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Abstract 
In the vector space of real vectors, comparison was executed of the multilinear 
forms, covariant derivatives, the total differentials and derivatives in the di-
rection which are calculated with different metrics—with Euclidean metric 
and with pseudoeuclidean metric of a zero index. Comparison was executed 
of the Taylor’s formulas to different metrics. What is established by us is that 
multilinear forms of different metrics have different values; covariant deriva-
tives have identical values; the total differentials and derivatives in the direc-
tion have different values. In Euclidean space, Taylor’s formula with any order 
of accuracy assigned in advance is equal, but in pseudoeuclidean space Tay-
lor’s formula is not equal with any order of accuracy. It is concluded that in 
space with a pseudoeuclidean metric, the computing sense of the differential 
and integral calculus created in Euclidean space is lost and the possibility of 
mathematical model operation of real physical processes in vector space with 
pseudoeuclidean metric is called into question. 
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1. Introduction 

This work is a statement in English of the results published by us in Russian in 
journal articles [1] [2]. 1976 can be designated as the beginning of this work 
when we were forced to begin profoundly studying the tensor calculus and its 
applications. Since then we stopped never addressing tensors. One of results of 
this close communication with tensors was writing of the book “Applied Tensor 
Calculus” [3]. 

In well-known fundamental literature [4]-[10], properties of pseudoeuclidean 
space are studied and mathematical models of physical processes in it are under 
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construction. However, the question of applicability of differential and integral 
calculus of Euclidean space in pseudoeuclidean space is not considered at all, or 
is considered in special cases of studied problems, but generally remains unex-
plored. It, owing to the big authority of the called literature authors, can generate 
confidence that such problem does not exist. The executed research by us gives 
the grounds to assert that the problem of correct application of mathematics of 
Euclidean space in the vector space with pseudoeuclidean metrics exists and 
that attempts to ignore this problem can lead to the mathematical models 
which are not adequately describing processes and the phenomena of the ma-
terial world. 

2. Comparative Definitions of Euclidean and  
Pseudoeuclidean Spaces 

This part of article contains elements of algebra and math analysis which with 
sufficient completeness are explained in textbook [3]. Requirement of inclusion 
of elementary details of this material in article is dictated by need to reasonably 
show the common properties of Euclidean and pseudoeuclidean spaces, to show 
initial distinction of these spaces, to clearly recognize the stage of creation of the 
linearly vector space when this distinction is entered, and as it influences further 
creation of space, to study how behave algebraic forms and differential calculus 
at the same time. Even the insignificant ambiguity from all this can generate 
doubt in reliability of results and therefore nothing from written below it can be 
excluded as the partial fact, for reduction of volume of article. 

We will define the vector space L  of dimension 1n +  of real vectors 
, ,x y�  and its basis traditionally how we may read about it in the textbooks for 

students. For visual demonstration we will determine the vectors as the rank- 
order sets of real numbers, representing them either matrixes columns, or ma-
trixes lines. 

Vectors of affine basis we will designate 0 1, , , na a a� . Let’s agree that the 
Greek indexes accept values from 0 to n, and Latin indexes—from 1 to n. 
Therefore vector decomposition x  on basis αa  with use of the rule of toting 
on twice repeating index it is possible to write down doubly: 

0
0

i
i

α
αξ ξ ξ= = +x a a a . 

As basis vectors αa  we will accept matrixes lines 

[ ] [ ] [ ]0 11 0 0 , 0 1 0 , , 0 0 1 .n= = =a a a� � � �  

In such basis elements αξ  of any vector ∈x L  will be components of de-
composition of this vector on basis αa , i.e. will be α

αξ=x a . 
The concept of a point of the vector space and communication of points with 

vectors of this vector space is established axiomatically: to each couple of points 
of the vector space, the given in a particular order, one is put in compliance and 
only one vector of this space. 

Let’s construct a radius vector of the vector space. For this purpose we will 
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take a zero vector (at it all elements are equal to zero) and we will call it an origin 
point of coordinates that we will agree to write down in a look ( )0,0, ,0O � . Let 
M —the current point of the vector space. According to an axiom of points of 
the vector space, each couple of points OM  the vector of this space unambi-
guously answers. Let it will be α

αξa  vector, i.e. α
αξ=OM a . We will call a set 

of numbers 0 1, , , nξ ξ ξ�  affine coordinates of a point M  that we will agree 
to write down ( )0 1, , , nM ξ ξ ξ� . We will call a vector α

αξ=OM a  a position 
vector of a point M , we will designate r  a position vector and we will write 

α
αξ=r a . Let’s remind that αa  is affine basis. 

The position vector of the current point of the vector space is a variable vec-
tor. Therefore it is vector function of scalar arguments 0 1, , , nξ ξ ξ� . 

Let’s take a set of functions ( )0 1, , , nx x xα αξ ξ= � , where 0,1, , nα = � , in-
dependent from each other variables 0 1, , , nx x x� . Let’s believe that these func-
tions one-to-one establish connection between affine coordinates αξ  and va-
riables xα . When replacing by aid of these functions of variables αξ  by va-
riables xα  the position vector becomes function of variables xα , i.e. 

( )0 1, , , nx x x=r r � . We will call variables 0 1, , , nx x x�  the curvilinear coordi-
nates of the current point of space L , and a set of functions 

( )0 1, , , nx x xα αξ ξ= � , where 0,1, , nα = � , we will call a transformation of 
coordinates. 

Further everywhere in the vector space L  we will use curvilinear coordinates 
0 1: , , , nX x x x�  which have coordinate lines 0x  (lines on which  

1 const, , constnx x= =� ) are parallel straight lines with the directing vector 0a , 
and all other coordinate lines ix  are, generally speaking, curves. In such coor-
dinates the position vector is function of a look ( )0 1 2

0 , , , nx x x x= +r a f �  and 
0 0xξ = , ( )1 2, , ,i i nx x xξ ξ= � , 1, 2, ,i n= � . 
In each point M ∈L  we will enter the basis αe  called by local basis on a 

formula 

0 0 , .i ix xα α

∂ ∂
= ⇔ = =
∂ ∂

r fe e a e
                  

 (1) 

It is necessary attention that formulas (1) define vectors of local basis αe  in 
form of decomposition on affine basis αa . Considering that f  is the compo-
site function with the intermediate arguments αξ  and noncontiguous variables 
xα , we will write down these decompositions: 

0 00 ,
j

i ji ix x x

α α

α α

ξ ξ ξ
ξ ξ
∂ ∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂ ∂

f fe a e a .            (2) 

Let’s assume that curvilinear coordinates X  are locally the linear coordi-
nates, i.e. such that in any point of space L  the local basis αe  can be used as 
affine basis of rather small vicinity of this point. 

Both in Euclidean and in pseudoeuclidean spaces the vector norm is formu-
lated equally: the vector norm is equal to a square root from a scalar square of a 
vector: =x xx . However scalar squares of vectors in Euclidean and in 
pseudoeuclidean spaces are different with each other as scalar products of vec-
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tors are defined in different ways. Therefore vector norms—metrics of spac-
es—are different. Differently injected scalar multiplication of vectors is a boun-
dary at which there is a branching of the vector space on Euclidean and on 
pseudoeuclidean. 

Let’s define a scalar product of vectors of the vector space with Euclidean me-
trics. We will enter the definition of vectors multiplication, i.e. we will formulate 
the law under which to each couple of vectors , ∈x y L  this law sets the partic-
ular value of real number which we will designate xy . At the same time opera-
tion of a scalar multiplication of vectors has to satisfy to axioms of commutation, 
association, distribution and a positive sign of a scalar square of vectors. 

In Euclidean space it is axiomatically claimed that the scalar square of a vector 
is positive definite: 

0>xx  when 0>x , 0=xx  when 0=x . 
The scalar multiplication of vectors becomes the given if to define—to set the 

law of a scalar multiplication of vectors of affine basis. 
For the vector space L  with affine basis αa  and with Euclidean metric we 

will determine scalar multiplication by the following rule: the scalar product of 
any couple of vectors of affine basis αa  is equal to the sum of products of their 
corresponding components. This rule is expressed by formulas: 

0 0 01, 0,i i j ijα β αβδ δ= ⇔ = = =a a a a a a a a ,             (3) 

where αβδ —unit matrix (Kronecker delta). 
Having multiplied vectors ,α β

α βξ η= =x a y a  with use of formulas (3) and 
with application of axioms of commutation, association and distribution, we will 
receive a formula of a scalar multiplication in Euclidean space of the vectors set 
by coordinates in affine basis αa , 

0 0 i j
ij

α β
α βξ η ξ η δ ξ η= = +xy a a .                 (4) 

On this formula we receive a scalar square of a vector 

( ) ( ) ( )2 2 22 0 1 nξ ξ ξ= = + + +x xx � . 

By this formula we conclude that the rule of a scalar multiplication of vectors 
of affine basis (3) is guarantee of realization of an axiom of a positive determina-
tion of a scalar square of a vector in Euclidean space. 

Follows from this formula also that in Euclidean space the norm of the vector 
α

αξ=x a  preset by coordinates in affine basis αa  is defined by a formula 

( ) ( ) ( )2 2 20 1 nξ ξ ξ= = + + +x xx � . 

Vectors αe  of all set determined by formulas (1) are linearly independent 
and therefore they form basis at any choice of curvilinear coordinates (locally 
the linear coordinates). Vectors αe , apparently from (2), are defined in affine 
basis. Therefore their scalar products at each other and on themselves can be 
calculated on formulas (4). The set of these scalar products forms the square 
matrix gαβ  of order 1n +  called by the covariant Gram matrix representing a 
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covariant tensor of the second rank. 

00 01, 0,i ij i jg g g g
x x

α β

αβ α β αβ
ξ ξ

δ
∂ ∂

= ⇒ = = =
∂ ∂

e e .           (5) 

Let’s make a scalar multiplication of vectors 0
0

i
iξ ξ= +x e e , 0

0
j

jη η= +y e e  
(the vectors defined so agreed to call contravariant) and we use for this purpose 
a covariant Gram matrix gαβ  at multiplication. As a result we will receive a 
formula of a scalar multiplication of contravariant vectors in Euclidean space 

0 0 i j
ijg gα β

αβξ η ξ η ξ η= = +xy .                  (6) 

Let’s define other local basic system. Vectors of this basic system agreed to 
number the top indexes βe  and to call vectors βe  manual vectors to vectors 

αe . We will accept that scalar product of vectors of basic system αe  on vectors 
of basic system βe  have to satisfy equality 

β β
α αδ=e e ,                          (7) 

where β
αδ —unit matrix (Kronecker delta). This equation agreed to call the 

mutuality equation of basic systems , β
αe e , and basic systems , β

αe e  agreed to 
call the mutual basic systems. 

The vectors β
βη=y e  preset by decomposition on basis βe  agreed to call 

covariant. 
Let’s make scalar multiplication of a contravariant vector 0

0
i

iξ ξ= +x e e  on a 
covariant 0

0
j

jη η= +y e e  and write down scalar product with use of the mu-
tuality Equation (7). In result we will receive in Euclidean space a formula of a 
scalar multiplication of the vectors reset by components in the mutual basic sys-
tems αe  and βe   

0
0

i
i

α
αξ η ξ η ξ η= = +xy .                     (8) 

Scalar products of basis vectors αe  at each other and on themselves form a 
contravariant Gram matrix gαβ α β= e e  which represents a contravariant tensor 
of the second rank. Using this matrix at a scalar multiplication of vectors 

0
0

i
iξ ξ= +x e e , 0

0
j

jη η= +y e e , we will receive a formula of a scalar multiplica-
tion of covariant vectors in Euclidean space 

0 0
ij

i jgξ η ξη= +xy .                       (9) 

Formulas (1) give us 0 0=e a , formulas (3) give us 0 0 1=a a , and from the 
equation (7) we receive 0

0 1=e e . These three equalities give us 
0

0 0= =a e e .                         (10) 

Let’s pay attention (it is extremely important for a comprehension of the fur-
ther text) that vectors βe  of the mutual basic system do not depend on the ac-
cepted rule of a scalar multiplication of vectors in Euclidean space. It can seem 
not so as the mutuality Equation (7) represents a scalar multiplication of vectors 
in Euclidean space. Let’s prove validity of the made statement. In any point of 
the vector space there is the infinite set of local bases. We choose from this infi-
nite set (we do not calculate, we do not use the rule of a scalar multiplication, we 
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choose) such local basis which satisfies to the mutuality Equation (7). The cho-
sen basis in the infinite set cannot absent. Therefore the statement is proved. 

Now we will construct the vector space with a pseudoeuclidean metric. At the 
same time linear space L , its affine basis αa , curvilinear coordinates 

0 1: , , , nX x x x�  and the mutual basic systems , β
αe e  we will keep former by 

what they were accepted in Euclidean space. The basis for such decision is that 
all called elements of the vector space are taken without use of a scalar multipli-
cation of vectors in Euclidean space and therefore the scalar multiplication of 
vectors in Euclidean space studied above will not be bound with the rule of a 
scalar multiplication of vectors which we will construct below in pseudoeucli-
dean space. 

Let’s define a scalar multiplication of vectors of affine basis αa  of the vector 
space L  with a pseudoeuclidean metric the following rule: 

0 0 01, 0,i i j ijδ= − = =a a a a a a .                (11) 

The vector space with such scalar multiplication of basis vectors is called 
pseudoeuclidean space of a zero index. 

Having multiplied vectors α
αξ=x a , β

βη=y a  with use of formulas (11) 
and with application of axioms of a commutation, association and distribution, 
we will receive a formula of a scalar multiplication in pseudoeuclidean space of 
the vectors preset by coordinates in affine basis αa , 

0 0 0 0 0 0
0 0 0 0

i j i j i j
i j i j ijξ η ξ η ξ η ξ η ξ η δ ξ η= + + + = − +xy a a a a a a a a . 

On this formula we receive a scalar square of a vector in pseudoeuclidean 
space 

( ) ( ) ( )2 2 22 0 1 nξ ξ ξ= = − + + +x xx � . 

This formula allows us to conclude that the rule of a scalar multiplication of 
vectors in pseudoeuclidean space (11) does not lead to a positive determination 
of a scalar square of a vector. From this formula we conclude that in pseudoeuc-
lidean space the scalar square of a nonzero vector can be positive, negative and 
equal to zero. In pseudoeuclidean space of zero index the formula 

( ) ( ) ( )2 2 20 1 nξ ξ ξ= = − + + +x xx �  

defines the norm of the vector α
αξ=x a  preset by decomposition in affine ba-

sis αa . Follows from this formula that in the vector space of real vectors with a 
pseudoeuclidean metric there is a set of nonzero vectors for which the norm is 
not defined. 

From formulas (11) we have 0 0 1= −a a . Considering it and using equalities 
(10) we conclude that in pseudoeuclidean space of a zero index 

0 0 0
0 0 0 1= = = −e e e e e e . 

In pseudoeuclidean space of a zero index the scalar products of other basis 
vectors at each other and on themselves remain the same by what they were re-
ceived in Euclidean space 
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0
0

0
0

0, ; 0, ;

0, , , 1, 2, , .

i i j ij
i i j ij

i j j
i i i

g g

i j nδ

= = = =

= = = =

e e e e e e e e

e e e e e e �
 

Therefore to receive formulas of a scalar multiplication in pseudoeuclidean 
space of a zero index of the vectors preset by coordinates in local basic systems it 
is enough the summands 0 0 0

0 0 0, ,ξ η ξ η ξ η  in formulas ((6), (8) and (9)) to take 
with a minus-sign. 

Let’s agree further in the presence of a double sign ±  we will take a plus-sign 
in a Euclidean space, and we will take a minus-sign in pseudoeuclidean space. 
With use of this agreement of a formula of a scalar multiplication of the vectors 

α α
α αξ ξ= =x e e , β β

β βη η= =y e e  preset by coordinates in local basic systems 
in spaces with Euclidean and pseudoeuclidean of a zero index metrics can be 
written down uniformly 

0 0 0
0 0 0

i j ij i
ij i j ig gξ η ξ η ξ η ξη ξ η ξη= ± + = ± + = ± +xy .        (12) 

3. Multilinear Form 

Lemma 1. In each point of the vector space of real vectors the multilinear form 
of any order changes the numerical value when replacing Euclidean metric in 
this space to a pseudoeuclidean metric of a zero index. 

Proof. In arbitrary point M  of the vector space L  of real vectors we will 
take tensors of first rank – vectors , ,v α α

α ξ η  and tensor of second rank wαβ  
and consider the linear v α

αξ  and bilinear w α β
αβξ η  forms. 

On the formula (12) we derive 
0

0
i

iv v vα
αξ ξ ξ= ± + .                     (13) 

Existence here summand with different signs for different metrics (plus—for 
Euclidean and minus—for pseudoeuclidean) is indication of validity of the 
lemma 1 relative to linear form. 

If at a tensor of the second rank wαβ  mentally to reject one of indexes, then, 
according to the quotient rule of tensor calculus, we will derive the covariant 
tensor of the first rank—a vector. Let’s designate this vector wα• . On a formula 
(12) we will make convolution transform a vector wα•  with a vector αξ . Let’s 
write down result of convolution and we will return the rejected index 

0 0
0 0,i i

i iw w w w w w vα α
α αβ β β βξ ξ ξ ξ ξ ξ• • •= ± + = ± + = . 

We derive vector vβ . Let’s make compression of this vector with vector βη . 
We will derive 

0
0

j
jv v vβ

βη η η= ± + . 

If to substitute here 0
0

i
iv w wβ β βξ ξ= ± + , then we will receive the developed 

look of a bilinear form 

( )0 0 0 0
0 0 00

i j i j
i j ijw w w w wα β

αβξ η ξ η ξ η ξ η ξ η= ± + + + .        (14) 

Existence here summands with different signs for different metrics (plus—for 
Euclidean and minus—for pseudoeuclidean) is indication of validity of the 
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lemma 1 relative to bilinear form. 
This proof can seem to someone not quite convincing as is under construction 

on the basis of the quotient rule which proof out of this text. Let’s consider other 
proof. 

The covariant tensor of the second rank wαβ  by definition is equal to an ex-
ternal product of two covariant tensors of the first rank ,p qα β . The external 
product of two vectors pα  and qβ  represents the set of elements of a square 
matrix of an order 1n +  received by multiplication of each component pα  to 
each component qβ , i.e. w p qαβ α β= . The bilinear form w α β

αβξ η  is a poly-
nomial. Therefore it can be derived as the product of a polynomial p α

αξ  to a 
polynomial q β

βη , i.e. 

w p qα β α β
αβ α βξ η ξ η= .                    (15) 

The linear forms on formula (12) 
0 0

0 0,i j
i jp p p q q qα β

α βξ ξ ξ η η η= ± + = ± + . 

Having multiplied these linear forms—these polynomials, we will have 

( )0 0 0 0
0 0 0 0

j i i j
j i i jp q p q p q p q p qα β

α βξ η ξ η ξ η ξ η ξ η= ± + + + . 

Having substituted (15) here, we will derive a formula which in accuracy re-
peats a formula (14). 

It is easy to see that the proofs executed for the linear (13) and bilinear (14) 
forms can be continued with use of the same concepts and methods for multili-
near forms of any higher order. # 

4. Derivatives, Differentials and Taylor’s Formula 

Derivatives, differentials and Taylor’s formula which were defined in the vector 
space with Euclidean metric will be the objects of our researches. We will ob-
serve change of numerical values of the considered objects upon transition to 
space with a pseudoeuclidean metrics. 

Christoffel symbols of the 2nd sort α
βγΓ  are components of decomposition of 

the second partial derivatives of a position vector 2 x xα β∂ ∂ ∂r  in local basis 

γe , i.e. 
2 x xα β γ

αβ γ∂ ∂ ∂ = Γr e . 

From this it follows that Christoffel symbols of the 2nd sort are not bound to a 
type of a metrics of the vector space. They depend only on the choice of a type of 
a curvilinear coordinates 0 1: , , , nX x x x� . 

Let ( )F X  is real function of points ( )0 1, , , nX x x x ∈L� . Let’s accept that it 
is continuous and has the continuous partial derivatives on all variables to the 
necessary order inclusive. Its covariant derivatives we will agree to designate an 
inferior index after an asterisk. 

Covariant derivatives of the increasing orders are defined by the following 
formulas: 
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**
* * * * * *, , ,

FFFF F F F F F
x x x

αβγ δ δα
α αβ αβ γ αβγ αγ δβ γβ αδα β γ

∂∂∂
= = −Γ = −Γ −Γ
∂ ∂ ∂

�  

Partial derivatives F xα∂ ∂ , 2F x xα β∂ ∂ ∂ , 3 ,F x x xα β γ∂ ∂ ∂ ∂ �  and Chris-
toffel symbols of the 2nd sort α

βγΓ  do not depend on a type of a metric. There-
fore numerical values of covariant derivatives of any order in any point of the 
vector space remain invariable at change of Euclidean metric on pseudoeucli-
dean. 

Let ( )0 1, , , nC c c c� —the fixed point of the vector space L  and 

( )0 0 1 1d , d , , dn nX c x c x c x+ + +� —the current point of this space in rather small 
vicinity of point C  (in the vicinity in which the local basis αe  in point C  
can be considered as affine basis of this vicinity). Then it is possible to accept 
that the increment of a position vector r  of point C  upon transition to point 
X  is approximately equal to position vector differential dr , i.e. 

( ) ( ) ( )d d d
C

X C x x
x

α α
αα

∂
− ≈ = =

∂
r

r r r e . 

From this it follows that the set of differentials dxα  represents a contrava-
riant vector. 

Lemma 2. In each point of the vector space the total differentials of any order 
and derivatives in the direction of any order of scalar function change the nu-
merical values when replacing Euclidean metric in this space to a pseudoeucli-
dean metric of a zero index. 

Proof. As covariant derivatives * *,F Fα αβ  are covariant tensors of the first 
and second ranks and dxα  is a contravariant vector, the total differentials of 
the first and second orders 

2
* *d d , d d dF F x F F x xα α β
α αβ= =  

are the linear and square forms and, according to the lemma 1, for them the 
lemma 2, that their numerical values change at change of metrics, is the exact. 

The norm of a vector dxα  is defined by a formula 

( ) ( ) ( )2 2 20 1d d d d nl x x x= ± + + +� . 

Let’s remind that we take a plus-sign for Euclidean metric, and we take a mi-
nus-sign for pseudoeuclidean. 

We will write down derivatives in a point C  towards a point X : 
2

* *2

d d d d d, .
d d d dd
F x F x xF F
l l l ll

α α β

α αβ= =  

Existence of different signs in a formula dl  says to us about what derivatives 
in the direction in spaces with different metrics have different numerical values. 
Follows from a formula dl  also that in the directions satisfying to inequality 

( ) ( ) ( )2 2 20 1d d d 0nx x x− + + + ≤�  

derivatives are not defined. 
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Here proofs for differentials and derivatives first and second orders were 
made. It is not difficult to see that these proofs can be repeated for any higher 
order. # 

Theorem 1. In the vector space with Euclidean metric Taylor’s formula is 
equality with beforehand given accuracy. In the same space with pseudoeucli-
dean metric of a zero index Taylor’s formula is not equality with any order of 
accuracy. 

Proof. Taylor’s formula 

( ) ( ) ( ) ( )21d d
2

F X F C F C F C− = +                (16) 

defines the difference of values of scalar function F  of real variables 
0 1, , , nx x x�  in rather close located points ,C X  of the vector space L  with 

Euclidean metric with second order of accuracy. 
The left-hand member of this equality is a difference of values of function 
( )F X  in two mentally the fixed points ,X C  of the vector space L . Opera-

tion of change of a metrics does not change space L , does not change the pro-
vision of the chosen points ,X C  in this space and does not change function 
( )F X  of points X ∈L  in any way. Therefore the left-hand member of Tay-

lor’s formula remains invariable at change of a metric of the vector space L  
from Euclidean metric on pseudoeuclidean. 

The right-hand member of Taylor’s formula changes the value at change of a 
metrics as represents the linear combination of differentials which values, ac-
cording to the lemma 2, change upon transition from Euclidean metric to pseu-
doeuclidean metric of a zero index. 

Comparison of behavior of the left-hand and right-hand members of Taylor’s 
formula at change of a metrics leads to the conclusion that in pseudoeuclidean 
space of a zero index Taylor’s formula is not equality, as was to be shown. 

Here the proof is executed for the second order of accuracy. It is clear, that it 
can be made for somehow high order of accuracy. # 

Theorem 2. The operations of differential and integral calculations developed 
for Euclidean space in pseudoeuclidean space do not make computing sense. 

Proof. Follows from the theorem 1 that in pseudoeuclidean space the differ-
ence of values of function cannot be calculated by means of the device (16) of the 
differential calculus created for Euclidean space. It follows from this that in 
pseudoeuclidean space the theory of difference schemes and, in general, all me-
thods of finite differences created for Euclidean space cannot be used. 

The integral in the vector space with Euclidean metric of any finite-dimensional of a 
measure of integration domain is a limit of the integral sum, i.e. sum of differen-
tials of antiderivative of integrand. Differentials, according to the lemma 2, 
change the numerical value at change of a metrics. Therefore values of integrals 
in pseudoeuclidean space will differ from their values in Euclidean space. It fol-
lows from this that the integral calculus created for Euclidean space is not suita-
ble for numerical methods in pseudoeuclidean space. # 
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5. Conclusions 

It is established that values of multilinear forms, derivatives of a scalar function 
and its differentials in space with pseudoeuclidean metric differ from their val-
ues in the same space with Euclidean metric. Taylor’s formula which Euclidean 
space is the equality expressing an increment of scalar function through diffe-
rentials of this function in pseudoeuclidean space equality is not. 

The executed researches lead to the conclusion that the differential and 
integral calculus developed for space with Euclidean metric in space with pseu-
doeuclidean metric are not suitable. 

As differential and integral calculus of real functions of real variables is a con-
stituent of applied mathematics, it is possible to draw a conclusion on loss of a 
possibility of adequate mathematical model operation of actual natural pheno-
mena and processes of human activity by methods of applied mathematics in 
pseudoeuclidean space. 

Results of work can be considered in theoretical and experimental studies 
where conclusions of the special theory of relativity are used, in particular, at 
creation of mathematical models of the phenomena of gravitation, cosmology 
and physics of elementary particles and propagation of electromagnetic waves. 
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