− 
    = − = =         − 

 

Assumed stochastic vector ( )T1 2 3, ,i i i iω ω ω ω=  ( )1,2, ,i N=   is 
three-dimensional vector, 1 2,i iω ω  and 3

iω  are independent of each other. We 
use MATLAB to randomly generate one hundred values for each other. Let
( )i ih ω ω= , we experiment with the effectiveness of the algorithm under the fol-

lowing conditions. 
Case 1: let 10N = , the parameter in the linear part information of the proba-

bility distribution π  is set to 

( ) ( )
( )

T
8 8 8 1 8

T

1, ,1 , ,O , ,

1 6,1 8,1 5,1 4,1 7,1 6,1 7,2 7

D B E D

d
×= =

=



 

This means the incomplete information probability distribution is satisfied 
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1 10 2 10 1 2 101 6, 1 8, , 1p p p p p p p+ ≤ + ≤ + + + =   

The parameters of modified NM method are given, reflection factor 1α = , 
expansion factor 2β = , contraction factor 0.5γ = , convergence criterion

81 10ε −= × . 
Use MATLAB R2008a to achieve the above problems, Table 1 gives the deci-

sion variable x and the function value θ , the calculation result retains four de-
cimal places. 

The actual running results show that the algorithm terminates after 61 times, 
the optimal solution is ( )T0.8634,0.4194,0.2721x = , the optimal function value 
is 4.4630θ = . The running time is 28.515197 seconds. 

Case 2: To verify the effectiveness of the algorithm, we expand the value of N, 
let 100N = , the parameter in the linear part information of the probability dis-
tribution π  as follows, ( )T

8 1, ,1D =  , ( )8 8 91 8,O , B E D×= ,  
( )T1 6,1 8,1 5,1 4,1 7 ,1 6,1 7 ,2 7d = , that is keep the row of B unchanged, 

extend the number of random variables to 100, this means 

1 100 2 100 1 2 1001 6, 1 8, , 1p p p p p p p+ ≤ + ≤ + + + =  , use MATLAB R2008a 
to achieve the above problems again, the result is Table 2.  

From Table 2, we can see the program stops at 89 times, the optimal solution 
is ( )T0.8659,0.3530,0.2682x = , optimal function value is 4.8989θ = . The 
running time is 382.307942 seconds. Comparing the results, we find that when 
the value of N is increased by 10 times, the running time increased by 13 times, 
this is normal, it need more times to calculate the recourse function. However, 
the number of iterations of the algorithm is only increased by 1/4, which shows 
that the algorithm in this paper is effective for solving stochastic programming 
problems. 

Case 3: In order to investigate the sensitivity of the linear partial information 
constraint condition of the probability distribution to the algorithm, we increase 
 
Table 1. Iterative results. 

Iteration x1 x2 x3 θ 

1 1.0000 0.0000 0.0000 4.7366 

2 1.0000 0.0000 0.0000 4.7366 

3 1.0000 0.0000 0.0000 4.7366 

4 1.0000 0.0000 0.0000 4.7366 

5 0.5488 0.2128 0.0784 4.6275 

6 0.5488 0.2128 0.0784 4.6275 

7 1.0160 0.6095 0.5309 4.5584 

… … … … … 

59 0.8634 0.4192 0.2722 4.4630 

60 0.8634 0.4192 0.2722 4.4630 

61 0.8640 0.4194 0.2721 4.4630 
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the constraints to observe the change of the optimal solution. Take 10N = , and 
add the following two constraints to the probability distribution, 2 3 1 9p p+ ≤ , 

4 5 1 10p p+ ≤ , following is the running result, 
From Table 3 we can see, the program stops at 64 times, the optimal solution 

is ( )T0.8929,0.4113,0.3524x = , optimal function value is 3.7382θ = , the run-
ning time is 29.490318 seconds. this shows, on the one hand, as the information 
of the probability distribution changes from incomplete to complete informa-
tion, the objective function values of the models (1)-(3) constructed tend to have 
better results. On the other hand, there is no significant increase in the number 
of iterations of the algorithm during the optimization process. 

5. Conclusion 

For the case that the probability distribution has incomplete information, this 

 
Table 2. Iterative results. 

iteration x1 x2 x3 θ 

1 1.0000 0.0000 0.0000 5.1179 

2 1.0000 0.0000 0.0000 5.1179 

3 1.0000 0.0000 0.0000 5.1179 

4 1.0000 0.0000 0.0000 5.1179 

5 0.5488 0.2128 0.0784 5.0412 

6 1.0037 0.6341 0.4862 5.0223 

7 1.0037 0.6341 0.4862 5.0223 

… … … … … 

87 0.8659 0.3530 0.2681 4.8989 

88 0.8659 0.3530 0.2681 4.8989 

89 0.8659 0.3530 0.2682 4.8989 

 
Table 3. Iterative results. 

iteration x1 x2 x3 θ 

1 1.0000 0.0000 0.0000 4.0385 

2 1.0000 0.0000 0.0000 4.0385 

3 1.0000 0.0000 0.0000 4.0385 

4 1.0000 0.0000 0.0000 4.0385 

5 0.5488 0.2128 0.0784 3.9667 

6 0.5488 0.2128 0.0784 3.9667 

7 0.5937 0.1421 0.2134 3.9321 

… … … … … 

62 0.8929 0.4113 0.3524 3.7382 

63 0.8929 0.4113 0.3524 3.7382 

64 0.8929 0.4113 0.3524 3.7382 

https://doi.org/10.4236/jamp.2018.65095


X. S. Ma, X. Liu 
 

 

DOI: 10.4236/jamp.2018.65095 1119 Journal of Applied Mathematics and Physics 

 

paper establishes a stochastic quadratic programming model with incomplete 
probability distribution based on LPI theory, and designs an improved Neld-
er-Mead algorithm. The numerical examples are used to calculate the results. 
The results show that the established models and algorithms are reasonable and 
effective. 
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