Steffensen-Type Method of Super Third-Order Convergence for Solving Nonlinear Equations

Zhongli Liu*, Hong Zhang

College of Biochemical Engineering, Beijing Union University, Beijing, China
Email: liuzhongli2@163.com

Received 5 March 2014; revised 5 April 2014; accepted 12 April 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, a one-step Steffensen-type method with super-cubic convergence for solving nonlinear equations is suggested. The convergence order 3.383 is proved theoretically and demonstrated numerically. This super-cubic convergence is obtained by self-accelerating second-order Steffensen’s method twice with memory, but without any new function evaluations. The proposed method is very efficient and convenient, since it is still a derivative-free two-point method. Its theoretical results and high computational efficiency is confirmed by Numerical examples.

Keywords

Newton’s Method, Steffensen’s Method, Derivative Free, Super-Cubic Convergence, Nonlinear Equation

1. Introduction

Finding the root of a nonlinear equation

\[f(x) = 0 \]

is a classical problem. It is well-known in scientific computation that Newton’s method (NM, see [1]):

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \ldots, \]

is widely used for root-finding, where \(x_0 \) is an initial guess of the root. However, when the derivative \(f' \) is

*Corresponding author.
unavailable or is expensive to be obtained, the derivative-free method is necessary. If the derivative \(f'(x_n) \) is replaced by the divided difference in (2), Steffensen’s method (SM, see [1]) is obtained as follows:

\[
x_{n+1} = x_n - \frac{f(x_n)}{f(x_n + f(x_n))}, \quad n = 0, 1, 2, \ldots
\]

NM/SM converges quadratically and requires two function evaluations per iteration. The efficiency index of them is \(\sqrt{2} = 1.414 \).

Besides H.T. Kung and J.F. Traub conjectured that an iterative method based on \(m \) evaluations per iteration without memory would arrive at the optimal convergence of order \(2^{m-1} \) (see [2]), Traub proposed a self-accelerating two-point method of order 2.414 with memory (see [3]):

\[
\begin{align*}
\beta_n &= -\frac{1}{f(x_n, z_n)}, \\
x_{n+1} &= x_n - f(x_n) \left[x_n, x_n + \beta_n f(x_n) \right],
\end{align*}
\]

where \(z_{n+1} = x_{n+1} + \beta_n f(x_{n+1}) \), and \(\beta_0 = -\text{sign}(f'(x_1)) \) or \(-1/f[x_0, x_0 + f(x_0)] \), etc.

A lot of self-accelerating Steffensen-type methods were derived in the literature (see [1]-[7]). Steffensen-type methods and their applications in the solution of nonlinear systems and nonlinear differential equations were discussed in [1] [4] [5] [8]. Recently, by a new self-accelerating technique based on the second-order Newtonian interpolatory polynomial \(N_2(x) = f(x) + f(x_n, z_n)(x-x_n) + f[x_n, z_n, x_n](x-x_n)(x-z_n) \), J. Džunića and M.S. Petkovića proposed a cubically convergent Steffensen-like method (see [7]):

\[
\begin{align*}
\beta_n &= -\frac{1}{f(x_n, z_n) + f[x_n, x_{n-1}] - f[x_n, x_{n-1}, x_{n-1}]}, \\
x_{n+1} &= x_n - f(x_n) \left[x_n, x_n + \beta_n f(x_n) \right],
\end{align*}
\]

In this study, a one-step Steffensen-type method is proposed by doubly-self-accelerating in Section 2, its super-cubic convergence is proved in Section 3, and numerical examples are demonstrated in Section 4.

2. The Method of Steffensen-Type

By the first-order Newtonian interpolatory polynomial \(N_1(x) = f(x) + f[x_n, z_n](x-x_n) \) and

\[
\mu_n \approx f[x_n, z_n, x],
\]

we have

\[
f(x) = N_1(x) + R_1(x),
\]

where

\[
R_1(x) = f(x) - N_1(x) = f[x_n, z_n, x](x-x_n)(x-z_n).
\]

So, with some \(\mu_n \approx f[x_n, z_n, x] \),

\[
\tilde{N}_2(x) = f(x) + f[x_n, z_n](x-x_n) + \mu_n (x-x_n)(x-z_n)
\]

should be better than \(N_1(x) \) to approximate \(f(x) \).

Therefore, we suggest \(x_{n+1} = x_n - \tilde{N}_2(x_n) / N_2'(x_n) \), i.e., a two-parameter Steffensen’s method:

\[
x_{n+1} = x_n - \frac{f(x_n)}{f(x_n, z_n) + \mu_n (x_n - z_n)}, \quad n = 0, 1, 2, \ldots
\]
where \(z_n = x_n + \beta_n f(x_n) \), \(\{ \beta_n \} \) and \(\{ \mu_n \} \) are bounded constant sequences. The error equation of (7) is

\[
e_{n+1} = \left(1 + \beta_n f'(a) \right) \frac{f''(a)}{2 f'(a)} - \mu_n \beta_n \right) e_{n}^2 + O\left(e_{n}^3 \right) .
\]

By defining \(\mu_0 = 0 \) and

\[
\mu_n = \frac{1 + \beta_n f(x_n, z_n)}{\beta_n f(x_n, z_n)} f\left[x_{n-1}, x_n, z_n \right] \quad (n > 0)
\]

recursively as the iteration proceeds without any new evaluation to vanish the asymptotic convergence constant, we establish a self-accelerating Steffensen’s method with super quadratic convergence as follows:

\[
x_{n+1} = x_n - \frac{f(x_n)}{f\left[x_n, z_n \right] - \left(1 + \frac{1}{\beta_n f(x_n, z_n)} \right) f \left[z_{n-1}, z_n \right] - f \left[x_{n-1}, z_{n-1} \right]} , \quad n = 0, 1, 2, \ldots ,
\]

(8)

Furthermore, we propose a one-step Steffensen-type method with super cubic convergence by doubly-self-accelerating as follows:

\[
x_{n+1} = x_n - \frac{f(x_n)}{f\left[x_n, z_n \right] - \left(1 + \frac{1}{\beta_n f(x_n, z_n)} \right) f \left[z_{n-1}, z_n \right] - f \left[x_{n-1}, x_{n-1} \right]} \]

\[
\beta_n = \frac{1}{f\left[x_{n-1}, z_{n-1} \right] - f \left[x_{n-1}, z_{n-1} \right]}
\]

(9)

3. Its Super Third-Order Convergence

Lemma 3.1 \(\beta_n \sim - \frac{1}{f'(a)} f \left(1 + c_n e_{n-1} e_{n-1}^2 \right) \), where \(c_k = \frac{f^{(k)}(a)}{k! f'(a)} \), \(e_n = x_n - a \) and \(e_n^2 = z_n - a \).

Proof. By Taylor formula, we have

\[
f\left[x_n, z_n \right] = f(x_n) - f(z_n) = f \left(x_n - e_n \right) - f \left(z_n - e_n \right) = e_n - e_{n-1} + c_2 \left(e_n^2 - e_{n-1}^2 \right) + c_3 \left(e_n^3 - e_{n-1}^3 \right) + \cdots
\]

\[
+ \frac{e_n - e_{n-1} + c_2 \left(e_n^2 - e_{n-1}^2 \right) + c_3 \left(e_n^3 - e_{n-1}^3 \right) + \cdots}{e_n - e_{n-1}}
\]

\[
= f'(a) \left[1 + c_2 \left(e_n^2 - e_{n-1}^2 \right) + c_3 \left(e_n^3 - e_{n-1}^3 \right) + \cdots \right]
\]

\[
\sim f'(a) \left(1 - c_n e_{n-1} e_{n-1}^2 \right)
\]

So,

\[
\beta_n = \frac{1}{f\left[x_{n-1}, z_{n-1} \right] - f \left[x_{n-1}, z_{n-1} \right] - f \left[x_{n-1}, x_{n-1} \right]} \sim - \frac{1}{f'(a)} f \left(1 + c_n e_{n-1} e_{n-1}^2 \right)
\]

Then, the proof can be completed.
Theorem 3.2 Let \(f : D \to \mathbb{R} \) be a sufficiently differentiable function with simple root \(a \in D \), \(D \subset \mathbb{R} \) be an open set, \(x_0 \) be close enough to \(a \), then (9) achieve the convergence of order 3.383.

Proof. If \(z_n \) converges to \(a \) with order \(p > 1 \) as:

\[
e^{-}_n = C_n e^p_n + o(e^p_n),
\]

and if \(x_n \) converges to \(a \) with order \(r > 2 \) as:

\[
e^{-}_n = D_n e^r_n + o(e^r_n),
\]

then

\[
e^{-}_n = C_n \Big(D_n e^{-}_n e^{-1}_n\Big)^r + o\Big(D^r_n e^{-1}_n\Big) = C_n D^r_n e^{-1}_n + o\Big(D^r_n e^{-1}_n\Big),
\]

\[
e^{-}_n = D_n \Big(D_n e^{-}_n e^{-1}_n\Big)^r + o\Big(D^r_n e^{-1}_n\Big) = D_n D^r_n e^{-1}_n + o\Big(D^r_n e^{-1}_n\Big).
\]

By Taylor formula and Lemma 3.1, we also have

\[
e^p_1 = (1 + \beta_x f [x_n, a]) e_n = -c_p e_{n-1}, C_n e^p_{n-1} D_n e^{-1}_n + o(e^{p+1}_{n-1})
\]

\[
e^r_1 = (1 + \beta_x f [x_n, a]) e_n = -c_r C_n e^r_{n-1} D_n e^{-1}_n + o(e^{r+1}_{n-1}).
\]

So, comparing the exponents of \(e_{n-1} \) in expressions of \(e^p_n \) and \(e^r_n \) for (9), we obtain the same system of two equations:

\[
\begin{align*}
2 & = (1 + \beta_x f [x_n, a]) e_n - (1 + \beta_x f [x_n, a]) e_n - f[x_n, x_n] e_n + f[x_n, x_n] e_n - f[x_n, x_n] e_n + f[x_n, x_n] e_n
\end{align*}
\]

From its non-trivial solution \(r \approx 3.383 \) and \(p \approx 1.839 \), we prove that the convergence of (9) is of order 3.383.

As the efficiency index is \(p^{1/w} \), without any additional function evaluations, the efficiency indices of (4), (5) and (9) are \(\sqrt[1+\sqrt{2}]{1.554} = 1.554, \sqrt[1+\sqrt{3}]{1.732} = 1.732 \) and \(\sqrt[1+\sqrt{3.383}]{1.839} = 1.839 \), respectively.
4. Numerical Examples

Related one-step methods only using two function evaluations per iteration are showed in the following numerical examples. The proposed method is a derivative-free two-point method with high computational efficiency.

Example 1. The numerical results of NM, SM, (4), (5) and (9) in Table 1 agree with the theoretical analysis. The computational order of convergence is defined by

\[
\text{COC} = \frac{\log(|e_{n+1}|/|e_n|)}{\log(|e_{n+1}|/|e_{n+2}|)}.
\]

Example 2. The numerical results of NM, SM, (4), (5) and (9) are in Table 2 for the following nonlinear functions:

\[
\begin{align*}
 f_1(x) &= 0.5(e^{-x} - 1), \quad a = 2, \quad x_0 = 2.5, \\
 f_2(x) &= e^{x^2} + \sin x - 1, \quad a = 0, \quad x_0 = 0.25, \\
 f_3(x) &= e^{-x^2 + x - 2} - 1, \quad a = -1, \quad x_0 = -0.85, \\
 f_4(x) &= e^{-x} - \arctan x - 1, \quad a = 0, \quad x_0 = -0.2.
\end{align*}
\]

Table 1. \(f(x) = x^2 - e^{-x} - 3x + 1, \ a = 0, \ x_0 = 0.2 \).

<table>
<thead>
<tr>
<th>Methods</th>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM</td>
<td></td>
<td>0.53279e-2</td>
<td>0.35561e-5</td>
<td>0.1580e-11</td>
<td>0.31235e-24</td>
<td>0.12195e-49</td>
<td>0.15890e-100</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>2.25256</td>
<td>2.01691</td>
<td>0.1580e-11</td>
<td>2.00000</td>
<td>2.00000</td>
<td>2.000000</td>
</tr>
<tr>
<td>SM</td>
<td></td>
<td>0.28174e-1</td>
<td>0.51325e-3</td>
<td>0.16476e-6</td>
<td>0.16966e-13</td>
<td>0.17989e-27</td>
<td>0.20226e-55</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>1.21776</td>
<td>2.04376</td>
<td>2.00830</td>
<td>2.00009</td>
<td>2.00000</td>
<td>2.000000</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td>0.28174e-1</td>
<td>0.15996e-4</td>
<td>0.13132e-12</td>
<td>0.43283e-32</td>
<td>0.38442e-79</td>
<td>0.99936e-193</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>1.21776</td>
<td>3.81335</td>
<td>2.49109</td>
<td>2.40945</td>
<td>2.41512</td>
<td>2.41406</td>
</tr>
<tr>
<td>(5)</td>
<td></td>
<td>0.28174e-1</td>
<td>0.16560e-6</td>
<td>0.11521e-21</td>
<td>0.39821e-67</td>
<td>0.16444e-203</td>
<td>0.11580e-612</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>1.21776</td>
<td>6.14536</td>
<td>2.89776</td>
<td>2.99925</td>
<td>3.00000</td>
<td>3.000000</td>
</tr>
<tr>
<td>(9)</td>
<td></td>
<td>0.28174e-1</td>
<td>0.43010e-7</td>
<td>0.21604e-27</td>
<td>0.23153e-94</td>
<td>0.20021e-321</td>
<td>0.69689e-1090</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>1.21776</td>
<td>6.83322</td>
<td>3.49004</td>
<td>3.29917</td>
<td>3.39052</td>
<td>3.38434</td>
</tr>
</tbody>
</table>

Table 2. Numerical results for solving \(f_i(x), \ i = 1, 2, 3, 4 \).

<table>
<thead>
<tr>
<th>Methods</th>
<th>(f_i)</th>
<th>NM</th>
<th>SM</th>
<th>(4)</th>
<th>(5)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_1)</td>
<td></td>
<td>0.19785e-40</td>
<td>0.88156e-29</td>
<td>0.50439e-84</td>
<td>0.19314e-313</td>
<td>0.75162e-578</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.4141</td>
<td>3.0000</td>
<td>3.3831</td>
</tr>
<tr>
<td>(f_2)</td>
<td></td>
<td>0.32328e-44</td>
<td>0.42920e-26</td>
<td>0.19843e-85</td>
<td>0.57587e-282</td>
<td>0.13494e-706</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.4141</td>
<td>3.0000</td>
<td>3.3825</td>
</tr>
<tr>
<td>(f_3)</td>
<td></td>
<td>0.18813e-51</td>
<td>0.15758e-18</td>
<td>0.12013e-86</td>
<td>0.34524e-286</td>
<td>0.27679e-677</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.4140</td>
<td>3.0000</td>
<td>3.3796</td>
</tr>
<tr>
<td>(f_4)</td>
<td></td>
<td>0.35988e-79</td>
<td>0.96290e-84</td>
<td>0.16834e-248</td>
<td>0.21536e-597</td>
<td>0.25291e-1154</td>
</tr>
<tr>
<td>COC</td>
<td></td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.4161</td>
<td>3.0000</td>
<td>3.3831</td>
</tr>
</tbody>
</table>
5. Conclusion

By theoretical analysis and numerical experiments, we confirm that the proposed method which is a derivative-free two-point method has high computational efficiency. Its convergence order is 3.383 and its efficiency index is 1.839. We can see that the suggested method is suitable to solve nonlinear equations and can also be used for solving boundary-value problems of nonlinear ordinary differential equations.

References

