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Abstract 
A new unification of the Maxwell equations is given in the domain of Clifford 
algebras with 2 1ji = −  in a fashion similar to those obtained with Pauli and 

Dirac algebras. It is shown that the new electromagnetic field multivector can 
be obtained from a potential function that is closely related to the scalar and 
the vector potentials of classical electromagnetics. Additionally it is shown 
that the gauge transformations of the new multivector and its potential 
function and the Lagrangian density of the electromagnetic field are in 
agreement with the transformation rules of the second-rank antisymmetric 
electromagnetic field tensor, in contrast to the results obtained by applying 
other versions of Clifford algebras. 
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1. Introduction 

Clifford algebras provide a unifying structure for Euclidean, Minkowski, and 
multivector spaces of all dimensions. Vectors and differential operators expressed 
in terms of Clifford algebras provide a natural language for physics which has 
some advantages over the standard techniques [1]-[6]. Applications of Clifford 
algebras and related spaces to mathematical physics are numerous. A valuable 
collection is given by Chishom and Common [4]. There are other applications in 
the literature. For example, DeFaria et al. [7] applied Clifford algebras to set up a 
formalism for magnetic monopoles. Salingaros [8] extended the Cauchy-Rie- 
mann equations of holomorphy to fields in higher-dimensional spaces in the 
framework of Clifford algebras and studied the Maxwell equations in vacuum 
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and the Lorentz gauge conditions. He showed that the Maxwell equations in 
vacuum are equivalent to the equation of holomorphy in Minkowski space-time. 
Imaeda [9] showed that Maxwell equation in vacuum are equivalent to the 
condition of holomorphy for functions of a real biquaternion variable. 

It has been shown that when the electromagnetic field is defined as the sum of 
an electric field vector and a magnetic field bivector, the four Maxwell equations 
reduce into a single equivalent equation in the domain of Pauli and Dirac algebras 
[3] [4]. In this work, we apply a different Clifford algebra to the Maxwell equ- 
ations of electromagnetism, and we show how this formulation relates to the 
classical theory in a straightforward manner resulting in two main formulas; the 
first is a simplistic rendering of Maxwell’s equations in a short formula  

( )*
0F F F Jρ∂ − ∂ + = − +                      (1) 

The second is the reconstruction of the combined electric and magnetic fields 
by a single transformation of the four-potential  

F u u= ∂ − ∂ ∧                            (2) 

Our investigation differs in approach from those in Hestenes and Chisholm- 
Common in its simplicity and ability to use a single potential function to cor- 
rectly derive Maxwell’s equations in a vacuum. 

In what follows, we first lay out the theory of the Clifford algebra employed in 
this work. We then discuss its applications to electromagnetism and obtain a 
new electromagnetic field multivector, which is closely related to the scalar and 
vector potentials of the classical electromagnetics. We show that the gauge 
transformations of the new multivector and its potential function and the La- 
grangian density of the electromagnetic field are all in agreement with the 
transformation rules of the rank-2 antisymmetric electromagnetic field tensor. 
Finally, we give the matrix representation of the electromagnetic field multive- 
ctor and its Lorentz transformation.  

2. Theory  

Consider the Clifford algebra nC  over the field of real numbers   generated 
by the elements 1 2, , , ni i i  with relations  

2 1 for 1
for

j

j k k j

i j
i i i i j k
 = − ≥
 = − ≠

                        (3) 

and no others [1] [10]. As a vecor space over  , the algebra nC  has 
dimension 2n . A basis for nC  consists of all products of the form 

1 2 mk k ki i i , 
with 1 2 mk k k< < <  and m n≤ . The empty product is identified with the 
scalar 1. There are 2n  such products, and an arbitrary element x  of nC  
(called a multivector) is a linear combination of these products. If we write J  
for a multiindex ( )1, , mk k  and 

1 2 mJ k k kE i i i=  , then J JJx x E=∑ , where 

Jx ∈  for all J . For instance, an arbitrary element of 2C  can be written as  

0 1 1 2 2 12 1 2x x x i x i x i i= + + +                        (4) 
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An important subspace of nC  is  

1 0
1

, are basis elements of
n

n
j j j j n

j
x x i x i

=

  = + ∈ 
  

∑  C  

which is isomorphic to the generalized Minkowski space 1
n

 . Notice that this is 
a subspace of dimension 1n +  rather than dimension n  or 2n . 

A product 
1 2 mk k ki i i  where 1 2 mk k k< < < , or any expression equivalent 

to a scalar multiple of it is called an m-blade. Let 
mx  be the sum of the m- 

blades of x , called the m-vector part of x , then  

m
m

x x=∑                              (5) 

If 
mx x=  for some positive integer m, then x  is said to be homogeneous of 

grade m. 
The inner and outer products of blades are defined as follows [1]: The inner 

product of an r-blade rU  and as s-blade sV  is  

r s r s r sU V U V
−

∨ =                          (6) 

The outer product of rU  and sV  is  

r s r s r sU V U V
+

∧ =                          (7) 

By linearity, these definitions extend to x y∨  and x y∧ , where x  and y  
are multivectors. 

Some examples of inner and outer products are:  

1
0
0

0 0

i i j j k k
i i j j k k
i j i k j k
i j ij i k ik j k jk
i ij j i jk i ij i jk ijk

∨ = ∨ = ∨ = −
∧ = ∧ = ∧ =
∨ = ∨ = ∨ =
∧ = ∧ = ∧ =
∨ = − ∨ = ∧ = ∧ =

              (8) 

There are three important involutions on nC  [10]:  
1) inversion: x x′  defined by k ki i′ = −  for 1k ≥   
2) reversion: *x x  defined by ( )1 1

*

m mk k k ki i i i=    
3) conjugation: x x  defined by ( ) ( )**x x x′ ′= =   

Then it follows that ( )xy x y′ ′ ′= , ( )* * *xy y x= , and ( )xy yx=  for all x and y  
in nC . 

3. Derivatives  

Let ∇  be the differential operator 1
n

k kk i
=

∇ = ∂∑ , where k kx∂ = ∂ ∂ . Let ∂  
be the differential operator 0∂ = ∂ +∇ . Let D  be a domain in 1

n , and sup- 
pose that : nf D →C  has continuous derivatives of whatever order the context 
requires. Then f∂  and f ∂  are the left and right derivatives of f , respec- 
tively. In terms of components, these derivatives are defined by  

( )( ) ( )( )j j
k k j j k j j j k k j k

k k

f f
i f i i i f i i i i

x x
∂ ∂

∂ = ∂ =
∂ ∂

             (9) 
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It is straightforward to show that the following identities hold:  

0∂ = ∂ −∇                             (10) 

2

1

n

k
k=

∇ ⋅∇ = ∂∑                            (11) 

2 2

1

n

k
k=

∇ = − ∂∑                            (12) 

2 2 2
0 0∂∂ = ∂∂ = ∂ +∇ ⋅∇ = ∂ −∇                    (13) 

2 2 2
0 0∂ ∨ ∂ = ∂ −∇ ⋅∇ = ∂ +∇                     (14) 

The Clifford algebra 2C  maybe written as the algebra  
{ }0 1 2 3 : mx x i x j x k x R+ + + ∈  where , ,ij k jk i ki j= = = . If we identify 3  with 
the subspace spanned by { }, ,i j k , then 2C  is the usual skew-field of quater- 
nions with  

( )1
0 1 2 32

1x x x i x j x k
x

− = − − −                    (15) 

The geometric product on 3  satisfies the relation xy x y x y= − ⋅ + × , where 
x y×  is the usual cross-product. However, since additional relations exist 
among i , j , and k , inner and outer products are not defined here. 

If F  is a vector field on 3 , then it is straightforward to show that  
F F F∇ = −∇ ⋅ +∇×                        (16) 

Theorem 1. Suppose F  is a vector field on 3 . Then 0F∂ =  if and only if 
F φ= ∇ , where φ  is a real-valued harmonic function of ( )1 2 3, ,x x x .  

Proof. A vector field F  equals φ∇  for a real-valued function φ  if and 
only if 0F∇× = . The function φ  is harmonic if and only if 0F∇ ⋅ = .    □ 

4. Applications to Electromagnetism  

In Gaussian units, the differential form of the Maxwell equations for sources in 
vacuum are [11]  

E ρ∇ ⋅ =                             (17) 

0B∇ ⋅ =                             (18) 

1 0tE B
c

∇× + ∂ =                         (19) 

1
tB E J

c
∇× − ∂ =                         (20) 

where E , B , and J  are time-dependent vector fields in 3  and ρ  is a 
real-valued function. That is, each quantity is a function of ( )0 1 2 3, , ,x x x x , where 

0x ct=  and t  is time. Note that ρ  is the charge density multiplied by 4π  
and J  is the current density multiplied by 4π c . 

We recast the Maxwell equations in the language of Clifford algebras by 
keeping the electric field as a vector, but replacing the magnetic field vector by 
the magnetic field bivector M , defined as [3] [12]  
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1 2 3M B jk B ki B ij= + +                        (21) 

The electromagnetic field multivector is then defined as F E M= + . It can be 
shown that  

E E E∇ =∇∨ +∇ ∧                         (22) 

M M M∇ =∇∨ +∇ ∧                        (23) 

1 1 2 2 3 3E E E E E∇∨ = −∂ − ∂ − ∂ = −∇ ⋅                  (24) 

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1E E E jk E E ki E E ij∇∧ = ∂ − ∂ + ∂ − ∂ + ∂ − ∂        (25) 

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1M B B i B B j B B k B∇∨ = ∂ − ∂ + ∂ − ∂ + ∂ − ∂ = ∇×      (26) 

( ) ( )1 1 2 2 3 3M B B B ijk B ijk∇∧ = ∂ + ∂ + ∂ = ∇ ⋅               (27) 

In terms of E  and M , the Maxwell equations for sources in vacuum may 
now be written as  

( )a scalar equationE ρ∇∨ = −                    (28) 

( )0 a vector equationM E J∇∨ − ∂ =                 (29) 

( )0 0 a bivector equationE M∇∧ + ∂ =                (30) 

( )0 a trivector equationM∇∧ =                  (31) 

Theorem 2. The Maxwell equations are equivalent to the single equation  

( )*
0F F F Jρ∂ − ∂ + = − +                      (32) 

Proof. Since F E M= + ,  

( ) ( ) ( ) ( )
0 0

0 0 02
F E M E E E M M M

E E M E E M M
∂ = ∂ + ∂ = ∂ +∇∨ +∇ ∧ + ∂ +∇∨ +∇ ∧

= ∂ + ∇∨ + ∇∨ − ∂ + ∇ ∧ + ∂ + ∇ ∧
    (33) 

Using the Maxwell equations, we obtain  

02F E Jρ∂ = ∂ − +                          (34) 

But  

( ) ( ) ( )*1 1
2 2

E E M E M F F= + + − = +                  (35) 

Therefore, we obtain Equation (32). Conversely, assuming Equation (32), the 
Maxwell equations follow by setting the real parts, the vector parts, the bivector 
parts, and the trivector parts of each side equal. This completes the proof.    □ 

From classical electrodynamics [11], the fields E  and B  are derived from 
a scalar potential φ  and a vector potential A  by  

1
tE A

c
φ= − ∂ −∇                           (36) 

B A= ∇×                             (37) 

where φ  and A  satisfy the wave equations  

2
2

1
tc

φ ρ ∂ −∇ ⋅∇ = 
 

                        (38) 
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2
2

1
t A J

c
 ∂ −∇ ⋅∇ = 
 

                         (39) 

and the continuity equation  

1 0t A
c

φ∂ +∇ ⋅ =                            (40) 

We can formulate this as follows: Let u Aφ= − − , and write  

0 1 2 3u u u i u j u k= + + +                         (41) 

where 0u φ= −  and ( )Ve u A= − . Then  

( )0 0 0E A Ae u uφ= −∂ −∇ = ∂ +∇                     (42) 

( )M A Ae u= ∇ ∧ = −∇ ∧                         (43) 

Note that ( )0 1 tc∂ = ∂ . 
The derivative of u  is  

( ) ( ) ( )0 0 1 1 2 2 3 3 0 0u u u u u Ae u u Ae u∂ = ∂ − ∂ − ∂ − ∂ + ∂ +∇ +∇ ∧           (44) 

Using Equations (42) and (43) and noting that  

0 0 1 1 2 2 3 3u u u u u∂ ∨ = ∂ − ∂ − ∂ − ∂                    (45) 

we obtain  
*u u E M u F∂ = ∂ ∨ + − = ∂ ∨ +                    (46) 

Theorem 3. The electromagnetic field F  is obtained from the potential 
function u  by  

F u u= ∂ − ∂ ∨                           (47) 

Proof. From Equation (46) we have *F u u= ∂ − ∂ ∨ . Therefore,  

( ) ( )* * * *F u u u u u u= ∂ − ∂ ∨ = ∂ − ∂ ∨ = ∂ − ∂ ∨             (48) 

□ 
Note that Equation (47) may also be written as 0 02F u u= ∂ − ∂ , since by the 

continuity eqation 0 0 1 1 2 2 3 3u u u u∂ = −∂ − ∂ − ∂ . 

5. Gauges  
5.1. Lorentz Transformation of the Electromagnetic Field 

A Lorentz transformation is an isometry P  of the Minkowski space 1
n , such 

that ( ) 0Re Ax >  whenever ( ) 0Re x > . In the special case where one inertial 
reference frame ( )0 1 2 3, , ,y y y y  is moving relative to another frame  
( )0 1 2 3, , ,x x x x  with constant velocity v  in the 1x -direction, the Lorentz trans- 
formation relating them is represented by the matrix  

0 0
0 0

0 0 1 0
0 0 0 1

a b
b a

P

− 
 − =
 
 
 

                       (49) 
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where  

( ) ( )2 2

1 and
1 1

av v ca b
cv c v c

= = =
− −

             (50) 

In the general case, writing y Px= , we have  
3

0

r

rs r s

yu u
x y x=

∂∂ ∂
=

∂ ∂ ∂∑                          (51) 

and  

r
rs

s

yP
x
∂

=
∂

                            (52) 

Thus the operator x∂  transforms as ( )x yu A u∂ = ∂ , where A  acts on y∂  on 
the right in the usual way. Calculations show that associativity does not hold in 
the expression. To summarize, if y Px= , then ( )1

y xu P u−∂ = ∂ . 
Suppose now that ( )u u x= , where 3 3

1 1:u →   is a potential function for 
F  so that ( ) ( )x xF u x u x= ∂ − ∂ ∨ . Then ( )1û Pu P y−=  is a potential function 
for the transformed electromagnetic field multivector F̂ . Therefore,  

( ) ( )ˆ ˆ ˆy yF u y u y= ∂ − ∂ ∨                       (53) 

and 1
y xP−∂ = ∂ . 

Theorem 4. Under the Lorentz transformation y Px= , the electromagnetic 
field multivector F  transforms into F̂  according to  

( )( ) ( )1 1ˆ
x xF Pu P P Pu− −= ∂ − ∂ ∨                   (54) 

Again, associativity does not hold in this equation. 

5.2. Lorenz Gauge Invariance 

Before we get to the mathematics of this section, let us note the difference in 
Lorentz and Lorenz. These names, in fact, do belong to different scientists and 
thus we consider both types of gauge invariance here. 

The common gauge invariant from classical electrodynamics is to consider  

f
t

φ φ
∂′ = −
∂

                            (55) 

A A f′ = +∇                            (56) 

In our formalism this leads us to  

u u f′ = + ∂                             (57) 

Examining this a little more fully, we know that the electric and magnetic fields 
do not change under Lorenz or Coulomb gauges and thus we obtain  

F u u u u′ ′= ∂ − ∂ ∨ = ∂ − ∂ ∨                      (58) 

Following through we see  

( ) ( )
( ) ( ) ( ) ( ) ( )

u u u f u f

u u f f F f f

′ ′∂ − ∂ ∨ = + ∂ ∂ + ∂ ∨ + ∂

= ∂ − ∂ ∨ + ∂ ∂ − ∂ ∨ ∂ = + ∂ ∂ − ∂ ∨ ∂
   (59) 
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As the multivector field must remain unchanged we obtain the gauge invariant 
condition  

( ) ( ) 0f f∂ ∂ − ∂ ∨ ∂ =                          (60) 

6. The Lagrangian Density  

Recall that in classical electromagnetism the Lagrangian density in a vacuum is 
given by  

( )1
4

F F µν
µν= −                           (61) 

By expanding this a bit, we find  

( )2 21
2

E B= −                           (62) 

In order to recreate this in the Clifford algebraic formulation we consider  
*andF E B F E B= + = −                      (63) 

Thus we might expect that the Lagrangian density becomes  

( )*1
2

F F= − ∨                           (64) 

Examining this a little we see that  

( ) ( )* 2 2F F E B E B E B E B B E∨ = + ∨ − = − − ∨ + ∨           (65) 

Since our inner product is commutative we have a cancellation of field product 
terms E B⋅  and B E⋅ . 

In higher dimensions, one may wish to restrict to the 0-blade so as to disallow 
higher dimensional cross terms. Thus we write  

*

0

1
2

F F= − ∨                          (66) 

Now let’s consider the situation outside a vacuum. We have  

( )1
4

F F j Aµν µ
µν µ= − +                       (67) 

Let us write  

j Jρ= +                             (68) 

Then using our potential u  we have the Lagrangian density of the electro- 
magnetic fields outside a vacuum,  

( )*1
2

F F j u= − ∨ + ∨                       (69) 

7. Representation by Matrices  

Complex numbers can be represented by 2 2×  matrices. Similarly, as we show 
in the Appendix, the Clifford algebra 3C  is represented by 8 8×  matrices. The 
element 0 1 2 3 4 5 6 7x x x i x j x k x jk x ki x ij x ijk= + + + + + + +  is represented by the 
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matrix  

0 1 2 3 4 5 6 7

1 0 6 5 7 3 2 4

2 6 0 4 3 7 1 5

3 5 4 0 2 1 7 6

4 7 3 2 0 6 5 1

5 3 7 1 6 0 4 2

6 2 1 7 5 4 0 3

7 4 5 6 1 2 3 0

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

− − − − − − 
 − − − − 
 − − − −
 

− − − − 
 − − − −
 

− − − − 
 − − − − 
 
 

            (70) 

From this we can write an 8 8×  natrix representation of the electromagnetic 
field multivector  

1 2 3 1 2 3F E i E j E k B jk B ki B ij= + + + + +                (71) 

The 4 4×  matrix in the upper left corner contains all the coordinates of F  
and is the same as the matrix representation of the second-rank antisymmetric 
electromagnetic field tensor [11]. If we use this representation for F , that is,  

1 2 3

1 3 2

2 3 1

3 2 1

0
0

0
0

E E E
E B B

F
E B B
E B B

− − − 
 − =
 −
 

− 

                   (72) 

then the Lorentz transformation of F  is given by [11]  
ˆ tF PFP=                            (73) 

A quite lengthy calculation (see Appendix) shows that the two transformations 
given by Equations (54) and (73) are exactly identical. 

8. Concluding Remarks  

We have shown that in the framework of the Clifford algebra defined in 
Equation (3), the Maxwell equations in vacuum reduce to a single equation in a 
fashion similar to that in other types of Clifford algebras. The multivector F  is 
closely related to the second-rank antisymmetric electromagnetic field tensor 
[11], whose condition of holomorphy is also equivalent to the Maxwell equations 
in vacuum [8]. However, the multivector formalism may have some theoretical 
advantages over the tensor formalism. 

Furthermore, we have shown that the electromagnetic field multivector can be 
derived from a potential function u , which is closely related to the scalar and 
the vector potentials of classical electromagnetics. 

Finally, we have discussed the Lorentz transformation of the potential function 
u  and the multivector field F , and have shown that these transformations are 
in agreement with the transformation of the second-rank antisymmetric electro- 
magnetic field tensor. 

The formulation given by other investigators [3] [4] differs from the present 
work in that they have employed the Pauli algebra in which the square of each of 
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the three unit elements is +1 rather than −1, or the Dirac algebra in which one 
unit element has square +1 and three unit elements have square −1. All these 
types of Clifford algebras have been extensively used. 

By repeating our calculations with 2 1ji = +  instead of −1 in Equation (3), it 
can be shown that the Maxwell equations in vacuum reduce to F Jρ∂ = − , 
which is in agreement with the result given by Jancewicz [12]. Equation (47) 
then becomes F u= ∂ , where u  is the potential function given by Equation 
(41). Equation (54) for the Lorentz transformation of F  then reduces to 

( )( )1F̂ Pu P−= ∂ . Repeating the calculations of the Appendix, it turns out that 
this transformation is equivalent to 1F̂ PFP−= , where the matrix represen- 
tation of F  is now given by  

1 2 3

1 3 2

2 3 1

3 2 1

0
0

0
0

E E E
E B B

F
E B B
E B B

 
 − =
 −
 

− 

                  (74) 

Note that this matrix is not antisymmetric and the representation is not the same 
as that of the electromagnetic field tensor, and the transformation rule is also 
different. This is in contrast to the result obtained from applying a Clifford 
algebra with 2 1ji = − . 
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Appendix  

Here we show that the two transformations given in Equations (54) and (73) are 
identical. 

We have  

0 1 2 3 4 5 6 7x x x i x j x k x jk x ki x ij x ijk= + + + + + + +            (A-1) 

and  

0 1 2 3 4 5 6 7y y y i y j y k y jk y ki y ij y ijk= + + + + + + +           (A-2) 

Therefore,  

( )
( )
( )
( )

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

0 1 1 0 2 6 3 5 4 7 5 3 6 2 7 4

0 2 1 6 2 0 3 4 4 3 5 7 6 1 7 5

0 3 1 5 2 4 3 0 4 2 5 1 6 7 7 6

0 4 1 7 2 3 3 2 4 0 5 6 6 5

xy x y x y x y x y x y x y x y x y
x y x y x y x y x y x y x y x y i
x y x y x y x y x y x y x y x y j
x y x y x y x y x y x y x y x y k
x y x y x y x y x y x y x y

= − − − − − − +

+ + + − − + − −

+ − + + − − + −

+ + − + + − − −

+ − + − + + −( )
( )
( )
( )

7 1

0 5 1 3 2 7 3 1 4 6 5 0 6 4 7 2

0 6 1 2 2 1 3 7 4 5 5 4 6 0 7 3

0 7 1 4 2 5 3 6 4 1 5 2 6 3 7 0

x y jk
x y x y x y x y x y x y x y x y ki
x y x y x y x y x y x y x y x y ij
x y x y x y x y x y x y x y x y ijk

−

+ − − + − + + −

+ + − − + − + −

+ + + + + + + +

    (A-3) 

It follows that the matrix representation of y  is  

0 1 2 3 4 5 6 7

1 0 6 5 7 3 2 4

2 6 0 4 3 7 1 5

3 5 4 0 2 1 7 6

4 7 3 2 0 6 5 1

5 3 7 1 6 0 4 2

6 2 1 7 5 4 0 3

7 4 5 6 1 2 3 0

y y y y y y y y
y y y y y y y y
y y y y y y y y
y y y y y y y y
y y y y y y y y
y y y y y y y y
y y y y y y y y
y y y y y y y y

− − − − − − 
 

− − − − 
 − − − −
 
 − − − −
 

− − − − 
 − − − − 
 − − − −
  
 

          (A-4) 

We also have  

1 2 3 1 2 2F u u E i E j E k B jk B ki B ij= ∂ − ∂ ∨ = + + + + +          (A-5) 

So the matrix representation of F  is  

1 2 3 1 2 3

1 3 2 3 2 1

2 3 1 3 1 2

3 2 1 2 1 3

1 3 2 3 2 1

2 3 1 3 1 2

3 2 1 2 1 3

1 2 3 1 2 3

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

E E E B B B

E B B E E B

E B B E E B

E B B E E B
F

B E E B B E

B E E B B E

B E E B B E

B B B E E E

− − − − − − 
 

− − − 
 − − − 
 − − −
 =
 − − −
 

− − − 
 

− − − 
 
 

        (A-6) 

The general Lorentz transformation and its inverse are given by the following 
matrices:  
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00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

P P P P
P P P P

P
P P P P
P P P P

 
 
 =
 
 
 

                      (A-7) 

00 10 20 30

01 11 21 311

02 12 22 32

03 13 23 33

P P P P
P P P P

P
P P P P
P P P P

−

− − − 
 − =
 −
 
− 

                  (A-8) 

From Equation (54) we have  

( )( ) ( ) ( )1 1F̂ Pu P P Pu− −= ∂ − ∂ ∨                   (A-9) 

where  

( )
( )
( )
( )

00 0 01 1 02 2 03 3

10 0 11 1 12 2 13 3

20 0 21 1 22 2 23 3

30 0 31 1 32 2 33 3

Pu P u P u P u P u

P u P u P u P u i

P u P u P u P u j

P u P u P u P u k

= + + +

+ + + +

+ + + +

+ + + +

              (A-10) 

and  

( )
( )
( )
( )

1
00 0 01 1 02 2 03 3

10 0 11 1 12 2 13 3

20 0 21 1 22 2 23 3

30 0 31 1 32 2 33 3

P P P P P

P P P P i

P P P P j

P P P P k

−∂ = ∂ − ∂ − ∂ − ∂

− ∂ − ∂ − ∂ − ∂

− ∂ − ∂ − ∂ − ∂

− ∂ − ∂ − ∂ − ∂

             (A-11) 

Let mP  be the m-th row of P . Then  

( ) ( ) ( ) ( )0 1 2 3Pu P u P u i P u j P u k= ⋅ + ⋅ + ⋅ + ⋅             (A-12) 

( ) ( ) ( ) ( )1
0 1 2 0P P P i P j P k−∂ = ⋅∂ − ⋅∂ − ⋅∂ − ⋅∂            (A-13) 

and  

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

1 0 0 1

2 0 0 2

3 0 0 3

3 2 2 3

1 3 3 1

2 1 1 2

F P u P P u P i

P u P P u P j

P u P P u P k

P u P P u P jk

P u P P u P ki

P u P P u P ij

 = ⋅ ⋅ ∂ − ⋅ ⋅ ∂ 
 + ⋅ ⋅ ∂ − ⋅ ⋅ ∂ 
 + ⋅ ⋅ ∂ − ⋅ ⋅ ∂ 
 + ⋅ ⋅ ∂ − ⋅ ⋅ ∂ 
 + ⋅ ⋅ ∂ − ⋅ ⋅ ∂ 
 + ⋅ ⋅ ∂ − ⋅ ⋅ ∂ 

            (A-14) 

Recall that from Equation (42) we have  

( ) ( ) ( )0 1 1 0 0 2 2 0 0 3 3 0E u u i u u j u u k= ∂ + ∂ + ∂ + ∂ + ∂ + ∂         (A-15) 

and from Equation (37) we have  

( ) ( ) ( )3 2 2 3 1 3 3 1 2 1 1 2B u u i u u j u u k= ∂ − ∂ + ∂ − ∂ + ∂ − ∂         (A-16) 

Therefore,  
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1 0 1 1 0 1 3 2 2 3

2 0 2 2 0 2 1 3 3 1

3 0 3 3 0 3 2 1 1 2

E u u B u u
E u u B u u
E u u B u u

= ∂ + ∂ = ∂ − ∂

= ∂ + ∂ = ∂ − ∂

= ∂ + ∂ = ∂ − ∂

                (A-17) 

Then we find the following identity by carrying out the multiplication,  

( )( ) ( )( )
( )( )
( )( )

( ) ( ) ( )
( ) ( )

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

1 0 1 0 1 2 0 2 0 2 3 0 3 0 3

2 3 2 3 1 3 1 3 1 2 1 2

i j j i

i i i i j j j j

j j j j i i i i

i j j i i j j i i j j i

j i i j j i i j j i

P u P P u P

P u P u P u P u P P P P

P u P u P u P u P P P P

P P P P E P P P P E P P P P E

P P P P B P P P P B P P P

⋅ ⋅ ∂ − ⋅ ⋅ ∂

= + + + ∂ − ∂ − ∂ − ∂

− + + + ∂ − ∂ − ∂ − ∂

= − + − + −

+ − + − + −( )1 2 3i jP B

    (A-18) 

For example, with 1i =  and 0j =  we obtain the Lorentz transform of 1E ,  

( ) ( ) ( )
( ) ( ) ( )

1 11 00 01 10 1 12 00 02 10 2 13 00 03 10 3

02 13 12 03 1 03 11 13 01 2 01 12 11 02 3

Ê P P P P E P P P P E P P P P E

P P P P B P P P P B P P P P B

= − + − + −

+ − + − + −
   (A-19) 

and with 1i =  and 3j =  we obtain  

( ) ( ) ( )
( ) ( ) ( )

2 11 30 31 10 1 12 30 32 10 2 13 30 33 10 3

32 13 12 33 1 33 11 13 31 2 31 12 11 32 3

B̂ P P P P E P P P P E P P P P E

P P P P B P P P P B P P P P B

= − + − + −

+ − + − + −
   (A-20) 

It is now straightforward to show that the identity in Equation (18) is identical 
to  

ˆ tF PFP=                           (A-21) 

where tP  is the transpose of the general Lorentz transformation matrix, and 
F  is the electromagnetic field tensor given by Equation (72). 
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