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Abstract 
We find that π represents dual attributes. One is within the purely mathemat-
ical domain and can be derived for example, from infinite series, among sev-
eral other methods. The other is within a 2D geometric-physical domain. This 
paper analyzes several physical constants from an analogous perspective 
where they are defined solely by mathematical and 2D geometric properties 
independent of any actual physical scaling data. The constants are evaluated 
as natural unit frequency equivalents of the neutron, electron, Bohr radius, 
Rydberg constant, Planck’s constant, Planck time, a Black hole with a 
Schwarzschild radius, the distance light travels in one time unit; and the fine 
structure constant. These constants are defined within two inter-related har-
monic domains. In the linear domain, the ratios of the frequency equivalents 
of the Rydberg constant, Bohr radius, electron; and the fine structure constant 
are related to products of 2 and π. In the power law domain, their partial 
harmonic fraction powers, and the integer fraction powers of the fundamental 
frequency for Planck time are known. All of the constants are then derived at 
the point where a single fundamental frequency simultaneously fulfills both 
domains independent of any direct physical scale data. The derived values rel-
ative errors from the known values range from 10−3 to 10−1 supporting the 
concept and method. 
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1. Introduction 

Physics is the science that defines physical phenomena within well-defined ma-
thematical systems. The famous quote of Galileo Galilei sums up the relationship 
of physics and mathematics “Mathematics is the key and door to the sciences” 
(physical universe). In the quantum age, others have expanded this concept to 
include the mathematical universe hypothesis where all of physics are defined 
completely by mathematics [1]. This paper demonstrates that many of the fun-
damental constants can be accurately derived without any physical scaling data 
within a combined linear and power law harmonic system. This supports a gen-
eral mathematical hypothesis defining physical systems. 

We demonstrate a mathematical method and a conceptual physical model to 
calculate, to a first approximation, the natural frequency equivalents, ν, of the 
neutron, n0, 0n

v , the electron, e−, 
e

v − , Bohr radius, a0, 0av , Rydberg constant, 
R, Rv , Planck time, tP, a Black Hole, BH, BHv , with Schwarzschild radius, the 
distance light travels in one second, one unit of time; and the fine structure con-
stant, α. The actual unit of time is irrelevant in this type of dimensionless system, 
therefore, it is equivalent to 1 divided by one unit of time or Hz for the SI units. 
These are evaluated within a dimensionless Hz divided by Hz or, unit frequency 
divided by unit frequency ratio system. These constants are chosen to evaluate a 
wide range of fundamental physical domains and scales. No classic direct physi-
cal scaling data such as a specific mass, distance, or frequency are utilized. This 
is possible since the natural unit frequency equivalents of e−, a0, R, in the linear 
domain have known ratio relationships defined mathematically by products of 2, 
π, and α [2] [3]. These same constants are also defined within a harmonic partial 
fraction power law domain defining Planck time squared using a fundamental 
frequency base which is related to the annihilation frequency of the neutron 
[4]-[11]. 

There is reciprocity in that the frequency equivalents of R, e−, a0, and α must 
be precisely scaled equivalently in each of their respective domains, and fulfill 
geometric imperatives. In either the linear or power law domain, there exist an 
infinite number of possibilities that can fulfill their respective geometries and ra-
tio scales. However, there is one and only one set of values that uniquely fulfill 
both domains simultaneously. These derived values are closely related to their 
known constants. Our goal is to demonstrate an accurate and logical mathemat-
ical method to derive these frequency equivalents, and consequently the scale 
relationships of these fundamental physical constants to which they are asso-
ciated without knowledge of any standard scaling physical data. 

2. General Properties 
2.1. Mathematical and Geometric-Physico Duality of π 

The uniqueness of π represents an irrational number with dual mathematical 
attributes. One is solely within the purely mathematical domain and is derived 
froma variety of infinite series where n equals integers: Leibniz’ formula, Equa-
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tion (1) [12]; an infinite series consisting of the squares of harmonic fractions, 
Equation (2) [13]; and John Wallis’ formula for π/2, Equation (3) [14] [15] [16]. 
In this purely mathematical domain there is no direct relationship to a physical 
meaning of π. The other attribute, which we findis within a 2D, geometric do-
main with the physical properties of a circle, sinusoidal and harmonic systems: 

( )
0

1π 1 1 1 11
4 3 5 7 9 2 1

n

n n

∞

=

−
= − + − + + =

+∑

                  (1) 

2 2 2 2
1 1 1 1π 6 1
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 = + + + + + 
 



                   (2) 

1

π 2 2 4 4 6 6 8 8 2 2
2 1 3 3 5 5 7 7 9 2 1 2 1n

n n
n n

∞

=

 = =  − + 
∏                (3) 

This paper analyzes some of the most important fundamental physical con-
stants from an analogous perspective where they are defined solely by dimen-
sionless mathematical properties on a 2D plane, or ratios independent of any di-
rect physical scaling data or unit system. There are numerous examples of dual 
physical and purely mathematical systems, some of which include the Diver-
gence theorem [17], and the theorems of Green [18] and Stokes [19] [20], i.e. 
mathematical constructs having direct physical application. 

2.2. Power Laws and Harmonic Systems 

Power laws and harmonic systems are ubiquitous in Physics [21] and Mathe-
matics [22]. In power laws the relative change in one quantity results in an ex-
ponential change in the other quantity, independent of the initial size of those 
quantities. Power laws are plotted on log-log plots as linear relationships be-
tween two different variables, Figure 1, Figure 2. Examples of physical power 
laws include: the Stefan–Boltzmann law [23]; square-cube law [24]; in-
verse-square laws of Newtonian gravity and electrostatics; and restorative poten-
tial in simple harmonic motion [25]; and Kepler’s third law [26]. 

In Figure 1 the X-axis equals the quantum fractions, qfs, minus 1 or −1/n. 
The Y-axis is the difference between the log base 0n

v  and its partial fraction, δ. 
This geometry shows that the bwk and bem are almost symmetrically split. [4] 
Their slopes are slightly different as well. The positively sloped dashed line, de-
fined by our wkd equation, includes the Bohr radius and that of the electron. The 
negatively sloped, electromagnetic solid line, emd, starts at 1 Hz point, (−1, 0) 
and intersects the Rydberg constant at its harmonic fraction point. The first 
three odd prime harmonic fractions −1/3, −1/5, and −1/7 are respectively asso-  
ciated with R, a0, and e−. The bwk is closely scaled to 

( ) ( ) ( )
0

log 2 128 35
n

v
. This  

point is related to Planck time squared. This relationship is used in the deriva-
tion. 

In Figure 2 the X-axis equals the quantum fractions, qfs, minus 1 or −1/n. 
The Y-axis is the difference between the derived log base vF constant, and their 
power fractions, δd. This is a simplified geometry and not identical to the known, 
as seen in Figure 1. [4] The positively sloped dashed line, defined by our wkd 
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equation, includes the derived values of the Bohr radius and that of the electron. 
The negatively sloped derived electromagnetic solid line, emd, starts at 1 Hz 
point, (−1, 0) and intersects the Rydberg constant at its harmonic fraction point. 
The harmonic fractions −1/3, −1/5, and −1/7 are respectively associated with R, 
a0, and e−. The bwkd, awkd, and –bemd all equal ( ) ( ) ( )log 2 128 35

Fv . This point 
is related to Planck time squared. The exponents of our fundamental frequency 
sweep through those values that fulfill the ratios depicted by Equations (4-8). 

Harmonic systems also exhibit power law relationships. For example in music 
the ratio of octave frequencies are related to the product of the fundamental 
frequency, and 2 raised to a consecutive integer series. Harmonic systems are 
associated with sinusoidal periodic functions where integer and integer har-
monic fractions define inter-relationships via dimensionless ratios. The combi-
nation of power laws and harmonic systems is extremely organized, predictive, 
and mathematically restricted. 

2.3. Physical Coupling Ratios of the Frequency Equivalents of R, a0, 
e−, and α with 2 and π 

Though the properties of R, a0, e−, and α are quantum in nature, they are not 
mathematically independent variables. It has been demonstrated that when 
transformed to their frequency equivalents, ν; the electron, 

e
v − , Bohr radius, 

0av , and the ionization energy of hydrogen as the Rydberg constant, vR, are all 
inter-related by factors of 2, π, and the fine structure constant, α, in a dimen-
sionless ratio system [2] [3]. These relationships are in the linear frequency do- 
main and harmonic in character since they are related to 2π, Equations (4)-(8). 
Note that in Equation (4) 8π2 is embedded within the actual natural unit fre-
quencies of these three quanta, not added. This is the Schrödinger equation 

 

 
Figure 1. The 0n

v  power law domain geometry.  
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 Figure 2. Simplified power law geometry used for the derivations. 
 
geometric factor. We utilize the notation where A is a ratio. The numerator of 
the ratio is the upper constant symbol followed by its power in parentheses. The 
denominator of the ratio is lower natural frequency symbol followed by its pow-
er in parentheses. There can be more than one constant in either the numerator 
or denominator. The following is an example of the ratio related to the vR raised 
to the third power and 0n

v  raised to the second power, 
( )
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3. The Harmonic Neutron Hypothesis 
3.1. Overview 

The Harmonic Neutron Hypothesis, HNH, has demonstrated that the funda-
mental constants are inter-related within power laws with partial harmonic frac-
tion powers of the frequency of the neutron, 0n

v  related to specific constants 
[4]-[11]. All harmonic systems are associated with harmonic and partial har-
monic fraction ratios in both the linear and power domains. Harmonic fractions 
are 1/n where n is the consecutive integer series starting at 1. For example the 
wavelength of a fundamental wavelength, λ, equals the product of λ and 1/n. The 
frequencies equal n. In the power domain the harmonics are related to the vF 
raised to the partial harmonic fractions 1 ± (1/n) for n equals the consecutive 
integer series starting at 1. All of the fundamental constants are analyzed as di-
mensionless ratios of the frequency equivalent of any constant, ν, divided by 

0n
v . Any other physical unit, Joules, electron volt, mass, could be utilized and 
the results would not change. The standard unit value can be reconstructed by 
multiplying by the unit value. This is equivalent to Planck’s constant, the speed 
of light, and unit charge all equaling a dimensionless 1. It has been shown that it 
is possible to begin with four natural units of the 0n

v , 
e

v − , 
0av , Rv  to derive 

other fundamental constants, including Planck time, tP, Higgs’ boson, H0, the 
Hubble constant, H0, the quarks, cosmic microwave background radiation peak 
spectral radiance, CMB, and the mass of the proton, p+ [4]-[11]. This is equiva-
lent to deriving the constants within integer power laws of these four frequency 
equivalents. This follows the same pattern as seen with the hydrogen constants 
above. 

The power law relating many of the fundamental constants with a frequency 
equivalent of more than 1 Hz, but less than the neutron is related to the dimen-
sionless ratio of the constant’s frequency equivalent raised to an integer power, n 
+ 1, divided by the product of 

0n
v  raised to the power n, and the frequency  

near 1 Hz, 
( )

( )
0

1

n

v n
v nA + , that equals 1, Equation (9). This is true for all harmonic sys- 

tems since the harmonics are defined by partial harmonic fraction powers. Note 
that in Equation (9b) the power of Hz for the constant is 1. This is the sum of 

( )1n n +  plus ( )1 1n + . Here ( )1n n +  and ( )1 1n +  are partial and har-
monic fractions. The unit powers for Hz are accurately calculated within these 
types of power laws so the log calculations remain valid and accurate. The Hz 
powers will not be shown since they complicate the equations unnecessarily. 
Other integer fraction or integer powers of these A values are valid, and fall on 
the same power law line. Though these A values are derived from identity equa-
tions they represent fundamental constants that bridge far beyond that con-
stant’s typical physical significance and inter-relate many other constants. 
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The nth power for each constant is not arbitrary, but a natural dimensionless 
quantum unit. It is related to the only n power where the frequency for 

0

( 1)
( )

n

v n
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is near to 1 Hz. These values range from 
( )
( )

0

7

6
e

n

v

vA − , 0
7 6

e n
v v− , 3.1976599, 

( )
( )0

0

5
4

a

n

v
vA , 

00

5 4
a n

v v , 2.1906464, to 
( )
( )

0

3
2

R

n

v
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3 2
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v v , 0.68986216 Hz for the hydrogen-
quanta, the electron, Bohr radius, and the Rydberg constant. With any other 
power the A Hz values are very distant from 1 Hz. This power law pattern re-
peats when the powers are both multiplied by the consecutive integer series. 
Each ratio of 

( )
( )( )

0

1

n

v n n
v n nA ′ +

′
 is related the 

( )
( )
0

1

n

v n
v nA +  raised to the integer, n′ , used to 

raise the powers as well. This is a classic harmonic resonance pattern as seen in 
music. These n and n+1 powers are therefore natural powers, and follow a 
spontaneous systematic pattern. The natural A denominator followed by the 
numerator powers for Rvδ , 

0avδ , 
e

v
δ −  are 2 and 3, 4 and 5, and 6 and 7. This is a 

consecutive integer series seen in many quantum systems. Since the power of the 
constant and the power of the neutron are separated by 1 the fractional power of 
the neutron for the constant with a power of 1 is always a partial harmonic frac-
tion, 1 − (1/n) for constants with frequency equivalents of more than 1 and less 
than the neutron, Equation (9b). Note that this structure is similar to Equation 
(4) following a typical quantum constant pattern seen with the hydrogen quanta. 

In such a system any v, constant can be defined as the product of 0n
v  raised  

to partial harmonic fraction and 
( )( )0 1 1

n

v
v nA −

, Equation (9b). This approach al-
lows for a unified definition of any constant based on raising the neutron fre-
quency to integer fraction powers. This is analogous to Equations (4)-(8) where 
any constant can defined from other constants within power laws. In this case 
the neutron is chosen as the unifying constant since all of the hydrogen quanta 
arose from the neutron in the negative beta decay process. The neutron is also 
related to gravitational systems through neutron stars transforming into black 
holes. Other bases are associated with linear power law lines as well. If other 
quantum values are used for the fundamental frequency, vF the integer fractions 
change, but remain logically inter-related power laws. 

It has also been shown that it is possible to accurately derive the properties of 
hydrogen from 0n

v  alone since it represents a νF, of a harmonic system [9]. 
This is also possible due to the mathematical characteristics of power laws and 
harmonic systems. These physical constants are related to the first four odd 
primes when used as denominators of their partial harmonic or harmonic frac-
tions. The Rydberg constant, R is associated with the partial harmonic fraction, 
2/3, the Bohr radius, a0 with 4/5, the electron e− with 6/7, and the reciprocal of 
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the fine structure constant, 1/α with the harmonic fraction 1/11. These, when 
used in conjunction with the only even prime, 2, represent a symmetry of the 
global system and the factor in kinetic energy equations scaling. 

3.2. Assumptions 

The assumptions enabling this derivation include: First, that all harmonic sys-
tems are defined by a fundamental frequency, νF. Second, the electron, Bohr ra-
dius, Rydberg constant are associated with known prime number denominators 
in partial harmonic fractions of the frequency of the neutron in power laws. 
These respectively are for the electron 6/7, for the Bohr radius 4/5, and for the 
Rydberg constant 2/3. Third, the weak and electromagnetic forces are scaled in-
versely (reciprocally in the frequency domain) across the X-axis of the power law 
representing quantum symmetry. This is a classic property of harmonic systems. 
This is an approximation of the true geometry based on the neutron as the vF [4]. 
Fourth, Planck time squared is related to a kinetic energy, and therefore related 
to the factor ½ in its scaling. Planck’s time squared can be approximated by the 
fundamental frequency raised to a composite integer fraction related to the hy-
drogen quanta fractions. Fifth, the frequency equivalents of R, a0, e− and α are 
inter-related by known 2 and π ratio relationships in the linear domain [2] [3]. 
Sixth, there is a unique fundamental frequency closely related to the neutron 
that fulfills all of these restrictions simultaneously in both the linear and power 
law domains. Seventh, the values derived from that fundamental frequency are 
related to the known physical fundamental constants despite the absence of 
scaling physical data since the system is purely mathematical in character like π. 

3.3. Conversion of Physical Constants to Frequency Equivalents, 
Exponents, δ, and Harmonic Fractions 

All data for the fundamental constants were obtained from the websites: 
http://physics.nist.gov/cuu/Constants/ and www.wikipedia.org. The NIST site 
http://physics.nist.gov/cuu/Constants/energy.html has an online physical unit 
converter that can be used for these types of calculations so the values used in 
the model are all standard unit conversions. Energies in joules are divided by h 
for frequency equivalents. The speed of light, c, is divided by the frequency 
equivalent is wavelength. Masses in kg are converted to frequency equivalents by 
multiplying by the speed of light squared, c2, and dividing by Planck’s constant, 
h. The product of the Rydberg constant and c equals its frequency equivalent, vR. 

All of the constants are evaluated as dimensionless ratios, v Hz/v Hz. Known 
physical values are denoted with subscript, “k”. Derived values are labeled with 
subscript, “d”. Floating point accuracy is based upon known quantum experi-
mental data, of approximately 5 × 10−8. This is related to the rest mass of the 
electron. The derived values are shown to five digits. Table 1 and Table 2  list 
the standard unit; frequency equivalent; integer power, nip; integer fraction pow-
er, nifp; partial harmonic integer fraction powers, δ; and log base vF, logvF; relative 
errors , i.e., from the known experimental values of the constants evaluated in 
this paper.  

http://physics.nist.gov/cuu/Constants/
http://www.wikipedia.org/
http://physics.nist.gov/cuu/Constants/energy.html
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Table 1 lists the values of the various ( )v s    and the slope and Y-intercept of 
the wkδ-line, bwk, awk; and slope and Y-intercept of the EMδ-line used for the 
derivations of e−, a0, R, α, tP, a unit BH. The derived values closely approximate 
the known values as seen by the small relative errors, (r.e.). 

Table 2 lists the physical constants, quantum numbers, standard unit values, 
frequency equivalents, nip, nifp, exponents, δs, and the integer or partial harmonic 
fractions. Here nip stands for “n” integer power, and nif for “n” integer fraction 
power. The derived values closely predict the known values as seen by the small 
relative errors, (r.e.). 

The harmonic power law domain has a set of integer or integer fraction pow-
ers applied to the base the fundamental frequency, in this case, 

0n
v  for the 

known values, and Fv  for the generalized setting which when exponentiated 
are related to the frequency equivalent of that specific constant’s value, Equation 
(12). Equation (10a) shows the natural logarithmic conversion of the frequency 
equivalent, v, of any known physical constant, where the annihilation frequency 
of the neutron, 

0n
v , is chosen as the fundamental logarithmic base, Fv . This 

results in a partial harmonic quantum fraction qf  plus a small variation δ . 
These δ  values represent the log base vF equivalents of the A values, Equation 
(10a). 
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= − +    
   

 

        (10a) 

These A values do not represent errors, but are mathematically imperatives 
since any fundamental frequency raised to the known discrete integer fractions 
powers related to 2, (10/1155) or π, (29/1155) do not exactly equal 2 or π. These 
δs and As “shim” these power values to exactly 2 or π from Equations (4)-(8). 
This is essential so that there is a single fundamental frequency for all entities. 
We refer to the integer fractions as quantum fractions, qf. Not all fractions are 
partial harmonic or harmonic fractions. There are composite constants such as 
Planck time. Equation (10a) then shows how we use qf δ+  as the combined 
exponent of the neutron’s dimensionless base, 

0n
v , to recover the dimensionless 

equivalent of the physical constant. Since all of the constants are evaluated as 
dimensionless ratios. The calculations are dimensionless then the units can be 
reconstructed. What we find here is that when the neutron is used as the funda-
mental base, the physical constants we discuss here are readily derived. Compu-
tationally, the dimensionless base of the neutron,  

( ) ( )0elog 53.780055612 22
n

v = . 
In Equation (10b) we depict a sequential process starting from an arbitrary 

fundamental base ( )Fv , which is used to convert any dimensionless constant to 
its natural logarithmic equivalent, loge(vF), to obtain qf δ+ . The resulting par-
tial harmonic quantum fraction plus its δ then becomes the power of the chosen 
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arbitrary fundamental frequency base. 
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The known or derived log base vF minus the quantum integer fraction, qf, or 
partial harmonic fraction equals the known or derived δ. Equation (11a) uses the 
neutron’s dimensionless constant whereas Equation (11b) does the same for an 
arbitrary dimensionless vF base. The known or derived frequency equivalent of a 
constant v is calculated by raising ( )0n

v  or ( )Fv  to the sum power. 
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Equation (12a) demonstrates that either the base 
0n

v  or as shown in Equa-
tion (12b) the generalized form Fv , when raised to the known or derived sum 
power , equals the known or derived frequency equivalent. 

( ) ( ) ( )( )
0 0 0

1 11 1k k k
ifp ifp

y qf
n n

k n n n
v v v v

δ δ
   
   − + − + +   
   = = =              (12a) 

( ) ( ) ( )( )1 11 1d d d
ifp ifp

y qf
n nd F F Fv v v vδ δ

   
   − + − + +   
   = = =              (12b) 

3.4. Estimate of vF from 8π2 and the Partial Fractions of the  
Electron, Bohr Radius, and Rydberg Constant 

An estimate of vF can be made directly from an integer fraction power related to 
the harmonic partial fractions of the electron, Bohr radius, and Rydberg con-
stant; and 8π2. From Equation (4) if the δ values were all equal to 0, therefore, a 
linear geometry, vF raised to the composite power of the sum of 4/5, 4/5, −2/3, 
6/7, or 8/105 must equal 8π2. Therefore vF must equal 8π2 raised to 105/8, or 
8.002768195282 × 1024 Hz. This value is close to the frequency equivalent of the 
neutron, 2.2718590(01) × 1023 Hz. The actual geometry is more complicated. 

3.5. The Neutron 2D Power Law Domain 

Figure 1 is a plot of the power law relationships plotted with the vF equal to the 
vn0 [4]. Each individual fundamental constant is plotted as a point on a power 
law plane. The X-axis is scaled by ( )00

log
n

v n
v  equaling 1, or by ( )log

F Fvν
. 

There are two points that scale the X-axis: the point for 1 Hz which is related to 
Planck’s constant, h at (−1, 0), and the neutron, n0 or νF point at (0, 0). Planck’s 
constant in the frequency domain equals a dimensionless 1 [4]. The log value 
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equals 0. The X-axis is related to the partial harmonic or quantum fractions mi-
nus 1. This centers the vF at (0, 0), and takes into account that all of the constants 
are divided by vF. 

There are two fundamental lines expressed in linear form as ax + b defined by 
four natural units that scale the global δ or Y-axis power law. These are referred 
to as the δ-lines, as shown in Table 1 and Table 2. Points falling on a single line 
represent a power law. The first power law line, is defined by the Bohr radius 
point, (−1/5, 

0aδ ) and by the electron (−1/7, 
e

δ − ), where we utilize the primes 
5 and 7 as harmonic fractions. This is referred to as the weak kinetic line, “wk”. 
The Y-intercept is defined as “bwkk”, 3.51638329(18) × 10−3, and its slope is 
“awkk”, 3.00036428(15) × 10−3. Their derivations are shown in references [4] [7] 
[9] [11], Table 1. 

The second δ-line is defined by the points (−1, 0), 1 Hz, and the ionization 
energy of hydrogen, R, (−1/3, Rδ ), where we utilize the prime, 3. This is re-
ferred to as the electromagnetic, (EM) line. The Y intercept is defined as “bemk”, 
−3.45168347(17) × 10−3, and the slope as “aemk”, −3.45168347(17) × 10−3. This is 
referred to as “bemk” only. 

3.6. Simplified 2D Power Law Domain 

The same points are plotted using a simplified power law geometry which can be 
derived to the first approximation from the vF only (Figure 2). The X-axis is 
scaled by ( )log

F Fvν
 equaling 1. There are two points that scale the X-axis: the 

1 Hz point related to h at (−1, 0), and the derived νF point at (0, 0). The X-axis is 
related to the partial harmonic or quantum fractions minus 1. 

3.7. The Power Law y Axis Scaling Related to νF and Planck Time 
Squared 

Planck time squared, 2
Pt , in the frequency domain is equivalent to the Newto-

nian gravitational constant [5]. The product of 2
Pt  and the frequency equiva-

lents of two masses and the distance separating them equals the gravitational 
binding energy in Hz. From the perspective of the gravitational binding energy 
of the electron in hydrogen 2

Pt  equals the ratio of the frequency equivalent of 
the binding energy divided the product of the frequencies of the proton, electron, 
and Bohr radius. This is in units of seconds squared. The gravitational binding 
energy frequency equivalent of the electron is nearly equals to the scalar reci-
procal of 0n

v  divided by 2. Therefore, from the integer and partial fraction 
perspective 2

P dt  can be approximated as 0n
v  raised to the power −128/35, 

(−1−1−4/5−6/7), −27/(7 × 5), −3.6571428571, all divided by 2, Equation (13a). 
Equation (13b) is the generalized vF form. 

( )
( )0

2
128 35

1

2
P k

n

t
v

≈                       (13a) 

( )
( )

2
128 35

1
2

P d
F

t
v

=                       (13b) 
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Table 1. List of known and derived natural units. 

Physical constant Value 

0n
v , known Hz 2.2718590(01) × 1023 Hz 

Fv , derived HZ, r.e. = 5.7 × 10−2 2.40132968929221 × 1023 Hz 

( )0elog
n

v , known 53.780055612(22) 

( )elog Fv , derived, r.e. = 1.031 × 10−3 53.83547976 

bwkk, y-intercept, weak force, wk line 

( )
0 0

0

7 2

5 2

log

e

an
k

e n

v

bwk
ν ν

ν

−
  
     =  
 
 
 

 

( ) ( )( ) ( )e elog 2 log 128 35d Fbwk v=  

r.e. = 1.1952 × 10−3 

( )0

kbwk

n
v , ( ) d

d

bwk

Fv  r.e. = 4.2123 × 10−4 

3.51638329(18) × 10−3 

 

 

 

 

 

3.5206 × 10−3 
 

1.20817540, 1.20868432 

awkk, slope, weak force, wk line 

( )
0 0

0

35 2

2 35

log

e

an
k

e n

v

awk
ν ν

ν

−
  
     =  
 
  
 

 

( ) ( )( ) ( )e elog 2 log 128 35d Fawk v=  

r.e. = 1.7339 × 10−1 

( )0

kawk

n
v , ( ) d

d

awk

Fv  r.e. = 2.8573 × 10−2 

3.00036428(15) × 10−3 

 

 

 

 

 

3.5206 × 10−3 
 

1.175107647381330, 1.20817540 

bemk, Y-intercept, electromagnetic, EM line 

( )
0

0

3 2

log

e

n
k

e n

v

bem
ν

ν

−
  
     =  
 
 
 

 

( ) ( )( ) ( )e elog 1 2 log 128 35d Fbem v=  

r.e. = 1.9962 × 10−2 

( )0

kbem

n
v , ( ) d

d

bem

Fv  r.e. = 3.8931 × 10−3 

−3.45168347(17) × 10−3 

 

 

 

 

−3.5206 × 10−3 

 

8.3057942 × 10−1, 8.2735 × 10−1 

aemk, slope, electromagnetic, EM line 

( ) ( )( ) ( )e elog 1 2 log 128 35d Faem v=  

r.e. = 1.9962 × 10−2 

( )0

kaem

n
v , ( ) d

d

aem

Fv  r.e. = 3.8931 × 10−3 

−3.45168347(17) × 10−3 

−3.5206 × 10−3 

 

8.3057942 × 10−1, 8.2735 × 10−1 

 
Planck time squared, 2

Pt , is a composite single scaling factor on the Y-axis. It 
scales three important constants in Physics: Planck’s constant, h; the speed of 
light, c; and the Newtonian gravitational constant, G, into a time/frequency unit. 
The composite of these two slopes awkk and aemk, and their respective Y-inter- 
cepts, bwkk and bemk, define the line associated with the 2

Pt  point [5]. 
The slope of the line joining the Planck time squared point 

( ) ( )2128 35 1, P d
tδ− − 

 
, to the 1 Hz point, (−1, 0) scales the entire Y-axis. Since 

kinetic phenomena are associated with the factor 1/2, this splits the harmonics 
off of the x-axis. The value for δ1/2 equals ( ) ( )0e elog 1 2 log

n
v , which calculates 

to −1.2888554 × 10−2. The slope and Y-intercept of the line from the estimated 
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derived Planck time squared ( ) ( )2128 35 1, P d
tδ− − 

 
 through the 1 Hz point, 

(1, 0) for the neutron is 3.5242141(2) × 10−3, which nearly equals bwkk, and the 
known value in Equation (14a), and likewise in Equation (14b) for the genera-
lized νF. This slope should logically represent an estimate of the scaled “bwk” 
and “EM” lines, slopes and intercepts of the power law and are referred as bwkd, 
awkd, and bemd, Equations (14a, 14b), and Table 1, Table 2. 

( )
( ) ( )

0

3e

e

log 2 128
35l

3.524214 2 1
og

1 0k k k k

n

bwk awk bem aem
ν

−
    ≈ ≈ − ≈ − ≈ = 


×
  

 (14a) 

( )
( )

e

e

log 2 128
log 35d d d d

F

bwk awk bem aem
ν

   = = − = − =        
          (14b) 

3.8. Derivation of 
dFv , 

dRv , 
dav

0
, 

de
v −  

Arbitrary powers of e that define νF are evaluated from 1 to 60, as shown in Fig-
ure 3. In Figure 3 the X-axis is the ( )elog Fv  of the fundamental frequency. 
The Y-axis is a plot of several equations as a function of ‘x’. Equation (4) is the 
derived line ( )2 2

1 8π 8π
d

y = − . Equation y2 represents the difference of the de-
rived fine structure constants, αd from Equations (5) and (6) in the text. Equa-
tion y3 represents the difference of the derived αd from Equations (5) and (8). 
The circle is centered at the known logarithm of the neutron’s frequency, 

( )0elog
n

v . The point where these differences converge to zero very closely ap-
proximates the actual physical value, shown enlarged in the black box (c.f. Table 
1, Table 2). This convergence point is the derived exponent of 

dFν , which is 
slightly larger than the known value. The set of νF ranges from 2.7182818284 to 
3.069849640 × 1069 Hz. The derived slopes and Y-intercepts for awkd, bwkd, and 
bemd for each νF were calculated from Equation (14b). The geometry was as-
sumed to be related to a symmetric slope and intercept pattern as seen in Figure 
2 as an estimate of the true state. [4] The log(v)/log(vF), and δd were derived for 
each νF, for each derived frequency equivalent of R, 

dRv , a0, 
0 dav , e−, 

de
v − , and 

1/α, as computed in Equations (15)-(17). The partial harmonic fractions for R, 
2/3, a0, 4/5, and the e− 6/7 are utilized. The δ values are calculated by the product 
of the partial harmonic fraction and the derived bemd, and bwkd values, Equa-
tion (14). 

( ) ( )( )2 3 1 d
dd

bem
R Fv v × +=                          (15) 

( ) ( )( )
0

4 5 1 d
dd

bwk
a Fv v × +=                          (16) 

( ) ( )( )6 7 1 d
dd

bwk
Fe

v v−
× +=                          (17) 

The derived value for 28π d  was calculated from Equation (4). For example, 
the difference equals 8π2 minus 

0 dav  squared divided by the product of 
de

v −  
and 

dRv . Three different derived αd s were calculated based on Equations (5)-(6) 
and Equation (8). For example, αd equals 

0 dav  divided the product of 2, π, and

de
v − . These include: 

0a e
α − ; 

0Raα ; and 
Re

α − . The arithmetic differences between 
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Table 2. Experimental standard units, known and derived values. 

Constant unit nip or nifp 1 ± 1/nifp or qf 

Electromagnetic energy × s, h, at a Hz of 1 

6.62606957(29) × 10−3 Js × 1 Hz, log(vn0) = 0 

0 

nip 
 

0 

Neutron, elemental mass, fermion, known 

939.565378(21) × 106 MeV/c2, 

2.2718590(01) × 1023 Hz, loge = 53.780055612(22), log(vn0) = 1 

1 

 

nip 

 

 

1 

n0 derived, 993.10 × 106 MeV/c2 

2.40132968929221 × 1023 Hz, r.e. = 5.7 × 10−2 

loge = 53.83547976, r.e. = 1.031 × 10−3 

  

Rydberg constant, R, EM energy, boson, known 

1.09737315(5) × 107 m−1, 3.28984196(17) × 1015 Hz 

log(vn0) = 2/3 − 2.30112231(11) × 10–3 = 0.664365544(33) 

−3 

 

nifp 

2/3 = 

 

1 − (1/3) 

R, derived 1.1357 × 107 m−1, 3.4048 × 1015 Hz 

r.e. = 3.4946 × 10−2 

log(vFd) = 2/3 − 2.34706 × 10–3 = 0.66431960 

  

Bohr radius, a0, distance, known 

0.52917721092(17) × 10−10 m, 5.66525639(28) × 1018 Hz 

log(vn0) = 4/5 + 2.9163104(2) × 10–3 = 0.8029163(1) 

−5 

 

nifp 

4/5 = 

 

1 − (1/5) 

Bohr radius, a0, derived 

0.50887 × 10−10 m, 5.8913 × 1018 Hz, r.e. = 3.9901 × 10−2 

log(vFd) = 4/5 + 2.8165 × 10–3 = 8.02816469 

  

Electron, e−, mass, matter, fermion, known 

0.510998910 × 106eV/c2, 1.235589964(62) × 1020 Hz 

log(vn0) = 6/7 + 3.08775982(16) × 10–3 = 0.86023061(04) 

7 

 

nifep 

6/7 = 

 

1 − (1/7) 

Electron, e−, derived 

0.53393 × 106 eV/c2, 1.2910 × 1020 Hz, r.e. = 4.4881 × 10−2 

log(vFd) = 6/7 + 3.017645 × 10–3 = 0.86016050 

  

Fine structure constant, coupling constant, α, known 

α, 7.29735257 × 10−3, 1/α, 137.035999(7) 

−11 

nifp 

1/11 = 

1 − (10/11) 

Fine structure constant, αd, derived 

7.2626 × 10−3, 1/αd, 137.69218, r.e. = 4.7656 × 10−3 
  

Planck time squared, tP
2, known 

1.82611(11) × 10−86 s2, 

log(vn0) = (−128/35) − 1.37371(8) × 10−2 = −3.6708799 

 −128/35 

Derived Planck time squared, tP
2
d 

1.5601 × 10−86 s2, r.e. = 1.4534 × 10−1 

log(vFd) = (−128/35) − 1.2888554 × 10−2 = -3.67003 

  

tP known, 5.39106(32) × 10−44 s   

tP derived, 4.9839 × 10−44 s, r.e. = 7.5526 × 10−2   

BH, rs = c × s known 

2.0186 × 1035 kg, 2.7380 × 1085 Hz 
 128/35 

BH, rs = c × s derived , distance light travels in one unit of time 

2.3630 × 1035 kg, 3.2051 × 1085 Hz, r.e. = 1.7007 × 10−1 
 128/35 
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Figure 3. Differences of the Derived αd’s; and 28π d  versus loge[(νF)]. 

 
the derived values for of 28π d  and 8π2 were calculated for each νF. The arith-
metic differences between the derived values for 

0a e
α −  minus 

0Raα , 
0a e

α −  mi-
nus 

Re
α − , and 

0Raα  minus 
Re

α −  were each individually calculated for each νF. 
The only valid values where both domains are fulfilled are those where the 8π2 
and αd differences all converge to zero at a common ( )elog Fv  point, as shown 
in Figure 3. This derived 

dFv  validates our computed value for the fundamen-
tal frequency of the neutron. 

These differences we depict between 8π2 and the various α (y1, y2, y3) are plot-
ted as the Y-axis values and the X-axis as the loge(νF) in Figure 3. The differenc-
es all converge to 0 at the loge(νF) value of 53.83547976, the relative error from 
the known value of the frequency of the neutron is 1.031 × 10−3, Table 1, Table 2. 
The known exponential value for 0n

v s  is 53.780055612(22). The frequency 
equivalent of the derived value for 

dFv  is 2.40132968929221 × 1023 Hz, with rel-
ative error of 5.7 × 10−2. The known value for 

0n
v  is 2.2718590(01) × 1023 Hz. 

The derived value for Rydberg’s constant, R is 1.1357 × 107 m−1, with relative 
error 3.4946 × 10−2. The known value for R is 1.09737315(5) × 107 m−1. The de-
rived value for the Bohr radius is 0.50887 × 10−10 m, with relative error 3.9901 × 
10−2. The known value for a0 is 0.52917721092(17) × 10−10 m. The derived value 
for the electron is 0.53393 × 106 eV/c2, with relative error 4.4881 × 10−2. The 
known value for the mass of the electron is 0.510998910 × 106 eV/c2. The accu-
racy of our computations based solely upon the derived fundamental frequency, 
when compared with known values, appears non-coincidental. 

3.9. Derivation of α 

The derived fine structure constant, αd, was calculated from Equation (5). The 
derived value is 7.2626 × 10−3, relative error 4.7656 × 10−3. The known value of α 
is 7.29735257 × 10−3. 
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3.10. Derivation of tP 

The derived no h bar Planck time squared, 2
Pdt  was calculated from Fv  in 

Equation (14b). The derived value is 1.6601 × 10−86 s2, relative error 1.4534 × 10−1. 
The known value is 1.82611(11) × 10−86 s2. The derived h bar Planck time, tPd was 
calculated from Fv  in Equation (14b). The derived value is 4.9839 × 10−44 s, 
relative error 7.5526 × 10−2. The known value is 5.39106(32) × 10−44 s. 

3.11. Derivation of a Unit BH 

Equation (18) proposes both a definition and derivation of the mass of a Unit 
Black Hole, mBH, with a Schwarzschild radius, rs, of one light second, one unit of 
time, which equates to c × s meters. This distance, c × s, is associated with 
Compton wavelength of a wave with a frequency of 1 Hz. 

3

2BH
cm

G
s×

=                           (18) 

The equivalent mass is 2.0186 × 1035 kg, with a frequency of 2.7380 × 1085 Hz, 

BHmv , equates to 1.012 × 105 Mʘ, a mass well-beyond the Chandrasekhar Limit of 
1.4 Mʘ, Equation (19a). The derived Unit Black Hole frequency 

dBHν  can also 
be calculated from Equation (19b). The derived value for the frequency of this 
Black Hole with a Schwarzschild radius of one light unit of time in based 

dFv  is 
3.2051 × 1085 Hz. The equivalent mass is 2.3630 × 1035 kg. The relative error is 
1.7007 × 10−1, Table 2. 

2
852.73801

2
10 HzBH

Pt
ν ×= =                   (19a) 

( )( )128 35

2
852.6160

2
10 Hz1

d dBH F
P dt

ν ν= ×= =            (19b) 

4. Results 

Table 1 and Table 2 demonstrate that the derived values are close approxima-
tions to the known values. The smallest relative error is the exponent of the 

dFv , 
or 1.031 × 10−3. The largest relative error is the derived mass of the Unit BHd, 1.7 
× 10−1. Most of the constants are within 5 or 10 percent of the known values. 

Not all possible harmonic fraction values are associated with valid difference 
values that converge to 0. The smallest valid consecutive integer series is {2, 3, 4}, 
but these are not all consecutive primes. The smallest consecutive prime number 
valid series is {3, 5, 7} which corresponds to the known values. The other con-
secutive prime series, {2, 3, 5}, {5, 7, 11}, {11, 13, 17}, and {13, 17, 19} are not va-
lid, for use as harmonic fractions. The consecutive prime series {7, 11, 13} is va-
lid. 

5. Discussion 

A fundamental question asks “is there a limit beyond which physics can no 
longer be defined purely based on mathematics?” The standard consensus inter-
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pretation is that there is a limit, and there is no pure mathematical foundation to 
physics independent of any physical reality, and there is controversy related to 
multiple universe theories [1]. Every well-understood aspect of physics is de-
fined by mathematics. Then why is it not logical to assume that the whole system 
is purely mathematical, and independent of physical phenomena? Physics refers 
to physical phenomena, but in the extreme is defined solely by pure mathematics. 
This model is based on harmonic systems which represent self-organizing sys-
tems. 

The intimate connection between describing the physical world and pure ma-
thematical constructs have been demonstrated in recent papers: Wallis formula, 
alluded to above that derives π/2, is imbedded in the mathematics of the possible 
orbital levels of the hydrogen atom [14]. Another paper describes the relation-
ship of prime numbers in numbers theory and the quarks [27]. And at least one 
author has speculated that primes can be associated with classical quantum 
states [28]. In this paper we show that there are two domains, one related to 
harmonic ratio relationships of electromagnetic constants, and the other related 
to a gravity power law. When both of these domains mathematical requirements 
are fulfilled the derived set of values accurately correspond to the known physi-
cal constants. These values are not based on any actual physical scaling data. 
There are known mathematical requirements, but each has no scale uniquely 
within its own domain. In Equations (4)-(8) it is possible to derive one constant 
from others in absence of any physical data. Therefore this type of derivation is 
common in the quantum domain rather than the exception. In essence this pa-
per shows that both gravity and electromagnetic properties are intimately in-
ter-related to the same constants, but in different domains. The known physical 
constants are therefore a unified system linking gravity, electromagnetic, kinetic, 
and quantum. 

We have demonstrated the relationship of the first five prime numbers to the 
electron, Bohr radius, Rydberg constant, and the fine structure constant in deri-
vations from the neutron. [9] We have also demonstrated that the fundamental 
constant organizations including the quarks are related to progressive compo-
sites of certain primes [8]. In both cases the smallest possible logical primes are 
those that are actually seen in physical systems. We have shown in this work that 
the smallest consecutive primes {2, 3, 5} cannot fulfill both the power law and 
linear domains of the physical constants. These primes do not represent the 
known physical pattern primes. 

The next smallest possible consecutive prime number set is {3, 5, 7}, and these 
do represent the actual physical domain values. The integer associated with α need 
not be any specific value, but the known value is 11 again supporting our observa-
tion that the physical constants are dependent on a unique set of progressive 
primes. This is similar the Pauli exclusion rule and other quantum systems, but 
based on prime numbers. This is logical that each prime factor is associated with a 
physical entity in a pure mathematical system since primes are unique. 

It should be possible to make more exact derivations from a power law geo-
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metry that more closely approximates the true 2D power law geometry [4]. The 
derivation in this paper is intentionally primitive to make the process simpler 
(but in Einstein’s own words “not simple”). This approach does not take into 
account the vacuum energy or the deformity of space by gravity. In physics and 
in mathematics, harmonic systems are frequently “slightly” asymmetrically split 
from the purenumerical mathematical harmonics as is seen in this case. A good 
quantum example is the electron g-spin factor from 2. In music the actual fre-
quencies that humans recognize as the most “harmonic” sounds are not exactly 
the true harmonic fraction values, but slightly split from those values since the 
overtones demonstrate beat phenomena. 

6. Conclusion 

It is possible to derive some of the most important fundamental constants in the 
absence of any actual scaling physical data. This is possible since there are 
well-defined known 2D geometric relationships of the frequency equivalents of 
the electron, Bohr radius, Rydberg constant and fine structure constant in the 
linear harmonic domain, and these same factors within gravity and a power law 
domain. One domain is in the harmonic linear domain, the other in a harmonic 
partial fraction power law domain. The unique sets of values, which can fulfill 
both domains for a single fundamental frequency, are closely related to the ac-
tual physical domain. This suggests that the fundamental constants represent a 
unified harmonic spectrum like other quantum spectra. 
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