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Abstract 

In this paper, we study an asymmetric game that characterizes the intentions 
of players to adopt a vaccine. The game describes a decision-making process 
of two players differentiated by income level and perceived treatment cost, 
who consider a vaccination against an infectious disease. The process is a 
noncooperative game since their vaccination decision has a direct impact on 
vaccine coverage in the population. We introduce a replicator dynamics (RD) 
to investigate the players’ optimal strategy selections over time. The dynamics 
reveal the long-term stability of the unique Nash-Pareto equilibrium strategy 
of this game, which is an extension of the notion of an evolutionarily stable 
strategy pair for asymmetric games. This Nash-Pareto pair is dependent on 
perceived costs to each player type, on perceived loss upon getting infected, 
and on the probability of getting infected from an infected person. Last but 
not least, we introduce a payoff parameter that plays the role of cost-incentive 
towards vaccination. We use an optimal control problem associated with the 
RD system to show that the Nash-Pareto pair can be controlled to evolve to-
wards vaccination strategies that lead to a higher overall expected vaccine 
coverage. 
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1. Introduction 

In case of an epidemic arising from an infectious disease for which an effective 
vaccine is available, the desired policy is to increase the number of people who 
will choose this vaccine [1] [2]. One of the common ways to analyze this issue is 
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to study the potential motivation of individuals to choose the vaccination in a 
theoretic-game framework. In [3] [4], the authors presented a Nash vaccinating 
game played by cohorts of parents of babies who consider whether or not to vac-
cinate their offspring against pediatric diseases such as measles, mumps, rubella, 
polio, etc. The game proposed is played among a finite number of groups of 
parents, where parents in a group are considered to share common perceptions 
of the risk of vaccinating their offspring, as well as the risk of not treating. The 
game was further extended into a generalized Nash game in [5] and placed in a 
dynamic context in [6]. In [7] the authors studied a game with a mechanism re-
flecting the possibility of increasing the vaccine supplies for seasonal influenza in 
developing countries. The epidemiological diseases like influenza have exten-
sively been studied by many researchers in the literature. In [8] a lab-computer 
simulation is used to examine the uptake of the influenza vaccine depending on 
age-dependent decision-making. Their study showed via a theoretical-game ex-
periment that vaccinating young people is a more effective immunization policy 
against influenza than vaccinating the elderly. The authors in [9] have addressed 
a model that characterizes the feedback between the word-of-mouth and volun-
tary vaccination on the dynamics of an epidemic. The vaccination deci-
sion-making process has been presented in [10] with a new strategy to incentiv-
ize the vaccination and the treatment using the social network structure of the 
population. The suggested strategy is to subsidize both the vaccine and the med-
ical treatment in order to motivate individuals to vaccinate. Relevant to the ap-
plication of games in decision-making problems, a theoretical study of the oper-
ation of a supply chain with a single manufacturer and single retailer under un-
certainty of information can be found in [11]. Along the same lines, the work in 
[12] pursues the notion of a supply chain under uncertain information in a game 
model of a competition between two heterogeneous suppliers working with the 
same retailer. In energy investment markets, [13] presents a model of a coalition 
game that characterizes a contract-based scheme for electricity trading between 
the aggregator who buys the electric power (in small-scale) from the main power 
source, and sales it to consumers. 

The origin of game theory can be traced back to the works of Von Neumann 
[14] [15]. The works of Nash [16] form the basis of classic 2-player noncoopera-
tive games. Since then, numerous works have been advanced in this area. Some 
of the most recent ones are for instance: [17], studying 2-player zero-sum game 
with random payoff matrix to investigate the connections of the best payoff of 2 
players under joint chance constraints; and [18] who have discussed a 2-person 
zero-sum game with infinite action space and bounded payoff functions. In 
symmetric games, the idea of finding a solution for a competitive contest be-
tween two players or more is strongly related to the concept of Nash equilibrium 
(NE). In nonzero asymmetric games, the Nash-Pareto equilibrium concept is 
required to improve the strategy of one of the players without making the oppo-
nent’s strategy worse [19]. The existence of Pareto equilibrium was discussed in 
[20], in a game with multicriteria payoffs, neglecting the linear and convexity 
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structure, in general, topological spaces. Pareto-efficient optimization is ad-
dressed in [21] to explore the significance of players’ cognition in the game. The 
authors introduced a new definition for Nash game with the observance of play-
ers’ beliefs. Consequently, optimizing the players’ belief can forthright the game 
to the Pareto-efficient equilibrium. 

One way to incentivize players to act in a certain way is to consider the incen-
tive as a parameter in the players’ payoffs. Exerting control on this parameter 
leads us to consider the game from an optimal control problem’s perspective. 
Starting in the 50’s, optimal control was the key to studying variational problems. 
The main contribution in this field was made by (Pontryagin, 1964) when he 
theorized the maximum principle theorem [22]. The optimal control problem 
has been extensively studied by many authors over the years. For instance, [23] 
and [24] discussed optimal control problems with necessary conditions. Howev-
er, [25] and [26] looked at optimal control problems with sufficient conditions. 
The recent century has witnessed contributions by many scientists in enriching 
the concepts and literature of theoretic games and control problems. For exam-
ple, [27] used a straightforward model where certain several suppositions will let 
integrate evolutionary games into the drug-dosage formulation as an optimal 
control problem. In [28] built a novel model to optimize cancer chemotherapy 
by studying it as an evolutionary game between cancer and the oncologist. In 
our most recent work, we applied optimal control to a replicator dynamics sys-
tem of a norms game in a population, and we showed that the otherwise evolu-
tionarily stable state of all defectors can be controlled towards a norm-dominated 
population [29]. 

In this paper, we study and formulate an asymmetric game as in [1], where the 
players have different levels of income, different probabilities of infection and 
differing costs of vaccinating. The suggested control is used as an incentive to 
encourage the players toward vaccination and away from a stable Nash-Pareto 
pair of strategies which has a cost depending probabilities of vaccinating for 
both player types. We find the optimal control values and the optimal strategies 
with the objective of maximizing the sum of the players who choose to vaccinate 
numerically. 

The structure of this paper is presented as follows: In section 0 we present our 
formulation of the vaccination game inspired by [1], where we implement a 
modification on its payoffs. Further, we find the game’s Nash equilibria and 
their stability characteristics after we formulate the game in an associated repli-
cator dynamics form. We show that there exists on Nash-Pareto stable pair of 
mix strategies for the game. In Section 3 we incorporate the replicator dynamics 
equations into an optimal control problem where we seek to decrease the per-
ceived costs of vaccinating in both groups. We show that this exogenous control 
results in gains in overall expected vaccine coverage in the population. 

2. The Formulation of the Vaccination Game Model 

We consider a game similar to the one in [1], but where the pathogen is 
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transmitted only via humans. The game considers two players in different 
positions where each player has two pure strategies: to vaccinate (V), or not 
vaccinate (NV). A player { }1,2i∈  who decides to vaccinate must pay some 
“cost”, denoted by ic , which here reflects an amalgamation of psychological 
cost, time or monetary cost, and cost of side effects (if developed). The 
probability of getting infected, denoted by q, will cause a player to incur some 
“loss”, denoted by iL  if the infection develops. Thus we consider the following 
asymmetric bimatrix game:  

( ) ( )
( ) ( )
1 1 2 2 1 1 2

1 2 2 1 1 2 2

Player 2

, ,
Player 1

, ,

V NV

I c I c I c IV
I I c I qL I qLNV

 − − − 
 − − − 

          (1) 

where iI  is the income of Player i. This game has a bimatrix payoff, s.t. we can 
write the sub-matrices for each player in the game as follows: 

1 1 1 1 2 2 2
1 2

1 1 1 2 2 2 2

,  
I c I c I c I

G G
I I qL I c I qL
− − −   

= =   − − −   
 

If we consider this game in mixed strategies, denoted by ( ),1x x−  and 
( ),1y y−  with [ ], 0,1x y∈  being the probabilities of Player 1, respectively Player 
2, to vaccinate, we write the expected payoff functions for each player as follows: 

( ) [ ]

( ) [ ]

T
1 1

T T
2 2

,1 ,1 ,
1

,1 ,1 ,
1

y
E x x x x G

y

x
E y y y y G

x

 
− = −  − 

 
− = −  − 

                (2) 

which imply further:  

( )
( )

1 1 1 1 1 1 1

2 2 2 2 2 2 2

,1

,1

E x x xqL xc xyqL I qL yqL

E y y yqL yc yxqL I qL xqL

− = − − + − +

− = − − + − +
           (3) 

To solve the game in (1) we use the reaction curves method so we rewrite the 
expected payoffs in (3) as linear functions of their corresponding variables s.t. 
for 1E  we have:  

( ) ( ) ( )1 1 1 1 1 1 1,1E x x x L q c yL q I L q yL q− = − − + − +             (4) 

( ) ( ) ( )2 2 2 2 2 2 2,1E y y y L q xL q c I L q xL q− = − − + − +           (5) 

To maximize 1E  and 2E  in (4) we need to find their stationary points:  

[ ]

[ ]

1
1 1 1

2
2 2 2

d , with 0,1
d
d , with 0,1
d

E L q yL q c y
x
E L q xL q c x
y

= − − ∈

= − − ∈
                (6) 

The derivative of 1E  depend on the parameter y; therefore, the sign of 1d
d
E
x

 

depends on y to determine the growth in 1E ,  
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[ ]

[ ]

1

1

1 1

1

1

1

0, if 1 & 0,1

d 0, if 1
d

0, if 1 & 0,1

cy y
L q

E cy
x L q

cy y
L q

  
> > − ∈  

 
  = = = −  

 
  < < − ∈   

                 (7) 

Since 1E  is a linear function of y, then [ ] 10,1max x E∈  is achieved for  

[ ]

1

1

* * 1

1

1

1

0, 1 1

any 0,1 , 1

1, 0 1

cy
L q

cx x x y
L q

cy
L q


≥ > −


= ∈ = −



≤ < −


                   (8) 

But [ ]1

1

1 0,1cy
L q

= − ∈  implies that 1 1 0L q c≥ ≥ . 

Same analysis can be made for 2E  and we get that [ ] 20,1max y E∈  is achieved 
for:  

[ ]

2

2

* * 2

2

2

2

0, 1 1

any 0,1 , 1

1, 0 1

cx
L q

cy y x
L q

cx
L q


≥ > −


= ∈ = −



≤ < −


                  (9) 

But [ ]2

2

1 0,1cx
L q

= − ∈  then by follow the same analysis as above, we get: 

2 2 0L q c≥ ≥ . 

Thus, we have an equilibrium when 1 1 0L q c≥ ≥  & 2 2 0L q c≥ ≥ . The Nash 
equilibrium in mixed strategies can be now calculated from finding all points of 
x and y so that the equilibria are (Figure 1): 

( ) ( ) ( ) ( )( )( )* * * * * * * *
1 1 1 1 1 1 1 1, 1, 0 1, 1 0, 0, 1 1x y x y x x y y= = = ⇒ = − = = − =     (10) 

( ) ( ) ( ) ( )( )( )* * * * * * * *
2 2 2 2 2 2 2 2, 0, 1 0, 1 1, 1, 1 0x y x y x x y y= = = ⇒ = − = = − =     (11) 

( )* * 1 2 1 1 2 2
3 3

1 2 1 1 2 2

, 1 ,1 1 , , 1 ,c c c c c cx y
L q L q L q L q L q L q

      
= − − ⇒ − −             

      (12) 

2.1. Replicator Dynamics and Nash-Pareto Pairs 

Let us think now of our game as a game with two types of players, differentiated 
by income and vaccination costs, each with two pure strategies: { },i V NV∈ . 
Then we think of the mixed strategy ( ) [ ]2, 0,1V NVx x x= ∈ , with 1V NVx x+ = , as 
the fraction of population of type 1, who chooses pure strategy i. Similarly,  
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Figure 1. The blue curve shows the maximization of 1E  w.r.t the coordinates of 

( )* *
1 1,x y . The orange curve shows the maximization of 2E  w.r.t the coordinates of 

( )* *
2 2,x y . The point ( )* *

3 3,x y  is the intersection of the two colored curves. 

 
( ) [ ]2, 0,1V NVy y y= ∈ , with 1V NVy y+ = , represents the fraction of population 

of type 2 who chooses pure strategy { },j V NV∈ . 

It is known (see [19]) that the replicator dynamics (RD) associated with our 
game is:  

( ) { }

( ) { }

T
1 1

T
2 2

d
; , .

d
d

; , .
d

i
i i

j
j j

x x G y x G y i V NV
t
y

y G x y G x j V NV
t

 = − = 

 = − = 

               (13) 

To simplify our study of the replicator dynamics associated with our game, we 
first agree to denote the pure strategies V, NV by indexes 1, respectively 2, for 
each player. Then we rescale (as in [19], Chapter 11) our game (1) into a 
bimatrix game with the same Nash equilibria computed in the previous section, 
using the following definitions:  

Definition 2.1 1) A game ( ),A B′ ′  is a rescaling of a bimatrix game ( ),A B , 
denoted by ( ) ( ), ~ ,A B A B′ ′ , if there exist constants ,j ie d  and 0, 0α β> >  
so that  

and , 1,2, 1,2.ij ij j ji ji ia a e b b d i jα β′ ′= + = + = =         (14) 

2) If ( ) ( ), , tA B C C′ ′ = − , then the bimatrix game ( ),A B  is called a 
γ-zero-sum game (with 0γ < ) if there exist suitable , ,ij j iC f h  so that  

andij ij j ji ji ja C f b C hγ= + = +                    (15) 

It is known that Nash equilibrium points of a rescaled game are the same as 
those of the original bimatrix game. We show below that our bimatrix game can 
be rescaled to a γ-zero-sum-game.  
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Proposition 1 The bimatrix game ( )1 2,G G  in (1) is a γ-zero-sum-game for 
any : 1γ = − .  

Proof. We show first that there exists ( )1 2
ˆ ˆ,G G , a rescaling of ( )1 2,G G  as 

defined in (14), which simplifies the players’ matrices as an intermediary step. 
Then we show that ( )1 2

ˆ ˆ,G G  is a γ-zero-sum-game using (15). In (14) let us 
take : 1, : 1α β= = . Then we take 1 1 1:e c I= −  and 2 1 1:e qL I= − ; respectively we 
take: 1 2 2:d c I= −  and 2 2 2:d qL I= − . So we have that  

( ) ( ) 1 1 2 2 2 1
1 2 1 2 1 2

1 2

0 0ˆ ˆ ˆ ˆ, ~ ,  where  and 
0 0

c L q c L q
G G G G G G

c c
− + − +   

= =   
   

 

In this way the relations (14) can be written as:  

ˆ ˆ ˆ ˆ1 1 1 1 and 2 2 2 2 , , 1, 2ij ij j ij ij j ji ji i ji ji ig g e g g e g g d g g d i j= + ⇒ = − = + ⇒ = − ∈  
(16) 

We now show that the bimatrix game ( ) ( )1 2
ˆ ˆ, ~ , tG G C C− , i.e., that there exist 

, ,ij j iC f h  so that  

ˆ ˆ1 and 2ij ij j ji ji ig C f g C hγ= + = +  

We solve this linear system and we find the following:  

2 2 1 2 1 2 2
2

2 2 1
1 2

1 2

and : ,
0

c L q c c c c L q
c L q cC f

c L q
γ γ γ γγ

γγ
γ

− − − − − −  − = = +
− 

− 
 

 

1 2 1 2 2 2
2 1 1 1 1 22: , , 0c L q c c c L qf c L q h c h

γ γ γγ
− −

= − + + − = + =
 

☐ 

For 1γ = −  we have:  

( ) ( )2 2 1 2 1 2 2
1 2 2 1

1 2

and : ,
0

c L q c c c c L q
C f c L q c

c L q
− − + − + + − 

= = − − − 
 

( ) ( )2 1 2 1 1 1 2 1 1 2 2 2: , , 0f c L q c L q c c h c c L q h= − − + − + = − − =  

Using these values in (15) of Definition 0.1, the bimatrix game ( )1 2
ˆ ˆ,G G  is a 

(−1)-zero-sum-game:  

( ) ( ) ( ) ( )
( ) ( )

1 2 2 1 2 2 1 2 1 2
1 2

1 2 1 2

, ,ˆ ˆ, ~ ,
, 0,0

t c c L q c c L q c L q c L q
G G C C

c L q c L q
 − + − + − − − + 

− =  − − + 
 

Using now (16) and (14) we can conclude that ( )1 2,G G  is a γ-zero-sum-game, 
since we found , ,ij j iC f h   and 1γ = −  so that  

1 and 2 ,ij ij j ji ji ig C f g C hγ= + = +   

where  

: , 1, 2 and , 1,2j j j i if f e j h h d i= − = = − =   

Hence the original bimatrix game (1) is a (−1)-zero-sum-game:  
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( ) ( )

( ) ( ) ( )
( ) ( )

1 2

1 2 2 1 2 2 1 2 1 2
1 2

1 2 1 2

, ~ ,

, ,
, ~

, 0,0

tG G C C

c c L q c c L q c L q c L q
G G

c L q c L q

−

 − + − + − − − + 
⇔  − − + 

 

Nash-Pareto is a relaxation of the idea of evolutionarily stable strategy (ESS) 
for asymmetric games so that we can include mixed strategies. Suppose that our 
two subpopulations (of player of type 1, respectively of player of type 2) are in a 
state ( ) 2 2,p q S S∈ ×  where [ ]{ }2

2 1 2: 0,1 | 1S w w w= ∈ + = . This state will not be 
stable in an evolutionary sense if there exists a neighboring state, say ( ),x y , 
such that both types can increase their mean payoff by deviating to ( ),x y . We 
then define the following: 

Definition 2.2 Let ( ),p q  be a state for our population in an asymmetric 
game with payoff matrices ( )1 2,G G . Then ( ),p q  is a Nash-Pareto pair for 
this game if the following two conditions hold: 

1) 1 1p G q x G q⋅ ≥ ⋅  and ( )2 2 2 2, ,q G p y G p x y S S⋅ ≥ ⋅ ∀ ∈ ×  
2) For all states 22),( SSyx ×∈  for which equality holds in condition a) 

above, we have,  
if 1 1 2 2x G y p G y y G x q G x⋅ > ⋅ ⇒ ⋅ < ⋅ , and  
if 2 2 1 1y G x q G x x G y p G y⋅ > ⋅ ⇒ ⋅ < ⋅ .  

The following result is known (see [19]).  
Theorem 2.1 If the pair ( ),x y  is in the interior of the set 2 2S S× , then 

( ),x y  is a Nash-Pareto pair of the bimatrix ( )1 2,G G  iff ( )1 2,G G  is a rescaled 
zero-sum-game. Moreover, the Nash-Pareto point is stable in the replicator 
dynamics (13).  

Using Proposition 1 and Theorem 2.1 above we have that ( )* *
3 3 2 2,x y S S∈ ×  is 

indeed a Nash-Pareto point of our bimatrix game and is stable for the dynamics 
(13). 

2.2. Nash-Pareto Equilibria and Evolutionary Stability 

Let ( ) [ ] [ ], 0,1 0,1x y ∈ ×  be a set of mixed vaccinating strategies for the players 
in our game so that *

3x x≠  and/or *
3y y≠ . Then, the reduced replicator 

dynamics associated with the dynamics (13) and to the asymmetric bimatrix 
game is given by (see [30]):  

( ) ( )( ) ( ) ( )( )2 1 2 4 3 4
d d1 ; 1
d d
x yx x P P P y y y P P P x
t t
= − − + = − − +       (17) 

where:  

( )( )* * *
1 3 3 1 3 1 1 1,

1
y

P x x x x G x x L qy L q c
y

  = − − + = − − +   − 
 

( )( )
*

* * * *3
2 3 3 1 3 1 3 1 1*

31
y

P x x x x G x x L qy L q c
y

 
 = − − = − − + −   − 

 

( )( )* * *
3 3 3 2 3 2 21

x
P y y y y G y y L qx L q

x
  = − − + = − −   − 
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( )( )
*

* * * *3
4 3 3 2 3 2 3 2*

31
x

P y y y y G y y L qx L q
x

 
 = − − = − − +   − 

 

Putting all computations together, we have the following explicit RD:  

( ) ( ) ( )* * *1
1 3 3 3

1

d 1 1 ;
d

cx x x L q x x y y y y
t L q

 
= − − − − − − 

 
           (18) 

( ) ( ) ( )( )* *
2 3 3 3

d 1 1
d
y y y L q y y x x x x
t
= − − − − −  

It is immediate to see that all three Nash equilibria found in (10) are critical 
points of the RD (18). 

According to the analysis in [30], we can show next that our Nash-Pareto pair 
( )* *

3 3,x y  in the reduced RD (18) dynamics is not asymptotically stable, as 
whenever 2 0P =  and 4 0P =  we automatically get 1 3 0PP = , and not negative. 
This is good in the applied context of our game, as we started our analysis with 
the goal of increasing vaccine coverage in our population, which means we wish 
to increase the probabilities of vaccinating for both types of players. While the 
mixed strategy point ( )* *

3 3,x y  is stable, we can next ask what can be done to 
nudge the population away from this state. In the next section, we use an 
optimal control problem associated with the reduced RD (18) where the control 
parameters are the vaccination costs 1 2,c c . 

3. Optimal Control of Vaccination Away from the  
Nash-Pareto State  

We formulate the problem of controlling cost in the system (18) as an optimal 
control problem that is considered by Yosida in [31]. Moreover, we are going to 
follow the same formulation as in [29] to build up a classical optimal control 
problem where we want to minimize the following functional problem:  

( ) ( ) ( )( ) ( )( ) ( )( )0 10
: min , , , d 0 ,

T
x u L t x t u t t x x TΩ Φ = + +∫        (19) 

where ( ) ( )( ),L x t u t  is the Lagrangian function defined as  
[ ]: 0, n mL T R R R× × → , and ,n mx R u R∈ ∈ ; the function ( ) ( )( )0 ,x x T  is a 

lower-semi continuous function defined as:  

( ) ( )( ) ( )( ) ( )( ) ( ) ( )0 1 0 10 if 0 &
0 ,

otherwise

x x T x C x T C
x x T

 + ∈ ∈= 
+∞

 

    (20) 

And the set ( ) [ ]( ) ( ), 0, ; 0, ;n mx u AC T R M T R∈ × . Problem Ω is formulated 
subject to the following conditions:  

( ) ( )
( ) ( ) ( )
( ) ( )0 1

,  satisfiy an O.E.D system

. . 0,

0 , ,

x t u t

u t U t a e t T

x C x T C

∈ ∈

∈ ∈

                (21) 

where ( ){ }0 0 nC x R= ⊂  and 2
nC R= . The control  

( ) ( ) ( ), . . 0,mu t U t R a e t T∈ ⊂ ∈  [32]. 
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In our case, we define the control [ ] [ ]: 0, 1, 2u T →  such that  
( ) ( ) ( ) [ ]1 2, , 0,u t u t u t t T= ∈   . The control ( ) [ ]1,2u t ∈  will reduce the cost of 

vaccination in our game (1) and in our RD system (18) as follows:  

( ) ( )
1 2

1 2
1 2

2 2: and : .
1 1

c cc c
u t u t

= =
+ +

 

Thus, we study the following problem (for details see [29]):  

( ) ( ) ( )* : min , ,x y u x T y TΩ Φ = − −  

( )
( ) [ ] ( )
( ) ( )( )
( ) ( )( ) ( )

0

2

the system 18 and

1,2 , . . 0,

0 , 0

, , . . 0, ,

u t a e t T

x y C

x T y T C a e t T




∈ ∈
 ∈
 ∈ ∈

                (22) 

where 2n m= = , 0L ≡ , ( ) ( )( )0 0 , 0 0x y =
, { }* *

0 3 3,C x y= , 2
1C R=  and 

( ) [ ]1,2U t = . 
The proof of existence and uniqueness of the optimal solution ( )* * *, ,x y u  

for the problem *Ω  can be found in [32]. We solve the problem *Ω  
numerically by using the steepest descent method to determine the first 
optimality conditions to *Ω  (for more details see [33] and [29]). 

In all our simulations below, we consider { }1 21 max 2 ,2q c c≥ ≥  so that 

( ) [ ]2* *
3 3, 0,1x y ∈ . Also, we fix below the values of 1 2 0.5L L= =  to be the same. 
In Figure 2 (upper panel), we present the Nash-Pareto pairs ( )* *

3 3,x x  as 
functions of the perceived costs 1 2,c c , while in Figure 2 (lower panel) we 
present the optimally controlled strategies ( )*

3x T  and ( )*
3y T  for 6T = , as 

functions of the initial group costs 1c  and 2c , which were evolved, 
correspondingly, from the initial values of ( )* *

3 3,x y . We allow both [ ]0.1,0.9ic ∈  
for all { }1,2i∈  and we find that the variation in costs has a big impact onto the 
probability of getting vaccinated in each group, as well as on the expected 
coverage in the population, assuming both groups of players (of type 1 and of 
type 2) are equally sized.  

We see that after 6T =  time periods, we get that for initial values of costs: 

1 20.1, 0.2c c= = , the groups probabilities of vaccinating have changed from 
the starting Nash-Pareto pair of ( ) ( )* *

3 3, 0.56%,0.77%x y =  to the pair 
( ) ( )( ) ( )* *

3 36 , 6 0.8%,0.762%x y = . Though group 2’s probability of vaccinating 
has slightly decreased, group 1’s has increased. This is an advantage when we 
look at these values from the point of view of the expected coverage in the 
population, which is roughly estimated as (without considering time lags 
between vaccination and vaccine uptake):  

( ) * *
1 3 2 30 : at 0, for Nash-Pareto valuesCov x y t= + =   

and  
( ) ( ) ( ) [ ]* *

1 3 2 3: at any 0, ,Cov t x t y t t T= + ∈   

where i  is the fraction of population made up of players of type i for 
{ }1,2i∈ . 
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Figure 2. In Figure 2 (upper panel), we present the Nash-Pareto pairs ( )* *
3 3,x x  as 

functions of the perceived costs 1 2,c c , while in Figure 2 (lower panel) we present the 
optimally controlled strategies ( )*

3x T  and ( )*
3y T  for 6T = , as functions of the initial 

group costs 1c  and 2c . 

 
For an illustration, we look at the case where 1 2 0.5= =  . In this case, we 

present in Figure 3 the expected overall coverages ( )0Cov  and ( )6Cov t = . 
We can clearly see that for 1 0.1c =  and 2 0.2c = , the value of  
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( ) ( )0 66.5% 6 78.44%Cov Cov= < = , thus the optimal control applied in this 
case, with equal population fractions, results in higher expected coverage for the 
vaccine. In this case, the application of the control over a number of 6 time 
periods (years) resulted in a net growth of expected vaccine coverage of 
approximately 0.12% (see Figure 3).  

 

 
Figure 3. Expected overall coverages ( )0Cov  and ( )6Cov t =  with equal size groups. 

The application of the control over a number of 6 time periods (years) resulted in a net 
growth of expected vaccine coverage of approximately 0.12%. 

Minority-Majority Perspectives  

The comparison of coverage levels can, in fact, be conducted for any pair of 
( )1 2,c c  in our analysis. The most desired optimally controlled states are those 
where the control leads to better coverage than the Nash-Pareto case. Moreover, 
our analysis can be easily expanded to two more cases: 1) players of type 1 are a 
majority (recall these are players with income level 1I ; since 1 2I I< , then we 
have a population where the lower income group is a majority); 2) players of 
type 1 are a minority. 

We present the difference these proportions make on the discussion of our 
results from the perspective of the overall vaccine coverage. First, let us consider 
that 1 0.7=  and 2 0.3= . In this case, we see (Figure 4) that the best coverage 
after applying the control results in a level of 83.47% for 1 0.3,c =  2 0.1c =  
which is higher than the corresponding Nash-Pareto coverage level for 

1 20.3, 0.1c c= =  which has a level of 75.38%. In this case, the application of the 
control over the same number of years resulted in a net growth of expected 
vaccine coverage of approximately 0.09%, and this is directly due to the 
population makeup and groups sizes (check Figure 4). Last but not least, we  
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Figure 4. Expected overall coverages ( )0Cov  and ( )6Cov t =  with 1 0.7ε =  and 

2 0.3ε = . The application of the control over a number of 6 time periods resulted in a net 
growth of expected vaccine coverage of approximately 0.09%.  
 
present our case when 1 0.3=  and 2 0.7= . We see from Figure 5 that the 
best coverage after applying the control results in a level of 78.32% for 

1 20.3, 0.1c c= =  which is higher than the corresponding Nash-Pareto coverage 
level for 1 20.3, 0.1c c= =  which has a level of 75.38%. In this case, the 
application of the control over the same number of years resulted in a net 
growth of expected vaccine coverage of approximately 0.03% (see Figure 5).  

4. Conclusions 

In this paper we presented a 2-player asymmetric bimatrix game with two pure 
strategies, vaccinating or non-vaccinating, against a potentially infectious disease. 
We transformed and associated with our game a replicator dynamics system 
whose only mix strategy state is a Nash-Pareto stable pair. This means that over 
time, this mixed strategy of vaccination is likely to endure. From a public health 
perspective, the time-stability of the mixed Nash-Pareto pair is not desirable, as 
it is hoped that vaccine coverage can be increased in a population. 

We showed that by introducing an exogenous control to decrease the 
perceived costs of vaccinating to all individuals in the population, an increase in 
the expected vaccine coverage can be achieved. We also showed that the net 
growth in the expected coverage depends on the population mix of players of 
type 1 and type 2, which is to be expected, as their vaccinating strategies are 
different. 

Our game can be easily generalized in at least two directions: first, we can 
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Figure 5. Expected overall coverages ( )0Cov  and ( )6Cov t =  with 1 0.3ε =  and 

2 0.7ε = . The application of the control over a number of 6 time periods resulted in a net 
growth of expected vaccine coverage of approximately 0.03%.  

 
consider more than 2 groups in our population makeup and we can consider 
these groups differentiated not by income, but by age, cost ( ic ) and loss ( iL ). 
Second, we can introduce differing mechanisms for cost control. Our work here 
presents the basics of how such a multiplayer vaccination game can be analyzed 
and controlled, with the scope of gaining net increases in overall expected 
vaccine coverage levels. 
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